wiki_research

personal research wiki
git clone https://a3nm.net/git/wiki_research/
Log | Files | Refs

commit b28d83bc9a4d786a6fb898ddaad64173d921a165
parent 9568f40f1b591fb0739defc5dfe10023229e1ed8
Author: Antoine Amarilli <a3nm@a3nm.net>
Date:   Wed, 25 Jun 2025 18:36:14 +0200

commit with codex

Diffstat:
alternation_hierarchy | 7-------
automata_multitape | 2+-
automatic_relation | 2+-
first_order_interpretation | 18++++++++++++++++++
first_order_projection | 4+++-
hierarchy | 1+
testing_if_automatic_relation_is_recognizable | 6++++++
word_relation | 12++++++++----
8 files changed, 38 insertions(+), 14 deletions(-)

diff --git a/alternation_hierarchy b/alternation_hierarchy @@ -1,7 +0,0 @@ -# Alternation hierarchy - -Hierarchy of [first_order_logic] on [quantifier_alternation_depth] - -Up: [hierarchy] of [first_order_logic] - -See also: [automata_alternating], [alternation], [dot_depth] diff --git a/automata_multitape b/automata_multitape @@ -1,7 +1,7 @@ # Automata multitape An [automaton] with multiple [tapes] to read multiple [words] -- each tape can advance independently from the others, unlike [synchronous_automata] +- the head on each tape can advance independently from the others, unlike [synchronous_automata] Defines a [rational_relation] diff --git a/automatic_relation b/automatic_relation @@ -10,7 +10,7 @@ Special case: [recognizable_relations] Generalization: [deterministic_rational_relations], [rational_relations] -The [CD_membership_problem] for C=automatic relations and D=[recognizable_relations] is [PSPACE_complete] (cf [morvan2025homomorphism] Proposition VII.1.9) +[CD_membership_problem]: [testing_if_automatic_relation_is_recognizable] It is an [open_problem] whether the [computational_problem] of deciding [formal_language_separation] of automatic relations by a [recognizable_relation] is a [decidable] problem diff --git a/first_order_interpretation b/first_order_interpretation @@ -0,0 +1,18 @@ +# First order interpretation + +A *d-dimensional FO interpretation* defines: + +- an [FO] formula of arity d for domain elements, among d-tuples +- an [FO] formula of arity 2d, for equality + - we take the [quotient] under it +- [FO] formulas of arity dk to define [relations] of arity k + +This allows [formulas] on the image of the FO interpretation to be "translated back" to the source of the FO interpretation + +We can get rid of equality, cf [morvan2025homomorphism], Prop VII.3.2 + +Up: [logic_interpretation], [FO] + +Aliases: FO interpretation, FO reduction + +See also: [FO_projection] diff --git a/first_order_projection b/first_order_projection @@ -8,4 +8,6 @@ A very limited kind of [reduction] defined via [first_order_logic] Up: [reduction] -See also: [first_order_logic] +See also: [first_order_logic], [FO_interpretation], [projection] + +Aliases: FO projection diff --git a/hierarchy b/hierarchy @@ -5,6 +5,7 @@ - [alternation_hierarchy] - [arithmetical_hierarchy] - [time_hierarchy_theorem] / [space_hierarchy_theorem] +- [logarithmic_time_hierarchy] Up: [mathematics] diff --git a/testing_if_automatic_relation_is_recognizable b/testing_if_automatic_relation_is_recognizable @@ -0,0 +1,6 @@ +# Testing if automatic relation is recognizable + +The [CD_membership_problem] for C=[automatic_relations] and D=[recognizable_relations] is [PSPACE_complete] +- cf [morvan2025homomorphism] Proposition VII.1.9 + +Up: [CD_membership_problem], [automatic_relation], [recognizable_relation] diff --git a/word_relation b/word_relation @@ -2,11 +2,13 @@ A [relation] on [words] -- [recognizable_relation] -- [automatic_relation] -- [rational_relation] +From most to least expressive: -Cf [morvan2025homomorphism] Figure VII.1 for an [inclusion_diagram] +- [rational_relation] with [automata_multitape] +- [automatic_relation] with [automata_synchronous] +- [recognizable_relation] with finite [union] of [Cartesian_products] of [regular_languages] + +Cf [morvan2025homomorphism] Figure VII.1 for an [inclusion_diagram]. Also discussed in [barcelo2023separating] [machine_models]: @@ -16,6 +18,8 @@ Cf [morvan2025homomorphism] Figure VII.1 for an [inclusion_diagram] - combining [automata] on each [word] - gives [recognizable_relations] via [Mezei's_theorem] +Special case: [functional_relation], which corresponds to [transducers] + Up: [relation], [word] Aliases: word relations