
A Dichotomy for Homomorphism-Closed Queries1

on Probabilistic Graphs2

Antoine Amarilli3

LTCI, France4

Télécom Paris, France5

Institut Polytechnique de Paris, France6

İsmail İlkan Ceylan7

University of Oxford, United Kingdom8

Abstract9

We study the problem of probabilistic query evaluation (PQE) over probabilistic graphs, namely,10

tuple-independent probabilistic databases (TIDs) on signatures of arity two. Our focus is the class11

of queries that is closed under homomorphisms, or equivalently, the infinite unions of conjunctive12

queries, denoted UCQ∞. Our main result states that all unbounded queries in UCQ∞, i.e., queries13

with infinitely many minimal models, are #P-hard for PQE. As bounded queries in UCQ∞ are14

already classified by the dichotomy of Dalvi and Suciu [17], our results and theirs imply a complete15

dichotomy for PQE(UCQ∞) on arity-two signatures. This dichotomy covers in particular all query16

languages contained in UCQ∞ such as negation-free (disjunctive) Datalog, regular path queries, and17

a large class of ontology-mediated queries on arity-two signatures. Our result is shown by reducing18

either from counting the valuations of positive partitioned 2-DNF formulae (#PP2DNF), or from the19

source-to-target reliability problem in an undirected graph (#U-ST-CON), depending on properties20

of the minimal models of the query.21

2012 ACM Subject Classification Theory of computation → Database query processing and opti-22

mization (theory)23

Keywords and phrases Tuple-independent database, #P-hardness, recursive query24

Digital Object Identifier 10.4230/LIPIcs...25

1 Introduction26

The management of uncertain and probabilistic data is an important problem in many27

applications, e.g., automated knowledge base construction [26, 29, 19], data integration28

from diverse sources, predictive and stochastic modeling, applications based on (error-prone)29

sensor readings, etc. To represent probabilistic data, the most natural model is that of30

tuple-independent probabilistic databases (TIDs) [34]. In TIDs, every fact of the database is31

viewed as an independent random variable, and is either kept or discarded according to some32

probability. Hence, a TID induces a probability distribution over all possible worlds, that is,33

all possible subsets of the database. The central inference task for TIDs is then probabilistic34

query evaluation (PQE): Given a query Q, compute the probability of Q relative to a TID I,35

i.e., the total probability of the possible worlds where Q is satisfied.36

In a breakthrough result, Dalvi and Suciu obtained a dichotomy for PQE on unions of37

conjunctive queries (UCQs), measured in data complexity, i.e., as a function of the input38

TID and with the query being fixed. In particular, they have shown that the probability39

of any UCQ can either be computed in polynomial time or it is #P-hard to compute. The40

queries that enjoy tractable PQE are called safe, and all other queries are called unsafe. This41

result has served as the foundation for many other subsequent works that investigated the42

complexity of PQE [21, 30, 31, 33, 13, 2, 28].43

Despite the extensive research on TIDs, there is only little known for PQE for monotone44

© Antoine Amarilli and İsmail İlkan Ceylan;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

https://orcid.org/0000-0002-7977-4441
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

query languages beyond UCQs. In particular, we are not aware of results concerning45

(negation-free) Datalog, which captures patterns that are not first-order definable, most46

notably recursion which is an essential ingredient in many applications. To this date, it47

remained unknown whether a dichotomy on PQE could be shown for (negation-free) Datalog,48

or for ontology-mediated queries [12].49

In this work, we push the boundaries of the dichotomy for unions of conjunctive queries50

to a large class of monotone (i.e., positive) queries; namely, all queries that are closed under51

homomorphisms. This class can equivalently be viewed as the infinite union of conjunctive52

queries, abbreviated as UCQ∞. Notably, UCQ∞ contains many well-known query languages53

such as (negation-free) disjunctive Datalog, regular path queries (RPQs), and a large class of54

ontology-mediated queries, as we elaborate in the discussion of related work. More specifically,55

we are interested in the following question: Does PQE admit a data complexity dichotomy56

on the class UCQ∞? As any bounded UCQ∞ query is equivalent to a UCQ, it suffices to57

classify unbounded queries in UCQ∞, i.e., queries with infinitely many minimal models.58

The main result of this paper is to complete the dichotomy and show that PQE is #P-hard59

for any unbounded UCQ∞ query, in the case of an arity-two signature (where all relations are60

binary); the input to query evaluation is then a (labeled) probabilistic graph. This restricted61

setting captures many applications such as the ones dealing with ontologies and graph data,62

e.g., regular path queries (RPQs): we accordingly restrict to arity-two throughout the paper.63

It is of course not surprising that some queries in UCQ∞ are unsafe for similar reasons as64

unsafe UCQs, e.g., we can easily show that the RPQ RS∗T is #P-hard by reducing from the65

well-known #P-hard query Q0 : R(x) ∧ S(x, y) ∧ T (y) from [16]. However, the challenge is66

to show hardness for every query in UCQ∞ that is not equivalent to a UCQ.67

The proof proceeds by first showing a reduction from the problem of counting the68

valuations of positive partitioned 2-DNF formulae (#PP2DNF), which is also the problem69

used to show #P-hardness of the Q0 query above. We show how this reduction can be70

applied to any query in UCQ∞ with a minimal model having a so-called non-iterable edge.71

Intuitively, the #PP2DNF reduction applies if we can find an edge to code the #PP2DNF72

problem, without having “back-and-forth” patterns that can make the query true.73

When the #PP2DNF reduction fails, we show that we can instead use the unboundedness74

of the query to reduce from the source-to-target reliability problem in an undirected graph75

(#U-ST-CON). To do this, we must first study the minimal models of unbounded queries,76

and we show how to find one with a tight edge, i.e., an edge whose dissociation (replacing77

the edge by two copies) would make the query false. Picking one such edge which is iterable,78

we can code #U-ST-CON in a way that ensures that any source-to-target path will witness79

the existence of an iterate of the minimal model, making the query true. To argue that the80

query is false when there is no path, we must rely on a notion of fine dissociation that relies81

on some minimality assumptions that we can make on our choice of tight edge.82

Related Work. Research on probabilistic databases is a well-established topic: we refer the83

reader to the book [34]. It was first shown in [24] that query evaluation for some queries84

on probabilistic databases is #P-hard, and Dalvi and Suciu [16] established a dichotomy85

result on queries: a self-join free conjunctive query is safe if it is hierarchical, and #P-hard86

if it is non-hierarchical. They then extended this result to a dichotomy on all UCQs [17].87

Beyond UCQs, partial dichotomy results are known for some queries with negation [21], and88

other results allow for disequality (6=) joins in the queries [30] or for inequality (<) joins [31].89

There is also a trichotomy result over queries with aggregation [33]. Some dichotomies are90

known for extended models, e.g., the dichotomy of Dalvi and Suciu on TIDs has been lifted91

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:3

to so-called open-world probabilistic databases [13]. However, we are not aware of dichotomies92

applying to Boolean queries beyond first-order.93

Query evaluation on probabilistic databases has also been studied in the context of94

ontology-mediated queries (OMQs). In this context, the query also includes an ontology,95

i.e., (non-probabilistic) logical rules that can be used for inference. The complexity of96

evaluating such OMQs on probabilistic databases has been investigated for ontologies both in97

Description Logics [28] and in Datalog± [7, 8]. However, most of these classification results98

apply to OMQs that are FO-rewritable, i.e., the query with the ontology is in fact equivalent99

to a first-order query. The only exception that we know is the result on the Description100

Logic ELI [28], for which OMQs are rewritable to UCQ∞ but not to first-order. Our work101

generalizes their result (Theorem 6 of [28]) by showing hardness for any unbounded UCQ∞,102

not just the ones expressible in ELI; and our techniques in Section 4 are related to theirs.103

However, their proof (Theorem 6 in [28] and Theorem 5.31 of [27]) has a gap due to a subtle104

problem concerning “back-and-forth matches”1. This problem only occurs because of inverse105

roles in ELI, and thus would not occur in the case of the description logic EL. Our own proof106

(second item of Proposition 4.8, and the material of Sections 5 and 6) addresses this problem,107

and provides a complete proof of Theorem 6 in [28], in addition to applying to all unbounded108

UCQ∞ (beyond the ones expressible in ELI).109

2 Preliminaries110

Vocabulary. We consider a relational signature σ which is a set of predicates. In this work,111

the signature is required to be arity-two, i.e., consist only of predicates of arity two. Our112

results can easily be extended to signatures with relations having predicates of arity one and113

two (see Appendix A), as is more common in some contexts such as description logics.114

A σ-fact is an expression of the form R(a, b) where R is a predicate and a, b are constants.115

A σ-atom is defined in the same way with variables instead of constants. For brevity, we will116

often talk about a fact or an atom when σ is clear from context. We also speak of R-facts,117

or R-atoms to specifically refer to facts, or atoms that use the predicate R.118

It will be convenient to write σ↔ the arity-two signature consisting of the relations of σ119

and of the relations R− for R ∈ σ, with a semantics that we define below.120

Database Instances. A database instance over σ, or a σ-instance, is a set of facts over σ.121

All instances considered in this paper are finite. The domain of a fact F , denoted dom(F),122

is the set of constants that appear in F , and the domain of an instance I, denoted dom(I),123

is the union of the domain of its facts.124

Whenever we consider a σ-instance I, we can always see it as a σ↔-instance defined as125

consisting of all the σ-facts in I, plus all the facts R−(b, a) for each fact R(a, b) of I. Thus,126

whenever we consider a σ-instance I and say, for instance, that we consider all σ↔-facts127

F = R(a, b) of I that contain some a ∈ dom(I), we mean all the facts of the form S(a, b)128

of I with S ∈ σ, and also all the facts of the form S−(a, b) for S ∈ σ, that is, facts of the129

form S(b, a). If we say that, for one such fact F0 = R(a, b0), we create the fact R(a′, b0) for130

some a′ ∈ dom(I), it means that we create S(a′, b0) if F0 = S(a, b0) with S ∈ σ, and S(b0, a)131

if F0 = S−(a, b0) with S ∈ σ.132

The Gaifman graph of an instance I is the undirected graph having dom(I) as vertex133

set, and having an edge {u, v} between any two u, v ∈ dom(I) that co-occur in some fact134

1 We have communicated the problem with the authors and they kindly confirmed.

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:4 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

of I. An instance is connected if its Gaifman graph is connected. We then call {u, v} an135

(undirected) edge of I, and the facts that realize e are the σ-facts of I that use both u and v.136

Slightly abusing notation, we will also say that an ordered pair e = (u, v) is a (directed) edge137

of I if {u, v} is an edge of the Gaifman graph. We will then talk about the facts that realize138

e as the σ↔-facts of the form R(u, v), i.e., the S(u, v) of I with S ∈ σ, and the S−(u, v) of I139

with S ∈ σ, corresponding to the σ-fact S(v, u) of I. So if we say that we add a fresh element140

v′ to dom(I) and create a copy of the facts of e on (u, v′), it means that we create S(u, v′)141

for all facts S(u, v′) realizing e with S ∈ σ, and we create S(v′, u) for all facts S−(u, v′)142

realizing e with S ∈ σ.143

We say that an element u ∈ dom(I) of I is a leaf if it occurs in only one undirected edge.144

We say that an edge (directed or undirected) is a leaf if one of its elements (possibly both)145

is a leaf; otherwise, it is a non-leaf.146

An instance I is a subinstance of another instance I ′ if I ⊆ I ′, and I is a proper subinstance147

of I ′ if I ⊂ I ′. Given a set S ⊆ dom(I) of domain elements, the subinstance of I induced148

by S is the instance formed of all the facts F ∈ I such that dom(F) ⊆ S.149

A homomorphism from an instance I to an instance I ′ is a function h from the domain150

of I to that of I ′ such that, for every fact R(a, b) of I, the fact R(h(a), h(b)) is a fact of I ′.151

In particular, whenever I ⊆ I ′ then I has a homomorphism to I ′. An isomorphism is a152

bijective homomorphism, whose inverse is also a homomorphism.153

Query Languages. Throughout this work, we focus on Boolean queries. A (Boolean) query154

over a signature σ is a function from σ-instances to Booleans. We say that an instance155

I satisfies a query Q, that Q holds on I, or that I is a model of Q, written I |= Q, if Q156

returns true when applied to I; otherwise, I violates Q. We say that two queries Q1 and Q2157

are equivalent if for any instance I, the query Q1 holds on I iff Q2 holds on I. All queries158

studied in this work are closed under homomorphisms (also called homomorphism-closed),159

i.e., if I satisfies the query and I has a homomorphism to I ′ then I ′ also satisfies the160

query. Note that queries closed under homomorphisms are in particular monotone, i.e., if I161

satisfies the query and I ⊆ I ′ then I ′ also satisfies the query. We call UCQ∞ the class of all162

homomorphism-closed queries.163

One well-known subclass of UCQ∞ is unions of conjunctive queries (UCQs), without164

negation or inequalities. Formally, a conjunctive query (CQ) is an existentially quantified165

conjunctions of atoms, and a UCQ is a disjunction of CQs. For brevity, we will omit166

existential quantification when writing UCQs, and abbreviate the conjunction with a comma.167

For instance, the UCQ R(x, y), S(x, z) ∨ T (x, y) holds exactly when the instance contains a168

T -fact or when it contains an R-fact and an S-fact sharing the same first element. Note that169

queries in UCQ∞ can be seen as an kind of infinite UCQs (hence the notation), i.e., a query170

in UCQ∞ can always be seen as an infinite disjunction of CQs corresponding to the models171

of the query.172

Another subclass of UCQ∞ is Datalog, again without negation or inequalities. Intuitively,173

a Datalog program defines a signature of intensional predicates, including a 0-ary predicate174

Goal(), and consists of a set of rules which explain how now intensional facts can be derived175

from other intensional facts and from database facts (called extensional). The interpretation176

of the intensional predicates is defined by taking the (unique) least fixpoint of the rules,177

and the query holds iff the Goal() predicate can be derived. For a formal definition of178

the semantics, refer to [1]. Note that, when defining Datalog programs in our setting, the179

intensional relations can have arbitrary arity, i.e., they do not have to be arity-two. All180

Datalog queries are homomorphism-closed: intuitively, a Datalog program defines a UCQ∞181

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:5

having one disjunct for each possible derivation tree for the program. However, there are182

some homomorphism-closed queries that are not expressible in Datalog [18].183

Another subclass of UCQ∞ is the so-called ontology-mediated queries or OMQs [6], that is,184

database queries (typically, UCQs) coupled with an ontology, i.e., a set of logical constraints.185

More precisely, an OMQ is a pair (Q, T), where Q is a UCQ, and T is an ontology in some186

logical formalism. A database instance I satisfies an OMQ (Q, T) when the instance I187

and the logical constraints T entail the query Q in the standard sense – see, e.g., [6] for a188

formal definition. There is a large class of OMQ languages, mostly based on Description189

Logics (DLs) [3], and existential rules (also known as tuple-generating dependencies, or190

Datalog±) [10, 11]. A prominent paradigm to evaluate OMQs is based on the notion of191

rewritability. For instance, an OMQ Q is Datalog-rewritable w.r.t. T if there is a Datalog192

query QT such that, for every database I consistent with T , the query Q is entailed by I193

and T iff the rewriting QT holds in I. Many ontology languages admit efficient rewritings to194

Datalog (even on arity-two signatures) [23, 20]. Thus, the negation-free fragment of many195

ontology languages falls into the class UCQ∞ on arity-two signatures.196

Probabilistic Query Evaluation. We study the problem of probabilistic query evaluation197

over tuple-independent probabilistic databases. A tuple-independent probabilistic database198

(TID) over a signature σ is a pair I = (I, π) of a σ-instance I and of a function π that maps199

every fact F to a probability π(F), given as a rational number in [0, 1]. Formally, a TID200

I = (I, π) defines the following probability distribution over all possible worlds I ′ ⊆ I:201

π(I ′) :=
(∏
F∈I′

π(F)
)
×

 ∏
F∈I′\I

(1− π(F))

 ,202

203

Then, given a TID I = (I, π), the probability of a query Q relative to I, denoted PI(Q), is204

given by the sum of the probabilities of the possible worlds that satisfy the query:205

PI(Q) :=
∑

I′⊆I,I′|=Q

π(I ′).206

The probabilistic query evaluation problem (PQE) for a query Q, written PQE(Q), is then207

the task of computing PI(Q) for a given TID I.208

Complexity Background. FP is the class of functions f : {0, 1}∗ 7→ {0, 1}∗ computable209

by a polynomial-time deterministic Turing Machine, i.e., it is like the usual class P but210

for computation problems instead of decision problems. The class #P, introduced by211

Valiant [35], contains the computation problems that can be expressed as the number of212

accepting paths of a nondeterministic polynomial-time Turing machine. Formally, a function213

f : {0, 1}∗ 7→ N is in #P if there exists a polynomial p : N 7→ N and a polynomial-time214

deterministic Turing machine M such that for every x ∈ {0, 1}∗, it holds that f(x) = |{y ∈215

{0, 1}p(|x|) | M answers y on the input x}|.216

Several types of reductions exist for #P, while the most common being polynomial-time217

Turing reductions [14]. Informally, Turing reductions generalize the standard many-one218

reductions in the sense that they also allow access to an oracle. Thus, a function f is219

#P-complete under polynomial time Turing reductions if it is in #P and every g ∈ #P is220

in FPf . Polynomial-time Turing reductions are the ones used to show #P-hardness in the221

dichotomy of Dalvi and Suciu [17]. All of our reductions in this work are polynomial-time222

Turing reductions and more specifically 1-Turing reductions, i.e, they require only a single223

oracle call to #P.224

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:6 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

We study the data complexity of PQE(Q), which is measured only as a function of the225

input instance I, i.e., we assume that the signature and Q are fixed. It is immediate that226

the problem PQE(Q) is in the complexity class FP#P of computation problems that can be227

performed in polynomial time with access to a #P-oracle, as we can use a nondeterministic228

Turing machine to guess a possible world according to the probability distribution of the229

TID (i.e., each possible world is obtained in a number of runs proportional to its probability),230

and then check in polynomial time data complexity if the query holds, with polynomial-time231

normalization at the end to go from a number of runs to probabilities. Our focus in this232

work is to show that the problem is also #P-hard.233

Hard problems. We will show hardness by reducing from two well-known #P-hard problems.234

For some queries, we will reduce from the undirected st-connectivity problem (#U-ST-CON) [32]:235

I Definition 2.1. The source-to-target undirected reachability problem (#U-ST-CON) asks236

the following: Given an undirected graph G with two distinguished vertices s and t, determine237

the probability that there exists a path from s to t, where each graph edge has probability 0.5.238

In other cases, we will reduce from a more local problem, called #PP2DNF, which a239

standard tool to show hardness of unsafe UCQs. In our proof, we use it for unbounded240

queries. The original problem (given in [32]) uses Boolean formulas, but we give an equivalent241

rephrasing in terms of bipartite graphs.242

I Definition 2.2. Given a bipartite graph H = (A,B,C) with edges C ⊆ A×B, a possible243

world of H is a pair (A′, B′) with A′ ⊆ A and B′ ⊆ B. We call the possible world good if244

one vertex of A′ and one vertex of B′ are adjacent in C, and bad otherwise. The positive245

partitioned 2DNF problem (#PP2DNF) is the following: Given a bipartite graph, compute246

how many of its possible worlds are good.247

Note that we can clearly assume without loss of generality that the bipartite graph H is248

connected, as otherwise the number of good possible worlds is simply obtained as the product249

of the number of good possible worlds of each connected component of H.250

3 Result Statement251

The goal of this paper is to extend the dichotomy by Dalvi and Suciu [17] on PQE for unions252

of conjunctive queries. Their result states:253

I Theorem 3.1 [17]. Let Q be a UCQ. Then, PQE(Q) is either in FP or it is #P-hard.254

This dichotomy result holds for arbitrary arity queries, and characterizes the complexity of255

the PQE problem for UCQs. However, it does not apply to other homomorphism-closed256

languages beyond UCQs, as pointed out earlier. Our contribution, when restricting to the257

arity-two setting, is to generalize the dichotomy to UCQ∞, i.e., to apply to any query closed258

under homomorphisms. Specifically, we show that all such queries are intractable unless they259

are equivalent to a UCQ.260

I Theorem 3.2. Let Q be a UCQ∞ on an arity-two signature. Then, PQE(Q) is either in261

FP or it is #P-hard.262

Our result relies on the dichotomy of Dalvi and Suciu for queries that are equivalent to263

UCQs. The key point is then to show intractability for the remaining queries. Specifically,264

we speak of unbounded queries as queries which are closed under homomorphisms, but not265

equivalent to a UCQ, and show the following.266

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:7

I Theorem 3.3. Let Q be an unbounded UCQ∞ on an arity-two signature. Then, PQE(Q)267

is #P-hard.268

Examples of unbounded queries are regular path queries such as RS∗T . Datalog queries269

can be either bounded (i.e., equivalent to a UCQ) or unbounded, as in the case, e.g., of the270

following program with one monadic intensional predicate U on extensional signature R,S, T271

which corresponds to the RPQ RS∗T :272

R(x, y)→ U(x) U(x), S(x, y)→ U(y) U(x), T (x, y)→ Goal()273
274

Thus, for instance, the PQE problem for Datalog queries is #P-hard whenever the query is275

not equivalent to a UCQ, which is the case unless the Datalog program is nonrecursive or276

recursion is bounded [25].277

Effectiveness and uniformity. We do not know whether we can effectively decide our278

dichotomy result in Theorem 3.2, i.e., given a query closed under homomorphisms, determine279

whether PQE(Q) is #P-hard or in FP. For UCQs, the dichotomy of Theorem 3.1 is effective280

using the super-exponential algorithm of [17], with the precise complexity being open.281

For more general query languages, the problem would depend on how the input query is282

represented. In the case of Datalog queries, for instance, we do not know if the problem is283

even decidable, because it is generally undecidable whether an input Datalog program is284

bounded [22]. Nevertheless, this does not imply undecidability in our context, as we could285

imagine a procedure that would, e.g., identify unsafe Datalog queries without needing to286

decide boundedness.287

However, our dichotomy is effective for more restricted query languages for which we can288

decide boundedness, e.g., monadic Datalog or its generalization GN-Datalog [5], or C2RPQs289

for which boundedness was recently shown to be decidable [4].290

For queries that we show to be #P-hard, we also do not focus on the question of whether291

the PTIME reduction can effectively be “found”, i.e., given the #P-hard query, compute what292

the reduction is. All that matters is that, once the query is fixed, some PTIME reduction293

procedure exists. Such uniformity problems seem unavoidable, given that our language294

UCQ∞ is very general and includes some queries for which non-probabilistic evaluation is295

not even decidable, e.g., “there is a path from R to T whose length is the index of a Turing296

machine which halts”. We leave to future work the investigation of better-behaved query297

languages where we can bound the complexity (as a function of the query) of performing the298

reduction.299

Proof outline. Theorem 3.3 is proven in the next three sections. In Section 4, we consider300

the case of queries for which we can find a model with a so-called non-iterable edge, intuitively301

a model where we can make the query false by replacing the edge by a back-and-forth path302

of some length between two neighboring facts that it connects. For such queries, we can303

show hardness by a reduction from #PP2DNF, essentially like the hardness proof for the304

query Q0 : R(w, x), S(x, y), T (y, z) of [16, Theorem 5.1]. This hardness proof covers some305

bounded queries (including Q0) and some unbounded ones.306

In Section 5, we present a new ingredient, to be used in the second case, i.e., when there307

is no model with a non-iterable edge. We show that unbounded queries must always have a308

model with a tight edge, i.e., an edge where we can make the query false by replacing it by309

two copies that disconnect its endpoints. What is more, we can find a model with a tight310

edge which is minimal in some sense.311

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:8 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

In Section 6, we use minimal tight patterns to cover unbounded queries that have a312

minimal tight pattern whose edge is iterable. This applies for all queries to which Section 4 did313

not apply (and also for some queries to which it did). Here, we reduce from the #U-ST-CON314

problem, intuitively using the iterable edge for a kind of reachability test, and using the315

minimality and tightness of the pattern to argue that the query is satisfied iff there is a path.316

4 Hardness with Non-Iterable Edges317

In this section, we present a first hardness proof for the case where we can find a model of318

the query with a non-iterable edge. This notion will be defined relative to a neighbor choice:319

I Definition 4.1. Let I be an instance and e = (u, v) be a non-leaf edge of I. A neighbor320

choice of e is a pair of σ↔-facts N = (Fl, Fr) of I where Fl is of the form Rl(l, u) and Fr321

is of the form Rr(v, r) with l 6= v and r 6= u. We write Ie,N to denote an instance I with a322

non-leaf edge e relative to a neighbor choice N .323

Note that Rl and Rr are σ↔-relations. Hence, we may have Rl = Rr, and we may have324

l = r. Let us illustrate the notion of neighbor choice on an example.325

I Example 4.2. Given an instance I = R(a, b), S(c, b), R(d, c), the edge (b, c) is non-leaf and326

a neighbor choice for it is (R(a, b), R−(c, d)).327

Note that every non-leaf edge (u, v) must have a neighbor choice, as we can pick Fl and328

Fr from the edges incident to u and v which are not e. We can now define the iteration329

process, which creates a path of the edge e, keeping the facts Fl and Fr at the beginning and330

end of the path, and copying all other incident facts:331

I Definition 4.3. Let Ie,N be an instance where e = (u, v), N = (Fl, Fr), Fl = Rl(l, u),332

Fr = Rr(v, r), and let n ≥ 1. The result of performing the n-th iteration of e in I relative333

to (Fl, Fr), denoted Ine,N , is a σ-instance with domain dom(Ine,N) := dom(I)∪ {u2, . . . , un} ∪334

{v1, . . . , vn−1}, where the new elements are fresh, and where we will we use u1 to refer to u335

and vn to refer to v for convenience. The facts of Ine,N are defined by applying the following336

steps:337

Copy non-incident facts: Initialize Ine,N as the induced subinstance of I relative to the338

domain dom(I) \ {u, v}.339

Copy incident facts Fl and Fr: Add Fl and Fr to Ine,N , using u1 and vn, respectively.340

Copy other facts incident to u: For every σ↔-fact F ′l = R′l(l′, u) with l′ 6= v and F ′l 6= Fl,341

add the fact R′l(l′, ui) to Ine,N for each 1 ≤ i ≤ n.342

Copy other facts incident to v: For every σ↔-fact F ′r = R′r(v, r′) with r′ 6= u and F ′r 6= Fr,343

add the fact R′r(vi, r′) to Ine,N for each 1 ≤ i ≤ n.344

Create copies of e: For each σ↔-fact R(u, v) realizing e in I, add the σ↔-fact R(ui, vi) to345

Ine,N for each 1 ≤ i ≤ n, and add the σ↔-fact R(ui+1, vi) to Ine,N for each 1 ≤ i ≤ n− 1.346

The iteration process is represented in Figure 1. Note that for n = 1 we obtain exactly347

the original instance. Intuitively, we replace e by a path going back-and-forth between copies348

of u and v (and traversing e alternatively in one direction and another). The intermediate349

vertices have the same incident edges as the original endpoints except that we have removed350

one fact in the label of one edge on each endpoint, as indicated by the neighbor choice. The351

reason why must choose two incident facts (not edges) in the neighbor choice is because in352

the PQE problem we give probabilities to single facts and not edges.353

We notice that larger iterates have homomorphisms back to smaller iterates:354

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:9

l

l1

u v

r

r1 l

l1

u = u1

u2

u3

v1

v2

v = v3

r

r1

Figure 1 Example of iterating an edge in an instance (from left to right). Lines represent edges
(realized by multiple σ↔-facts). The iterated edge is the purple line at the middle; the double blue
and black lines are the edges of Fl and Fr respectively; their dashed versions on the right are the
same edges without the facts Fl and Fr respectively.

I Observation 4.4. For any instance I, for any non-leaf edge e of I, for any neighbor choice355

N for e, and for any 1 ≤ i < j, it holds that Ije,N has a homomorphism to Iie,N .356

Proof. Simply merge ui, . . . , uj , and merge vi, . . . , vj . J357

Hence, choosing an instance I that satisfies Q, a non-leaf edge e of I, and a neighbor choice,358

there are two possible regimes. Either all iterations still satisfy Q, or there is some iteration359

where Q is violated (and, by Observation 4.4, all subsequent iterations also violate Q). We360

formalize this as follows.361

I Definition 4.5. A non-leaf edge e of a model I of a query Q is iterable relative to a362

neighbor choice N if Ine,N satisfies Q for each n ≥ 1; otherwise, it is non-iterable.363

The goal of this section is to show that if a query Q has a model with a non-leaf edge364

which is not iterable, then PQE(Q) is intractable. Formally:365

I Theorem 4.6. For every UCQ∞ Q, if Q has a model I with a non-leaf, non-iterable edge e,366

then PQE(Q) is #P-hard.367

Note that this result applies to arbitrary homomorphism-closed queries, whether they368

are bounded or not. If we consider for instance the query R(w, x), S(x, y), T (y, z) (which369

is the arity-2 version of the prototypical hard query for TIDs [16]), then the model370

R(a, b), S(b, c), T (c, d) has an edge {b, c} which is non-leaf and non-iterable: its iteration with371

n = 2 relative to the only possible neighbor pair yields R(a, b), S(b, c′), S(b′, c′), S(b′, c), T (c, d)372

which does not satisfy the query. Whenever we have a model of this kind, we will be able to373

show hardness by reducing from #PP2DNF (Definition 2.2).374

Note that Theorem 4.6 also applies to bounded queries. On such queries, it generalizes375

the hardness part of the dichotomy result of [16] for self-join-free conjunctive queries (SJFQ),376

i.e., all non-hierarchical self-join free CQs are hard. Indeed, it is easy to see that whenever a377

SJFQ has no model with a non-leaf, non-iterable edge, then it must be hierarchical. However,378

Theorem 4.6 does not capture the hardness of some UCQs with self joins. For instance, the379

query (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)) is #P-hard but does not have a model with a380

non-leaf and non-iterable edge: intuitively, we can evaluate this query just by looking at pairs381

of facts that share an element, which iteration does not affect. Theorem 4.6 will nevertheless382

be sufficient for our purposes of showing hardness for all unbounded queries, as we will do in383

the next sections.384

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:10 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

a

b

c

α

β

γ

(a) A bipartite graph G.

l

l1
u v

r1

r

r2

(b) A non-leaf edge e = (u, v).

l

l1

u

u2

v1

v

r1

r

r2

(c) 2nd iteration of the edge e.

l

l1

ua

uaα

ub

ubα
ubβ

uc

ucα
ucβ

ucγ

vaα

vbα

vcα

vα

vbβ

vcβ

vβ

vcγ

vγ

r1

r

r2

(d) Coding of the bipartite graph G, where every edge is encoded
by the 2nd iteration of e.

e

el with Fl
er with Fr
el without Fl
er without Fr
other incident edges

Figure 2 Example of a coding based on a bipartite graph G shown in Fig 2(a). An edge e
(Fig 2(a)) is used in the encoding of G, and the result of iterating e is shown in Fig 2(c). The final
encoding of the problem is illustrated in Fig 2(d). A key explains the colors (bottom right).

Thus, let us start presenting the construction needed to prove Theorem 4.6. In what385

follows, we define a coding that takes a bipartite graph and constructs a (probabilistic)386

instance in polynomial-time such that there is a bijective correspondence between the possible387

worlds of the bipartite graph and the possible worlds of the probabilistic instance.388

I Definition 4.7. Let H = (A,B,C) be a connected bipartite graph. The coding of H relative389

to an instance I, to a non-leaf edge e = (u, v) of I, to a neighbor choice N = Fl, Fr of e390

with Fl = Rl(l, u), Fr = Rr(v, r), and to n ≥ 1, is a probabilistic instance I = (J, π). The391

domain of J is dom(J) := (dom(I) \ {u, v}) ∪ {ua | a ∈ A} ∪ {vb | b ∈ B} ∪ {uc,2, . . . , uc,n |392

c ∈ C} ∪ {vc,1, . . . , vc,n−1 | c ∈ C}. The facts of J and the mapping π are defined by the393

following steps:394

Copy non-incident facts: Initialize J as the induced subinstance of I on dom(I) \ {u, v}.395

Copy incident facts Fl and Fr: For each a ∈ A add the σ↔-fact Rl(ua, l) to J , and396

similarly for each b ∈ B add the σ↔-fact Rr(r, vb) to J .397

Copy other facts incident to u: For each σ↔-fact F ′l = R′l(u, r′) of I with r′ 6= v and398

F ′l 6= Fl, add the σ↔-facts R′l(ua, r′) for each a ∈ A and R′l(uc,j , r′), for each 2 ≤ j ≤ i399

and c ∈ C.400

Copy other facts incident to v: For each σ↔-fact F ′r = R′r(l′, v) of I with l′ 6= u and401

F ′r 6= Fr, add the σ↔-facts R′r(l′, vb), for each b ∈ B and R′r(l′, vc,j), for each 1 ≤ j ≤ i−1402

and c ∈ C.403

Create copies of e: For each c ∈ C with c = (a, b), create 2n − 1 copies of e on the404

following new edges in J (i.e., copy all the σ↔-facts of the edge e):405

(ua, vc,1),406

(uc,n, vb),407

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:11

(uc,j , vc,j) for 2 ≤ j ≤ n− 1, and408

(uc,j+1, vc,j) for 1 ≤ j ≤ n− 1409

Finally, we define the function π such that it maps all the facts created in the step “Copy410

incident facts Fl and Fr” to 0.5, and all other facts to 1.411

Observe how this definition relates to iteration: one other way to see the definition is412

that we code each edge of the bipartite graph as a copy of the n-th iteration of (u, v). Note413

also that there are only |A|+ |B| uncertain facts, by construction. It is clear that this coding414

is in polynomial time in H. The result of the coding is illustrated in Figure 2.415

We now define the bijective function φ relating the possible worlds of the connected416

bipartite graph H to those of the probabilistic instance I = (J, π). For each vertex a ∈ A we417

keep the copy of Fr incident to ua if a is selected and we do not keep it otherwise, and we418

do the same for vb and Fl. It is obvious that this correspondence is bijective and that all419

corresponding possible worlds have the same probability, namely, 0.5|A|+|B|. We can now420

prove the following reduction (independently from any particular query), recalling the notion421

of good and bad possible worlds of H from Definition 2.2:422

I Proposition 4.8. Let the probabilistic instance I = (J, π) be the coding of a connected423

bipartite graph H = (A,B,C) relative to an instance Ie,N , and to n ≥ 1 as described in424

Definition 4.7, and let φ be the bijective function defined above from the possible worlds of H425

to those of I. Then, the following statements hold:426

1. For any good possible world ω of H, φ(ω) has a homomorphism from Ine,N .427

2. For any bad possible world ω of H, φ(ω) has a homomorphism to I3n−1
e,N .428

Proof. Observe that (1) corresponds to the soundness of the reduction, and (2) to the429

completeness. We start with the easier direction, and then prove the other direction.430

1. Let us assume that φ(ω) = J ′. We more specifically claim that J ′ has a subinstance which431

is isomorphic to Ine,N . To see why, drop all copies of u from J ′ except ua and the uc,i, and432

all copies of v except vb and the vc,i, along with all facts where these elements appear. All of433

the original instance I except for the facts involving u and v can be found as-is in J ′. Now,434

for the others, ua has an incident copy of all edges incident to u in J ′ (including Fl), the435

same is true for vb and v (including Fr), and we can use the ue,i and ve,i to witness the436

requisite path of copies of e.437

2. As before, let us assume that φ(ω) = J ′. Let us describe the homomorphism from J ′438

to I3n−1
e,N . To do this, first map all facts of J ′ that do not involve a copy of u or v to the439

corresponding facts of I3n−1
e,N using the identity mapping (which is possible as these facts are440

always untouched by our transformations). We will now explain how the copies of u and441

v are mapped to copies of u and v in I3n−1
e,N : this clearly ensures that all incident facts to442

copies of u except Fr and the facts of the copies of e, and all incident facts to v except Fl443

and the facts of the copies of e. So all that remains is to map the copies of u and v as we444

said we would, in a way that ensures that we can map the copies of Fl, Fr, and e.445

Our way to do this is illustrated in Figure 3. The first step is to take all copies of Fr in J ′,446

which correspond to vertices in a ∈ A that were kept, and we map them all to the element u447

in I3n−1
e,N , which is possible as it has the incident fact Fl. Now, we follow the paths of 2i− 1448

copies of e back-and-forth until we reach vertices of the form vb, and we map these paths to449

the first 2i− 1 edges of the path of copies of e from u to v in I3n−1
e,N . From our assumption450

about the possible world J ′, none of the vb reached at that stage have an incident copy of Fl,451

as we would otherwise have a witness to the fact that we kept two adjacent a ∈ A and b ∈ B452

in the possible world of H.453

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:12 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

A B
a

b

c

α

β

γ

(a) A possible world H of G, where
only circled nodes are in H.

A B A B
a α b

c

α

β

γ

(b) An unravelling of the possible world H up to paths
of length 3.

l

l1

ua

uaα

ub

ubα
ubβ

uc

ucα
ucβ

ucγ

vaα

vbα

vcα

vα

vbβ

vcβ

vβ

vcγ

vγ

r1

r

r2

(c) The edges (v1, ub), (v1, uc), and (vα, u2) are changed to
dashed lines, as their probabilistic facts are not in H.

e

el with Fl
er with Fr
el without Fl
er without Fr
other incident edges

Figure 3 Example of the backwards correctness of the proof: Fig 3(a) shows a possible world
of the bipartite graph that violates the query. The unravelling of H is depicted in Fig 3(b). The
possible world of the coding is given in Fig 3(c). A key explains the colors (bottom right).

The second step is to go back on the copies of e incident to these vertices that were not454

yet visited, and we follow a path of copies of e that were not yet mapped, which we map to455

the next 2i− 1 copies of e in the path from u to v in I3n−1
e,N . We then reach elements of the456

form ua, and they do not have any incident copies of Fr because all such edges and their457

outgoing paths were visited in the first step.458

The third step is to go forwards on any outgoing edges to follow a path of copies of e459

that goes to vertices of the form vb, mapping this to the last 2i− 1 edges of the path from u460

to v in I3n−1
e,N . Some of these vb may now be incident to copies of Fr, but the same is true461

of v in I3n−1
e,N and we have just reached it, so we can map these facts correctly.462

The fourth step is to go backwards on any outgoing edges, going back on the path from u463

to v in I3n−1
e,N , reaching vertices of the form ua (which cannot be incident to any copy of Fr464

for the same reason as in the second step), and go forwards on any outgoing edges, going465

forward on the path from u to v and reaching again v, reaching vertices of the form vb in J ′466

that we map to b in I3n−1
e,N , including the Fl-fact that may be incident to them. We repeat467

this process until everything reachable has been visited.468

This means that everything was visited, as we have assumed without loss of generality that469

the bipartite graph was connected. Hence, we have mapped all elements in a homomorphic470

way, which concludes the description of the homomorphism and concludes the proof. J471

We have established Proposition 4.8, which shows the required properties of our reduction,472

so we are ready to prove Theorem 4.6.473

Proof of Theorem 4.6. Fix the query Q, the instance I, the non-leaf edge e of I which is474

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:13

non-iterable, and let us take the smallest n > 1 such that Ine,N does not satisfy the query,475

but In−1
e,N does.476

We show #P-hardness by reducing from #PP2DNF (Definition 2.2). Let H = (A,B,C)477

be an input connected bipartite graph. We apply the coding of Proposition 4.8 with n− 1478

and obtain a probabilistic instance I. This coding can be done in polynomial time.479

Now let us use Proposition 4.8. We know that In−1
e,N satisfies Q, but I3(n−1)−1

e,N does not,480

because n > 1 so 3(n − 1) − 1 = 3n − 4 ≥ n, and as we know that Ine,N violates Q, then481

so does I3(n−1)−1
e,N by Observation 4.4. Thus, Proposition 4.8 implies that the number of482

good possible worlds of H is the probability that Q is satisfied in a possible world of I,483

multiplied by the constant factor 2|A|+|B|. Thus, the number of good possible worlds of H is484

PI(Q) · 2|A|+|B|. This shows that the reduction is correct, and concludes the proof. J485

5 Finding a Minimal Tight Pattern486

In the previous section, we have shown hardness for queries (bounded or unbounded) that487

have a model with a non-iterable edge; leaving open the case of unbounded queries for which,488

in all models, all non-leaf edges can be iterated.489

In this section, we prove a general result on unbounded queries independent from the490

previous section: all unbounded queries must have a model with a tight edge, and we explain491

how to take it minimal in some sense. Tight edges and iterable edges are the two ingredients492

that we will use in Section 6 to show that unbounded queries are always hard.493

Let us start this section by defining the notion of tight edge, via a rewriting operation on494

instances called a dissociation.495

I Definition 5.1. The dissociation of a non-leaf edge {a, b} in I is the instance I ′ where:496

dom(I ′) = dom(I) ∪ {a′, b′} where a′ and b′ are fresh.497

I ′ is I where we remove the facts of the edge {a, b} and add, for each such fact R(a, b)498

(resp., R(b, a)) the facts R(a, b′) and R(a′, b) (resp., R(b, a′ and R(b′, a)).499

Dissociation is illustrated in the following example (see also Figure 4).500

I Example 5.2. Consider the instance I = {R(a, b), S(b, a), T (b, a), R(a, c), S(c, b), S(d, b)}.501

The edge {a, b} is non-leaf, as witnessed by the edges {a, c} and {b, c}, for instance. The502

result of the dissociation is then the instance503

I ′ = {R(a, b′), S(b, a′), T (b, a′), R(a′, b), S(b′, a), T (b′, a), R(a, c), S(c, b), S(d, b)},504

where all facts which do not belong to the edge {a, b} remain unchanged.505

We then define the notion of a tight edge, which intuitively determines whether an edge506

is critical to make the query true.507

I Definition 5.3. Let Q be a query and I be a model of Q. An edge e of I is tight if it508

is non-leaf, and the result of the dissociation does not satisfy Q. A tight pattern for the509

query Q is a pair (I, e) of a model I of Q and of an edge e of I that is tight.510

Intuitively, a tight pattern is a model of a query containing three edges {u, a}, {a, b}, {b, v}511

(possibly u = v) such that disconnecting the facts with a dissociation makes the query512

false. So, in a sense, a tight pattern also resembles the prototypical unsafe CQ Q0 :513

R(w, x), S(x, y), T (y, z) from [16] – but again for bounded queries they do not handle all514

cases, e.g., they do not handle Q1 : (R(w, x), S(x, y)) ∨ (S(x, y), T (y, z)).515

For our purposes, we will not only need tight patterns, but minimal tight pattern, as we516

now define.517

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:14 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

l1

l2

u v

r2

r1 l1

l2

u

u′

v

v′ r1

r2

Figure 4 An instance on the left with a non-leaf edge (u, v), and the result of dissociating this
edge on the right.

I Definition 5.4. Given an instance I with a non-leaf edge e = {a, b}, the weight of e is the518

number of facts that realize e in I. The side weight of e is the number of facts in I that519

involve a and not b, plus the number of facts in I that involve b and not a. Given a query Q,520

we say that a tight pattern (I, e) is minimal if:521

Q has no tight pattern (I ′, e′) where the weight of e′ is strictly less than that of e; and522

Q has no tight pattern (I ′, e′) where the weight of e′ is equal to that of e and the side523

weight of e′ is strictly less than that of e.524

We can now state the main result of this section:525

I Theorem 5.5. Every unbounded query Q has a minimal tight pattern.526

The intuition of how to find tight patterns is relatively straightforward: the only instances527

without non-leaf edges are intuitively disjoint union of star-shaped patterns. If a query is528

unbounded, then its validity cannot be determined simply by looking at star patterns (e.g.,529

as Q1 above), so it must intuitively have a model where performing dissociations iteratively530

will eventually make the query false, so that we must eventually find a tight edge. We will531

formalize this intuition below. Once we know that there is a tight edge, then it is simple to532

argue that we can take one that is minimal in the sense that we require.533

Let us first note that any iterative dissociation process, i.e., any process of iteratively534

applying dissociation to a given instance, will necessarily terminate. More precisely, an535

iterative dissociation process is a sequence of instances starting at the instance I and where536

each instance is defined from the previous one by performing the dissociation of some non-leaf537

edge. We say that the process terminates if it reaches an instance where there are no longer538

any edges that we can dissociate, i.e., all edges are leaf edges.539

I Observation 5.6. For any instance I, the iterative dissociation process will terminate in540

n steps, where n is the number of non-leaf edges in I.541

Proof. It is sufficient to show that an application of dissociation decreases the number of542

non-leaf edges by 1. To do so, we consider an instance I with a non-leaf edge e, and show543

that the dissociation I ′ of e in I, has n− 1 non-leaf edges.544

Let us assume e = {a, b}. The new elements a′ and b′ in I ′ are leaf elements, and for545

any other element of the domain of I ′, it is a leaf in I ′ iff it was a leaf in I: this is clear for546

elements that are not a and b as they occur exactly in the same edges, and for a and b we547

know that they were not leaves in I (they occurred in e = {a, b} and in some other edge), and548

they are still not leaves in I ′ (they occur in the same other edge and in {a, b′} and {b, a′},549

respectively).550

Thus, the edges of I ′ that are not {a, b′} or {a′, b} are leaf edges in I ′ iff they were in I.551

So, in terms of non-leaf edges the only difference between I and I ′ is that we removed the552

non-leaf edge {a, b} from I and we added the two edges {a, b′} and {a′, b} in I ′ which are553

leaf edges because a′ and b′ are leaves. Thus, we conclude the claim. J554

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:15

Hence, if we start with an instance I and perform an iterative dissociation process, then555

after n steps (n being the number of non-leaf edges of I), the process terminates and reaches556

an instance that consists only of leaf edges.557

Let us now consider which instances have no non-leaf edges. They are intuitively union558

of stars, and in particular they homomorphically map to some constant-sized subset of their559

facts, as will be crucial when we turn back to our unbounded query.560

I Proposition 5.7. For every signature σ, there exists a bound kσ > 0, ensuring the following:561

For every instance I on σ having no non-leaf edge, there exists an instance I ′ ⊆ I such that562

I has a homomorphism to I ′ and such that we have |I ′| < kσ.563

Proof. We first prove the result for connected instances I. In this case, we define the constant564

k′σ := 22×|σ|. There are two cases. The first case is when all elements of I are leaves: then,565

as I is connected, it must consist of a single edge and consists of at most 2 |σ|, facts; so,566

taking I ′ = I and the identity homomorphism concludes the proof. The second case is when567

I contains a non-leaf element a. In this case, consider all edges {a, b1}, . . . , {a, bn} incident568

to a, with n > 1, as a is not a leaf. Each of the bi must be leaves: if some bi is not a leaf569

then {a, bi} would be a non-leaf edge because neither a nor bi would be leaves. We then570

define an equivalence relation ∼ on the bi by writing bi ∼ bj if the edges {a, bi} and {a, bj}571

contain the exact same set of facts (up to the isomorphism mapping bi to bj): there are at572

most k′σ equivalence classes. The requisite subset of I and the homomorphism can thus be573

obtained by picking one representative of each equivalence class, keeping the edges incident574

to these representatives, and mapping each bi to the chosen representative of its class.575

We now extend the proof to instances I that are not necessarily connected. Letting576

I be such an instance, we consider its connected components I1, . . . , Im. Each of these is577

connected and has no non-leaf edges, so there are subsets I ′1, . . . , I ′m with ≤ k′σ facts each578

and a homomorphism of each Ii to its I ′i. Now, there are only constantly many instances579

with ≤ k′σ facts up to isomorphism: let k′′σ be their number, and let kσ := k′′σ × k′σ. The580

requisite subinstance and homomorphism is obtained by again picking one representative581

for each isomorphism equivalence class of the I ′i (at most k′′σ of them, so at most kσ facts in582

total) and mapping each Ii to the I ′j which is the representative for I ′i. This concludes the583

proof. J584

We can now prove our theorem by appealing to the unboundedness of the query, which585

we rephrase as having minimal models of arbitrarily large size.586

I Definition 5.8. A minimal model of a query Q is an instance I that satisfies Q and such587

that every proper subinstance of I violates Q.588

We can rephrase the unboundedness of a UCQ∞ Q in terms of minimal models: Q is589

unbounded iff it has infinitely many minimal models. Indeed, if a query Q has finitely590

many minimal models, then it is clearly equivalent to the UCQ since it is closed under591

homomorphisms. Conversely, if Q is equivalent to a UCQ, then it has finitely many minimal592

models which are obtained directly from the UCQ disjuncts, by eliminating the ones that593

are redundant. This obviously means the following:594

I Observation 5.9. Any unbounded query Q has a minimal model I with > k facts for any595

k ∈ N.596

We are ready to show Theorem 5.5:597

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:16 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Proof of Theorem 5.5. We first show the first part of the claim: any unbounded query has598

a tight pattern. Let kσ be the bound from Proposition 5.7. By Observation 5.9, let I0 be a599

minimal model with > kσ facts. Set I := I0 and let us apply an iterative dissociation process:600

while I has edges that are non-leaf but not tight, perform the dissociation, yielding I ′, and601

let I := I ′.602

By Observation 5.6 this process must terminate after at most n steps, where n is the603

number of non-leaf edges of I0. Let In be the result of this process. If In has a non-leaf edge604

e which is tight, then we are done as we have found a tight pattern (I, e). Otherwise, let us605

reach a contradiction.606

First notice that, throughout the rewriting process, it has remained true that I is a model607

of Q. Indeed, if performing a dissociation breaks this, then the dissociated edge was tight.608

Also notice that, throughout the rewriting, it has remained true that I has a homomorphism609

to I0: it is true initially, with the identity homomorphism, and when we dissociate I to I ′610

then I ′ has a homomorphism to I defined by mapping the fresh elements a′ and b′ to the611

original elements a and b and as the identity otherwise. Hence, In is a model of Q having a612

homomorphism to I0.613

Note that In has no non-leaf edges. Thus, Proposition 5.7 tells us that In admits a614

homomorphism to some subset I ′n of size at most kσ. This homomorphism witnesses that I ′n615

also satisfies Q. But now, I ′n is a subset of In so it has a homomorphism to In, which has616

a homomorphism to I0. Let I ′0 ⊆ I0 be the image of I ′n by the composed homomorphism.617

It has at most kσ facts, because I ′n does; and it satisfies Q because I ′n does. But as I0 had618

> kσ facts, I ′0 is a strict subset of I0 that satisfies Q. This contradicts the minimality of I0,619

which leads us to conclude the first part of the claim.620

It only remains to show the second part of the claim: there exists a minimal tight pattern.621

We already concluded that Q has a tight pattern (I, e), and e has some finite weight w1 > 0622

in I. Pick the minimal 0 < w′1 ≤ w1 such that Q has a tight pattern (I ′, e′) where e′ has623

weight w′1. Now, e′ has some finite side weight w2 ≥ 2 in I ′. Pick the minimal 2 ≤ w′2 ≤ w2624

such that Q has a tight pattern (I ′′, e′′) where e′ has weight w′1 and has side weight w′2.625

We can then see that (I ′′, e′′) is a minimal tight pattern by minimality of w′1 and w′2. This626

concludes the proof. J627

6 Hardness with Tight Iterable Edges628

In this section, we conclude the proof of our main result (Theorem 3.3) by showing that a629

minimal tight pattern which is iterable can be used to show hardness. We first comment630

that this part of the proof is indeed necessary, i.e., there are some unbounded queries that631

were not covered by Theorem 4.6.632

I Example 6.1. Consider the following Datalog program:633

R(x, y)→ A(y)634

A(x), S(x, y)→ B(y)635

B(x), S(y, x)→ A(y)636

T (x, y), B(x)→ Goal()637

This program accepts instances containing paths of the formR(a, a1), S(a1, a2), S−(a2, a3), . . . ,638

S(a2n+1, a2n+2), T (a2n+2, b), so the query is unbounded. However, it has no model with a639

non-iterable edge. Indeed, in every model the query is made true because of a path of the640

form above, and we cannot break such a path by iterating an edge (we will obtain either the641

same path or a longer path).642

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:17

If we tried to reduce from #PP2DNF for this query, as in the proof of Theorem 4.6, then643

the reduction would fail because the edge is iterable: in possible worlds of the bipartite graph644

where we have not retained two adjacent vertices, we would still have matches of the query645

in the corresponding possible world of the TID instance, where we go from a chosen vertex646

to another by going back-and-forth on the copies of e that code the edges of the bipartite647

graph.648

To conclude the proof of Theorem 3.3, we show the following result:649

I Theorem 6.2. For every query Q, if we have a minimal tight pattern (I, e) where the650

edge e is iterable, then PQE(Q) is #P-hard.651

Observe that this result indeed suffices to conclude the proof of our main result (Theo-652

rem 3.3).653

Proof of Theorem 3.3. Let Q be an unbounded UCQ∞. If we have a model of Q with a654

non-iterable edge, then we conclude by Theorem 4.6 that PQE(Q) is #P-hard. Otherwise,655

by Theorem 5.5, we have a minimal tight pattern, and its edge is then iterable (otherwise656

the first case would have applied), so that we can apply Theorem 6.2. J657

Hence, in this section, we show Theorem 6.2. The idea of the proof is again simple: if658

we have an iterable edge, then all iterates of the edge satisfy the query, so we can use it to659

reduce from the U-ST-CON problem: we code the input undirected graph using probabilistic660

edges so that possible worlds of the undirected graph with a source-to-target path feature661

some iterate of the instance, and possible worlds without any such path do not. This latter662

part of the proof will again be the most challenging, and we will show it by leveraging the663

tightness and minimality of the pattern to argue that possible worlds without a path have a664

homomorphism to a so-called fine dissociation of the edge of the pattern, which we argue665

cannot satisfy the query.666

Before we start presenting our reduction, let us define this notion of fine dissociation: it667

is relative to a neighborhood choice and to a fact of the chosen edge, which is intuitively668

because we can only assign probabilities to single facts:669

I Definition 6.3. Let I be an instance, let e = (u, v) be a non-leaf edge in I, let Fl =670

Rl(l, u), Fr = Rr(v, r) be a neighbor choice of e in I, and let Fm be a fact of the edge e. The671

result of performing the fine dissociation of e in I relative to Fl, Fr and Fm is an instance I ′672

on the domain dom(I ′) = dom(I) ∪ {u′, v′}, where the new elements are fresh. It is obtained673

by applying the following steps:674

Copy non-incident facts: Initialize I ′ as the induced subinstance of I relative to domain675

dom(I) \ {u, v}676

Copy incident facts Fl and Fr: Add Fl and Fr to I ′677

Copy other facts incident to u: For every fact F ′l = R′l(l′, u) with l′ 6= v and F ′l 6= Fl, add678

the fact R′l(l′, u′) to I ′.679

Copy other facts incident to v: For every fact F ′r = R′r(v, r′) with r′ 6= u and F ′r 6= Fr,680

add the fact R′r(v′, r′) to I ′.681

Create the copies of e: For each fact F ′m = R(u, v) of e in I:682

add the facts R(u, v′) and R(u′, v) to I ′, and683

if F ′m 6= Fm, add the facts R(u, v) and R(u′, v′) to I ′.684

The result of a fine dissociation is illustrated in Figure 5. In the case where the edge e is685

realized by one single fact, then notice that in the dissociation there is no edge {u, v} left. If686

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:18 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

I

l

l1

u v

r

r1

I ′

l

l1

u

u′

v

v′

r

r1

Figure 5 Example of the fine dissociation of an edge in an instance (from I to I ′). Lines represent
edges. The iterated edge is the zigzag purple line; its dashed version in I ′ is the same edge without
the fact Fm; the double blue and black lines are the edges of Fl and Fr respectively; their dashed
versions in I ′ are the same edges without the facts Fl and Fr respectively.

there are more facts that realize in e, however, the result is more complicated because of687

the edges {u, v} and {u′, v′}. Intuitively, fine dissociation is a more complicated variant of688

dissociation where (like iteration) the new elements are connected to all incident facts to689

u and v not in the edge e, where (like dissociation) we create two copies of e that are not690

connected, and where (unlike dissociation or iteration) we also create two copies of e with691

one less fact.692

We will study later in the proof the properties of the fine dissociation. For now, let us693

start the proof of Theorem 6.2 by describing the coding: given an st-graph, i.e., an undirected694

graph G with source s and target t, we define a probabilistic instance in polynomial time695

such that there is a bijective correspondence between the possible worlds of the st-graph and696

the possible worlds of the probabilistic instance.697

I Definition 6.4. Let G = (W,C, s, t) be an undirected graph with source and sink. The698

coding of G relative to an instance I, to a non-leaf edge e = (u, v) of I, to a neighbor699

choice N = Fl, Fr with Fl = Rl(l, u) and Fr = Rr(v, r), and to a fact Fm of e, is a700

probabilistic instance I = (J, π). The domain of J is that of I plus a fresh element uc for701

each c ∈ C and a fresh element vw for each w ∈W ; we identify vt to v. The facts of J and702

the mapping π are defined by the following steps:703

Copy non-incident facts: Initialize J as the induced subinstance of J1 relative to the704

domain dom(I) \ {u, v}705

Copy incident facts Fl and Fr: Add the facts Rl(l, u) and Rr(v, r) to J706

Copy other facts incident to u: For every fact F ′l = R′l(l′, u) with l′ 6= v and F ′l 6= Fl, add707

the facts R′l(l′, uc) to J for each c ∈ C.708

Copy other facts incident to v: For every fact F ′r = R′r(v, r′) with r′ 6= u and F ′r 6= Fr,709

add the facts R′r(vw, r′) to J for each w ∈W .710

Create copies of e: we create the following copies of e (i.e., of all its facts) in J :711

(u, vs)712

(uc, va) and (uc, vb) for each edge c = {a, b} of C713

Finally, we define π as follows. For each edge c of C, π maps the copy of the fact Fm in the714

edge (uc, vw) to 0.5, for an arbitrary choice of w ∈ c. All other facts are mapped to 1 by π.715

The reduction is exemplified in Figure 6. As this coding is somewhat complicated, and716

the reason for this may not be apparent, let us intuitively explain. The edges are coded by717

paths of length 2 because the source graph to the reduction is undirected but the facts on718

edges are directed, so we symmetrize by having two copies of the edge in opposite directions719

so that we can traverse them in both ways. (The choice that we make in how to orient the720

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:19

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) An st-graph G.

l

l1

u v

r1

r

(b) A non-leaf edge e = (u, v).

l

l1

u

ue1

ue2

ue3

ue4

ue5

ue6

ue7

ue8

ue9

vs

va

vb

vc

vd

vt

r1

r

(c) Coding of the graph G

l

l1

u

ue1

ue4

ue8

vs

va

vc

vt

r1

r

(d) An illustration of a successful s-t
path in the coding.

Figure 6 Example of a coding based on an st-graph G shown in Fig 6(a). An edge e (Fig 6(b))
is used in the encoding of G, and the result of the coding is shown in Fig 6(c). Each st-path in G is
reflected in the coding as an iterate of e, e.g., in Figure 6(d).

edges, i.e., the choice of which w ∈ c we pick when defining π, has no impact in how the721

edges can be traversed when their probabilistic fact is kept; but it has an impact in how the722

edge looks like when the probabilistic fact is missing. Specifically, it is the reason why there723

are two copies of e with one missing fact in the fine dissociation, as will later become clear.)724

It is clear that the coding is in polynomial time. Let us now define the function φ relating725

the possible worlds of the connected graph G to those of the probabilistic instance (J, π).726

For each edge c ∈ C we keep the probabilistic fact incident to uc if c is kept. It is obvious727

that this correspondence is bijective and that all possible worlds have probability 0.5|C|.728

We can now state the following result for the coding, which is again independent from729

the query.730

I Proposition 6.5. Let the probabilistic instance I = (J, π) be the coding of an undirected731

st-graph G relative to an instance I, a non-leaf edge e of I, a neighbor choice N , and a fact732

Fm realizing e, as described in Definition 6.4. Let φ be the bijective function from the possible733

worlds of G to those of I defined above. Then the following statements hold:734

1. For any possible world ω of G where there is a path from s to t of length n, φ(ω) has a735

homomorphism from In+1
e,N .736

2. For any possible world ω of G where there is no path from s is to t, φ(ω) has a homo-737

morphism to the result of finely dissociating e in I relative to N and Fm.738

Proof. As before, we start with the easier forward direction (1), and then prove the backward739

direction (2).740

1. Consider a witnessing path s = w1, . . . , wn = t in the possible world of G, and assume741

without loss of generality that the path is simple, i.e., it traverses each vertex at most once.742

We claim that φ(ω) actually has a subinstance isomorphic to In+1
e,N . See Figure 6(d) for an743

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:20 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

s

a

b

c d

t

e1

e2

e3

e4

e5

e9

e6

e8
e7

(a) A possible world of G with no s–t path
(dashed edges are the ones that are not
kept), the left and right vertices in the cut
are colored.

l

l1

u

ue1

ue2

ue3

ue4

ue5

ue6

ue7

ue8

ue9

vs

va

vb

vc

vd

vt

r1

r

(b) Possible world of the coding for the possible world
of G at the left. Copies of e are dashed when they
have lost one fact. Vertices uei corresponding to edges
of the cut are in bold, and these vertices are colored
depending on their image. The vertex colors describe
a homomorphism to the fine dissociation

Figure 7 Illustration of a possible world (Figure 7(a)) of the graph G from Figure 6(a), and the
corresponding possible world (Figure 7(b)) of the coding (Figure 6(c)) which has a homomorphism
to the fine dissociation (Figure 5)

illustration of a possible In+1
e,N . To see why this is true, we take as usual the facts of φ(ω)744

that do not involve any copy of u or v and keep them as-is, because they occur in φ(ω) as745

they do in In+1
e,N .746

We start by taking the one copy of Fl leading to u and the copy of e leading to vs. We747

now follow the path which gives a path of copies of e: for each edge c = {wj , wj+1} of the748

path, we have two successive copies of e between vwj and uc, and between uc and vwj+1 .749

Note that, as the path uses edge c, it was kept in the possible world of G under consideration,750

so all the copies of e in question have all their facts, i.e., neither of the copies of Fm can751

be missing. The assumption that the path is simple ensures that we do not visit the same752

vertex multiple times. After traversing these 2i copies of e in alternating directions, we reach753

vt = v, and finally we use the fact Fr which is incident to b. So, we have indeed found a754

subinstance of φ(ω) which is isomorphic to In+1
e,N .755

2. Let us write J ′ in place of φ(ω). Let us denote by I ′ the result of finely dissociating in I756

the edge e relative to the neighbor choice N and the fact Fm. Suppose that e = (u, v) and757

let us show that J ′ has a homomorphism to I ′ depicted in Figure 5. See Figure 7(b) for an758

example of such a possible world, and Figure 7(a) for the corresponding possible world of G.759

We use the fact that, as the possible world ω of G has no path from s to t, there is an760

s, t-cut of ω, i.e., a function φ mapping each vertex of G to either L or R such that s is761

mapped to L, t is mapped to R, and for every edge {x, y} such that φ(x) 6= φ(y) then the762

edge was not kept in G′. See Figure 7(a) for an illustration.763

We map u in J ′ to u in I ′ and vs to v, which maps the copy of e between u and vs in J ′764

to a copy of e in I ′. Now observe that we can map to v′ in I ′ all the nodes vw such that765

φ(w) = L, including vs. The edges between these nodes in J ′, whether they were kept in ω766

or not, are mapped by going back-and-forth on the edge (u, v′) in I ′. In the same way we767

can map to v in I ′ all the nodes vw such that φ(w) = R, including vt and all edges between768

these nodes, going back-and-forth on edge (u′, v) in I ′.769

We must still map the edges of the cut, i.e., edges c = {x, y} such that φ(x) = L and770

φ(y) = R. In J ′, these edges give rise to two edges (uc, vx) and (uc, vy), one of which is a771

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:21

copy of e and the other one is a copy of e with the fact Fm missing – which one is which772

depends on the arbitrary orientation choice that we made when defining π. Depending on773

the case, we map uc either to u or to u′ so that the two incident edges to uc are mapped774

in I ′ either to (u, v′) (a copy of e) and (u, v) (a copy of e minus Fm), or to (u′, v′) (a copy775

of e minus Fm) and (u′, v) (a copy of e). Thus, we have explained how we map the copies776

of u and v, the copies of e (including the ones without Fm), and the two facts Fl and Fr.777

As usual we have not discussed the facts that do not involve a copy of u or v in J ′, or the778

facts that involve one of them and are not facts of e, Fl, or Fr, but these are found in I ′ in779

the same way that they occur in J ′ (noting that we have only mapped copies of u to copies780

of u, and copies of v to copies of v). This concludes the definition of the homomorphism and781

concludes the proof. J782

In a nutshell, Proposition 6.5 establishes via (1) a connection between possible worlds of783

G and the possible worlds of I: if there exists a path of a certain length in a possible world784

of G, then the corresponding possible world of I admits a homomorphism from In+1
e,N . Thus,785

analogously to Section 4, we can immediately relate (1) to query satisfaction, because we786

know that the edge e is iterable. We may hope to have a dual correspondence via (2), but787

notice that Proposition 6.5 asserts only the existence of an homomorphism to the result of788

the fine dissociation process, and we do not yet know the status of fine dissociation relative789

to the query. The following lemma achieves this.790

I Lemma 6.6. Let Q be a query and (I, e) be a minimal tight pattern for Q. Let Fl, Fr be791

an arbitrary neighbor choice for e, and Fm be an arbitrary fact of e. Then, the result of the792

fine dissociation of e in I relative to Fl, Fr, Fm does not satisfy the query Q.793

This proof is somewhat technical. The intuition is that we rely on the minimality of the794

edge e to argue that any edge with a smaller weight, or with the same weight and a smaller795

side weight, cannot be tight, so can be dissociated without changing the status of the query.796

Specifically, we first dissociate the edges with Fm missing, as their weight is less (the dashed797

double edges in Figure 5), and we then get rid of the dissociated copies by mapping them798

into the other copies of e. Then, the resulting copies of e have a smaller side weight, and can799

be dissociated also, so that we reach something having a homomorphism to the (non-fine)800

dissociation of e. We can then conclude, because e is tight. The process of the proof is801

illustrated as Figure 8.802

Proof of Lemma 6.6. Fix the query Q, the minimal tight pattern (I, e), and the choice803

of Fl, Fm, and Fr. Assume by way of contradiction that the result I1 of the process satisfies804

the query Q. Consider now the edges e′′1 = {u, v} and e′1 = {u′, v′}: their weight in I1, by805

construction, is one less than the weight of e. Hence, as (I, e) is minimal, by Definition 5.4 we806

know that each of these edges cannot be tight: if one of these edges were, say e′1, then (I1, e
′
1)807

would be a tight pattern with e′1 having a strictly smaller weight, which is impossible. Thus,808

as we assumed that I satisfies the query, it must mean that we can dissociate e′1, then e′′1809

using the dissociation process of Definition 4.3. The resulting instance I2 (see Figure 8) still810

satisfies the query: if it did not, it would mean that one of the dissociations has make the811

query false, which would imply that we have found a tight pattern of strictly smaller weight.812

(Strictly speaking, if we dissociate e1 and then e′1 in the result, and the query is false, then813

either e1 was tight in I1, or e′1 was tight in the intermediate result, and anyway this is a814

contradiction because the weight of e′1 does not change in the intermediate step.)815

Now let us consider the structure of I2: say we have first dissociated e′′1 = {u, v} to816

remove this edge, renamed u and v to u1 and v1, created u2 and v2, and add back copies of817

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:22 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

I2l

l1

u1

u′1

v1

v′1

u2

u′2 v2

v′2

r

r1

I3l

l1

u1

u′1

v1

v′1

r

r1

I4l

l1

u1

u′1

v1

v′1

u5

u′5 v5

v′5

r

r1

Figure 8 Illustration of the proof of Lemma 6.6, with I and I ′ from Figure 5, and I5 being on
Figure 4

the edge from u1 to v2 and from u2 to v1. Next, we have dissociated e′1 = {u′, v′} (note that818

these are different vertices), removed e′1, renamed u′ and v′ to u′1 and v′1, created u′2 and v′2,819

and created copies of e′1 from u′1 to v′2 and from u′2 to v′1. Note that u2, v2, u′2, v′2 are leaf820

vertices only occurring on the copies of the dissociated edges (the edges with the same facts821

as e except Fm). We have copies of the edge e (from the fine dissociation) from u1 to v′1 and822

from u′1 to v1.823

Observe now that we can map the leaves to other vertices to define a homomorphism:824

we map u2 to u′1 and map the edge {u2, v1} to the edge {u′1, v1} whose facts are those825

of e, so a superset of the facts;826

we map v2 to v′1 and map the edge {u1, v2} to {u1, v
′
1};827

we map u′2 to u1 and map the edge {u′2, v′1} to the edge {u1, v
′
1};828

we map v′2 to v1 and map the edge {u′1, v′2} to the edge {u′1, v1}.829

Thus, the resulting instance I3 (see Figure 8) still satisfies the query. Relative to I1, it is830

the result of replacing u with copies u1, u
′
1, and v with copies v1, v

′
1, and having one copy831

of e from u′1 to v1 and from u1 to v′1, with all facts incident to u and v replicated on u1, u
′
1832

and v1, v
′
1, except Fl and Fr which only involve u1 and v1. In other words, the instance I3833

is isomorphic to the result I1 of the fine dissociation (Figure 5), except that we have not834

created copies of e without Fm between u1 and v1 and between u′1 and v′1. We have justified,835

from our assumption that I1 satisfies the query, that I3 also does.836

Let us now use the second minimality criterion on I3 on the edges e4 = {u1, v
′
1} and837

e′4 = {u′1, v1} to simplify the instance further. The weight of these edges is the same as that838

of e, but their side weight is smaller: indeed, u1 has exactly as many incident facts as u did,839

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

Antoine Amarilli and İsmail İlkan Ceylan XX:23

and v′1 has the same number as v except that Fr is missing, so the side weight of e4 is indeed840

smaller. The same holds for e′4 because v1 has exactly the same incident facts as v and u′1841

has the same as u except Fl. This means that these edges are not tight, as otherwise it would842

contradict the second criterion in Definition 5.4. Thus, we can dissociate one and then the843

other, and the query will still be satisfied. Say we first dissociate e4 and then e′4, and call I4844

the result. We create u5 and v′5 and replace e4 by copies from u1 to v′5 and from u5 to v′1,845

with v′5 and u5 being leaves; and we create u′5 and v5 and replace e′4 by copies from u′1 to v5846

and from u′5 to v1, with v5 and u′5 being leaves. The resulting instance I4 (see Figure 8) still847

satisfies the query.848

Now, we can merge back vertices to reach an instance I5 isomorphic to the dissociation849

of e in I, which will yield our contradiction. Let us map u′1 to u1 and v5 to v′5: this defines a850

homomorphism because the edge {u′1, v5} can be mapped to {u1, v
′
5}, this was the only edge851

involving v5, and all other facts involving u′1 have a copy involving u1 by definition of the852

fine dissociation. Let us also map v′1 to v1 and v5 to v′5 in the same fashion, which is correct853

for exactly the same reason. The resulting instance I5 still satisfies the query. Now observe854

that I5 is isomorphic to the result of the (non-fine) dissociation of e in I (Figure 4): we have855

added two leaves u′5 and v′5, the vertices u1 and v1 indeed correspond to u and v, we have856

removed the edge from u to v and replaced it by copies from u1 to v′5 and from u′5 to v1.857

Thus we have deduced that dissociating e in I yields an instance that satisfies the query.858

But as (I, e) was a tight pattern, this is impossible, so we have reached a contradiction and859

the proof is finished. J860

Given Proposition 6.5, and Lemma 6.6, we can now prove Theorem 6.2.861

Proof of Theorem 6.2. Fix the query Q and the minimal tight pattern (I, e). By definition,862

e is then a non-leaf edge: pick an arbitrary neighborhood choice N and fact Fm of e. We863

show #P-hardness of PQE(Q) by reducing from U-ST-CON (Definition 2.1). Given an864

undirected graph G, we use Proposition 6.5 to compute in PTIME a probabilistic instance I.865

As in the proof of Theorem 4.6, what matters is to show that (1.) in the forward case the866

query holds on φ(G′), and (2.) in the backward case the query does not hold in φ(G′).867

For (1.), the result follows from the fact that the query Q is closed under homomorphisms,868

and the edge e was assumed to be iterable relative to N (Definition 4.3), so the iterates869

satisfy Q and φ(G′) also does. For (2.), we know by Lemma 6.6 that the result of the fine870

dissociation does not satisfy the query, so φ(G′) does not satisfy it either. J871

This concludes the proof of Theorem 6.2, and together with Theorem 4.6, our main872

theorem (Theorem 3.3) is established.873

7 Outlook and Conclusions874

We have shown that, on arity-two signatures, for any unbounded UCQ∞, the probabilistic875

query evaluation problem (PQE) is #P-hard. This leads to a dichotomy on PQE for all876

UCQ∞ queries: either they are unbounded and PQE is #P-hard, or they are bounded and877

the dichotomy by Dalvi and Suciu applies. This result thus classifies the complexity of PQE878

for all query languages that are in UCQ∞, i.e., are closed under homomorphism.879

Our result captures many natural query languages, in particular disjunctive Datalog880

over binary signatures and important fragments such as regular path queries. Similarly, we881

conclude a set of classification results for PQE on a rich class of ontology-mediated queries,882

namely, those that are definable as UCQ∞ (which in particular disallows negation). In883

particular, our result implies a dichotomy of OMQs that use the negation-free fragment884

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

XX:24 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

of ALCHI, because any such OMQ can be expressed in monadic disjunctive Datalog over885

binary signatures (by Theorem 6 of [6]). The same thus holds about subclasses of this logic,886

e.g., ELHI, and ELI as in [28].887

There are two natural directions in which to extend our result. The first would be to888

study queries that are not homomorphism-closed, e.g., queries with disequalities, or even889

with negation (so non-monotone queries). We believe that this would require significantly890

different techniques, because already for UCQs we are not aware of a full dichotomy results891

beyond the partial results achieved in [21].892

The second natural direction is to show a corresponding result on general signatures,893

without the arity restriction. Our conjecture would be that the corresponding result is also894

true, i.e., that PQE is #P-hard for any unbounded UCQ∞ even on non-binary signatures.895

We believe that much of the proof material can be adapted, but what we do not know how to896

extend is the definitions of the operations (dissociation, fine dissociation, iteration). Indeed,897

in the binary case, when we modify an edge, all incident facts only touch one element of the898

edge, in particular their intersections with the edge cannot overlap. In the general case, this899

is not true, and complicated intersection patterns may prevent us from creating copies of900

edges freely. The main roadblock in this sense would be to propose a notion of dissociation901

and minimality for which the analogue of the results in Section 5 would hold (in particular,902

rewriting with it should terminate). We do not yet see how this could be done, and leave903

this to future work.904

Other than that, an intriguing question is whether our hardness result could be shown for905

the unweighted case of the probabilistic query evaluation problem, where all edges must carry906

probability 0.5. However, the complexity of this unweighted problem is poorly understood907

already in the case of UCQs.908

Finally, an ambitious question is whether our dichotomy on unbounded queries could be909

extended to the complexity of other problems than PQE, e.g., the problem of non-probabilistic910

query evaluation, counting the number of matches, or approximating the answers to PQE.911

This is challenging, however, as “simpler” problems such as non-probabilistic query evaluation912

make it more difficult to show “hardness”, and we believe that the complexity picture there913

could be very different than our result showing hardness of all unbounded queries. In914

particular, in our case, it is comparatively easy to handle queries with a non-iterable edge as915

we can then show #P-hardness directly (Section 4), but the analogue of this would not hold916

for non-probabilistic problems. A related question is to understand if our results relate to917

dichotomies for the CSP problem and its counting variants #CSP [9], but CSP formulations918

typically do not ask about counting subinstances: the closest analogue that we know is919

#SUB [15] which asks about counting the number of subgraphs of an input graph that are920

isomorphic (not homomorphic) to a query graph.921

References922

1 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. 1995.923

2 Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable lineages on treelike instances:924

Limits and extensions. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium925

on Principles of Database Systems (PODS-16), pages 355–370. ACM, 2016.926

3 Franz Baader, Diego Calvanese, Deborah L McGuinness, Daniele Nardi, and Peter F Patel-927

Schneider, editors. The Description Logic handbook. 2007.928

4 Pablo Barceló, Diego Figueira, and Miguel Romero. Boundedness of conjunctive regular path929

queries, 2019. https://hal.archives-ouvertes.fr/hal-02056388/.930

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

http://webdam.inria.fr/Alice/pdfs/all.pdf
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://arxiv.org/abs/1604.02761
https://www.researchgate.net/publication/230745455_The_Description_Logic_Handbook_Theory_Implementation_and_Applications
https://hal.archives-ouvertes.fr/hal-02056388/

Antoine Amarilli and İsmail İlkan Ceylan XX:25

5 Michael Benedikt, Balder Ten Cate, Thomas Colcombet, and Michael Vanden Boom. The931

complexity of boundedness for guarded logics. In 2015 30th Annual ACM/IEEE Symposium932

on Logic in Computer Science, pages 293–304. IEEE, 2015.933

6 Meghyn Bienvenu, Balder Ten Cate, Carsten Lutz, and Frank Wolter. Ontology-based data934

access: A study through disjunctive Datalog, CSP, and MMSNP. ACM Transactions on935

Database Systems (TODS), 39(4):33:1–33:44, 2014.936

7 Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated queries937

for probabilistic databases. In Proceedings of the 31th AAAI Conference on Artificial Intelli-938

gence (AAAI-17), pages 1063–1069. AAAI Press, 2017.939

8 Stefan Borgwardt, İsmail İlkan Ceylan, and Thomas Lukasiewicz. Ontology-mediated query940

answering over log-linear probabilistic data. In Proceedings of the 33rd National Conference941

on Artificial Intelligence (AAAI-19). AAAI Press, 2019.942

9 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,943

60(5):34:1–34:41, 2013.944

10 Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering945

under expressive relational constraints. JAIR, 48:115–174, 2013.946

11 Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework947

for tractable query answering over ontologies. J. Web Sem., 14:57–83, 2012.948

12 İsmail İlkan Ceylan. Query answering in probabilistic data and knowledge bases. Doctoral949

thesis, TU Dresden, 2017.950

13 İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van den Broeck. Open-world probabilistic951

databases. In Proceedings of the 15th International Conference on Principles of Knowledge952

Representation and Reasoning (KR-16), pages 339–348. AAAI Press, 2016.953

14 Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd954

Annual ACM Symposium on Theory of Computing (STOC-71), pages 151–158. ACM, 1971.955

15 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness956

of the vertex-cover number counts. In 2014 IEEE 55th Annual Symposium on Foundations of957

Computer Science, pages 130–139. IEEE, 2014.958

16 Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic databases. The VLDB959

Journal, 16(4):523–544, 2007.960

17 Nilesh Dalvi and Dan Suciu. The dichotomy of probabilistic inference for unions of conjunctive961

queries. J. ACM, 59(6), 2012.962

18 Anuj Dawar and Stephan Kreutzer. On Datalog vs. LFP. In International Colloquium on963

Automata, Languages, and Programming, pages 160–171. Springer, 2008.964

19 Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas965

Strohmann, Shaohua Sun, and Wei Zhang. Knowledge Vault: A Web-scale approach to966

probabilistic knowledge fusion. In Proceedings of the 20th ACM SIGKDD International967

Conference on Knowledge Discovery and Data Mining, pages 601–610. ACM, 2014.968

20 Thomas Eiter, Magdalena Ortiz, Mantas Šimkus, Trung-Kien Tran, and Guohui Xiao. Query969

rewriting for Horn-SHIQ plus rules. In AAAI, 2012.970

21 Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic databases.971

ACM Transactions on Database Systems (TODS), 41(1):4:1–4:47, 2016.972

22 Haim Gaifman, Harry Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable optimization973

problems for database logic programs. J. ACM, 40(3):683–713, July 1993.974

23 Georg Gottlob and Thomas Schwentick. Rewriting ontological queries into small nonrecursive975

Datalog programs. In KR, 2012.976

24 Erich Grädel, Yuri Gurevich, and Colin Hirsch. The complexity of query reliability. In977

Proceedings of the 17th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database978

Systems (PODS-98), pages 227–234. ACM, 1998.979

25 Gerd G Hillebrand, Paris C Kanellakis, Harry G Mairson, and Moshe Y Vardi. Undecidable980

boundedness problems for Datalog programs. The Journal of Logic Programming, 25(2):163 –981

190, 1995.982

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://web.comlab.ox.ac.uk/people/michael.vandenboom/papers/LICS15-gnfpb-long.pdf
https://arxiv.org/abs/1301.6479
https://arxiv.org/abs/1301.6479
https://arxiv.org/abs/1301.6479
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://aaai.org/ocs/index.php/AAAI/AAAI17/paper/download/14365/13881
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://lat.inf.tu-dresden.de/research/papers/2019/BoCL-AAAI19.pdf
https://www.cs.sfu.ca/~abulatov/papers/counting-acm.pdf
https://www.jair.org/index.php/jair/article/view/10837
https://www.jair.org/index.php/jair/article/view/10837
https://www.jair.org/index.php/jair/article/view/10837
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://www.cs.ox.ac.uk/files/3608/rr1021.pdf
https://lat.inf.tu-dresden.de/research/theses/2017/Ceylan-Diss-2017.pdf
https://www.aaai.org/ocs/index.php/KR/KR16/paper/download/12908/12490
https://www.aaai.org/ocs/index.php/KR/KR16/paper/download/12908/12490
https://www.aaai.org/ocs/index.php/KR/KR16/paper/download/12908/12490
https://www.cs.toronto.edu/~sacook/homepage/1971.pdf
https://arxiv.org/abs/1407.2929
https://arxiv.org/abs/1407.2929
https://arxiv.org/abs/1407.2929
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf
https://ora.ox.ac.uk/objects/uuid:73527af8-31b9-4108-a07d-058967ba97e4/download_file?safe_filename=08-icalp.pdf&file_format=application%2Fpdf&type_of_work=Conference+item
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://www.cs.ubc.ca/~murphyk/Papers/kv-kdd14.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
https://pdfs.semanticscholar.org/9716/6f9b284d8e7da46bd6cd43b43a7af14b773c.pdf
http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
http://ceur-ws.org/Vol-745/paper_21.pdf
https://www.researchgate.net/profile/Erich_Graedel/publication/221559626_The_Complexity_of_Query_Reliability/links/0f31753844c0979fdc000000.pdf
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/074310669500051K
https://www.sciencedirect.com/science/article/pii/074310669500051K

XX:26 A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

26 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2: A983

Spatially and Temporally Enhanced Knowledge Base from Wikipedia. Artificial Intelligence,984

194:28–61, 2013.985

27 Jean Christoph Jung. Reasoning in many dimensions: uncertainty and products of modal986

logics. PhD thesis, University of Bremen, 2014.987

28 Jean Christoph Jung and Carsten Lutz. Ontology-based access to probabilistic data with988

OWL QL. In Proceedings of the 11th International Conference on The Semantic Web - Volume989

Part I, pages 182–197. Springer-Verlag, 2012.990

29 T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi,991

M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole,992

E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen,993

A. Saparov, M. Greaves, and J. Welling. Never-ending learning. In Proceedings of the 29th994

AAAI Conference on Artificial Intelligence (AAAI-15), pages 2302–2310, 2015.995

30 Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query evaluation on probabilistic996

databases. In Proceedings of the 2nd International Conference on Scalable Uncertainty997

Management (SUM-08), volume 5291 of Lecture Notes in Computer Science, pages 326–340,998

2008.999

31 Dan Olteanu and Jiewen Huang. Secondary-storage confidence computation for conjunctive1000

queries with inequalities. In Proceedings of the 2009 ACM SIGMOD International Conference1001

on Management of Data, pages 389–402. ACM, 2009.1002

32 J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the1003

probability that a graph is connected. SIAM Journal on Computing, 12(4), 1983.1004

33 Christopher Ré and Dan Suciu. The trichotomy of HAVING queries on a probabilistic database.1005

The VLDB Journal, 18(5):1091–1116, 2009.1006

34 Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases,1007

volume 3. 2011.1008

35 Leslie Gabriel Valiant. The complexity of computing the permanent. TCS, 8(2):189–201, 1979.1009

A Extension to signatures with unary and binary predicates1010

In Section 2, we claim that our results extend to the case of a signature featuring unary and1011

binary predicates. We now justify this claim formally by showing the analogue of Theorem 3.31012

for signatures with relations of arity 1 and 2.1013

I Theorem A.1. Let Q be an unbounded UCQ∞ on a signature with relations of arity 11014

and 2. Then, PQE(Q) is #P-hard.1015

Proof. Fix the signature σ and query Q. Let σ′ be the arity-two signature constructed from1016

σ by replacing each relation R of arity 1 by a relation R′ of arity 2. Let φ be a function1017

mapping any instance I of σ′ to the instance φ(I) obtained by replacing each fact R′(a, b)1018

by the fact R(a). (Note that we can create the same fact R(a) because of multiple facts of1019

the form R′(a, b).) Let us define Q′ to be the query on σ′ which is satisfied precisely on the1020

instances I such that φ(I) satisfies Q.1021

We first claim that Q′ is closed under homomorphisms. Indeed, letting I and I ′ be1022

two σ′-instances such that I has a homomorphism to I ′, it is clear that a restriction of1023

this function defines a homomorphism from φ(I) to φ(I ′), so that if I satisfies Q′ then φ(I)1024

satisfies Q, thus φ(I ′) satisfies Q because Q is closed under homomorphisms, so I ′ satisfies Q′.1025

We next claim that Q′ is unbounded. Indeed, assuming by way of contradiction that Q′1026

is equivalent to a UCQ, let Q′′ be the UCQ on σ obtained by rewriting each disjunct of Q′ to1027

replace each atom of the form R′(x, y) by R(x). We claim that, for any σ-instance I, there is1028

a σ′-instance I ′ such that φ(I ′) = I, and I satisfies Q′′ iff I ′ satisfies Q. Indeed, take I and1029

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719
https://www.sciencedirect.com/science/article/pii/S0004370212000719
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
http://www.informatik.uni-bremen.de/~jeanjung/pub/phdjung.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10049/9557
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sum08.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.ox.ac.uk/people/dan.olteanu/papers/oh-sigmod09.pdf
https://www.cs.stanford.edu/people/chrismre/papers/journal_having_queries.pdf
https://www.sciencedirect.com/science/article/pii/0304397579900446

Antoine Amarilli and İsmail İlkan Ceylan XX:27

define I ′ by replacing each unary fact R(a) of I by the facts R′(a, b) for each possible b of the1030

domain of I. It is clear that φ(I ′) = I, it is clear that if I ′ satisfies Q′ then the projection of1031

a match to I satisfies Q′′, and conversely if I satisfies Q′′ then there is a match of a disjunct1032

Q′′ in I, which we can expand to a match of the same disjunct of Q′′ in I ′. We have thus1033

shown that Q and Q′′ are equivalent, because whenever a σ-instance I satisfies Q then the1034

instance I ′ is such that φ(I ′) = I, so I ′ satisfies Q′, thus I satisfies Q′′; and conversely if I1035

satisfies Q′′ then by definition I ′ satisfies Q′, hence φ(I ′) = I satisfies Q. Now, Q is then1036

equivalent to Q′′ which is a UCQ, and this contradicts the unboundedness of Q.1037

By Theorem 3.3, we know that PQE(Q′) is #P-hard, It only remains to show how1038

to reduce in PTIME from PQE(Q′) to PQE(Q), concluding the proof. Consider a TID1039

I ′ = (I ′, π′) with I ′ on σ, and let us define in PTIME the TID I = (I, π) with I := φ(I ′),1040

and π giving to each σ-fact of arity two in I the same probability as in I ′, and giving to each1041

σ-fact R(a) of arity one in I the probability 1−
∏
F=R′(a,b)∈I′(1− π′(F)). We can compute1042

this quantity in polynomial time. Now, it is clear that φ defines a bijection between the1043

possible worlds of I ′ and the possible worlds of I ′ where each unary fact F is repeated with a1044

multiplicity equal to the number of facts of I ′ that project down to F ; and that this bijection1045

is probability-preserving. This establishes that the reduction is correct, and concludes the1046

proof. J1047

D
r
a
f
t

p
r
e
v
i
e
w

-
-

n
o
t

a
f
i
n
a
l

p
u
b
l
i
s
h
e
d

v
e
r
s
i
o
n

G
e
n
e
r
a
t
e
d

F
r
i

0
9

A
u
g

2
0
1
9

1
2
:
3
9
:
5
3

A
M

C
E
S
T

	Introduction
	Preliminaries
	Result Statement
	Hardness with Non-Iterable Edges
	Finding a Minimal Tight Pattern
	Hardness with Tight Iterable Edges
	Outlook and Conclusions
	Extension to signatures with unary and binary predicates

