**commit** 9c02f5f266353da867ba2823fb791e26b907b86c
**parent** cccd5fd093787466a34fbc945fb85df08ad376e5
**Author:** a3nm <>
**Date:** Sun, 17 Jun 2018 01:39:15 +0200
typo
**Diffstat:**

1 file changed, 1 insertion(+), 1 deletion(-)

**diff --git a/Logic.page b/Logic.page**
@@ -39,7 +39,7 @@ Satisfaction can also be defined using [Logical games]().
One example of a first-order logic formula is the Boolean formula $\phi: \forall x ~ R(x) \rightarrow \exists y ~ S(x, y)$, stating that for every $x$ in the unary relation $R$ there exists an $y$ to which it is connected by the binary relation $S$. This formula $\phi$ is also a [tuple-generating dependency](Constraints#tuple-generating-dependencies).
-Another example is the formula $\psi: \forall x \, y \, y' ~ R(x, y) \land R(x, y') \rightarrow y = y'$. This formula $\psi$ is also a [functional dependency](Constraints#functional-dependencies)
+Another example is the formula $\psi: \forall x \, y \, y' ~ R(x, y) \land R(x, y') \rightarrow y = y'$. This formula $\psi$ is also a [functional dependency](Constraints#functional-dependencies).
## Inexpressivity results and useful properties