pibase_open

find open problems in topology from pibase
git clone https://a3nm.net/git/pibase_open/
Log | Files | Refs | README

properties (2977B)


      1 P000001 "$T_0$"
      2 P000002 "$T_1$"
      3 P000003 "$T_2$"
      4 P000004 "$T_{2 \\frac{1}{2}}$"
      5 P000005 "$T_3$"
      6 P000006 "$T_{3 \\frac{1}{2}}$"
      7 P000007 "$T_4$"
      8 P000008 "$T_5$"
      9 P000009 Completely Hausdorff
     10 P000010 Semiregular
     11 P000011 Regular
     12 P000012 Completely regular
     13 P000013 Normal
     14 P000014 Completely normal
     15 P000015 Perfectly Normal
     16 P000016 Compact
     17 P000017 "$\\sigma$-compact"
     18 P000018 Lindelof
     19 P000019 Countably compact
     20 P000020 Sequentially Compact
     21 P000021 Weakly Countably Compact
     22 P000022 Pseudocompact
     23 P000023 Locally Compact
     24 P000024 Strongly Locally Compact
     25 P000025 "$\\sigma$-Locally Compact"
     26 P000026 Separable
     27 P000027 Second Countable
     28 P000028 First Countable
     29 P000029 Countable chain condition
     30 P000030 Paracompact
     31 P000031 Metacompact
     32 P000032 Countably paracompact
     33 P000033 Countably metacompact
     34 P000034 Fully normal
     35 P000035 Fully $T_4$
     36 P000036 Connected
     37 P000037 Path Connected
     38 P000038 Arc connected
     39 P000039 Hyperconnected
     40 P000040 Ultraconnected
     41 P000041 Locally Connected
     42 P000042 Locally Path Connected
     43 P000043 Locally Arc Connected
     44 P000044 Biconnected
     45 P000045 Has Dispersion Point
     46 P000046 Totally Path Disconnected
     47 P000047 Totally Disconnected
     48 P000048 Totally Separated
     49 P000049 Extremally Disconnected
     50 P000050 Zero Dimensional
     51 P000051 Scattered
     52 P000052 Discrete
     53 P000053 Metrizable
     54 P000054 "$\\sigma$-Locally Finite Base"
     55 P000055 Completely metrizable
     56 P000056 Non-meager
     57 P000057 Countable
     58 P000058 Smaller than the continuum
     59 P000059 Smaller or same as the continuum
     60 P000060 Strongly Connected
     61 P000061 Cozero complemented
     62 P000062 Weakly Lindelof
     63 P000063 Čech complete
     64 P000064 Baire
     65 P000065 Continuum-sized
     66 P000066 Menger
     67 P000067 "$T_6$"
     68 P000068 Rothberger
     69 P000069 Strategic Menger
     70 P000070 Markov Menger
     71 P000071 "$\\sigma$-relatively-compact"
     72 P000072 2-Markov Menger
     73 P000073 Sober
     74 P000074 Cosmic
     75 P000075 Spectral space
     76 P000076 Proximal
     77 P000077 Corson compact
     78 P000078 Finite
     79 P000079 sequential
     80 P000080 Fréchet Urysohn
     81 P000081 Countably tight
     82 P000082 Locally metrizable
     83 P000083 Almost Čech Complete
     84 P000084 locally Hausdorff
     85 P000085 Ascoli
     86 P000086 homogenous
     87 P000087 Groupable topology
     88 P000088 Collectionwise normal
     89 P000089 Fixed Point Property
     90 P000090 Alexandrov
     91 P000091 Eberlein compact
     92 P000092 Moving Off Property
     93 P000093 Locally countable
     94 P000094 q Space
     95 P000095 I-tactic Banach-Mazur
     96 P000096 II-tactic Banach-Mazur
     97 P000097 Homotopy Dense
     98 P000098 $k_omega$
     99 P000099 Sequentially Hausdorff
    100 P000100 KC
    101 P000101 Anti-Hausdorff
    102 P000102 semimetrizable
    103 P000103 Strongly KC
    104 P000104 K Analytic
    105 P000105 Angelic
    106 P000106 Strictly Angelic
    107 P000107 Pointwise Countable Type
    108 P000108 Locally Čech Complete
    109 P000109 Countable Type
    110 P000110 Has A Compact Resolution
    111 P000111 Hemicompact
    112 P000112 Submetrizable
    113 P000113 k$\mathbb{R}$ Space
    114 P000114 $\aleph_0$
    115 P000115 Weakly K Analytic
    116 P000116 Pseudocomplete
    117 P000117 M Space
    118 P000118 Pseudo-Polish
    119 P000119 Z-Compact
    120 P000120 r Space
    121 P000121 Pseudo-Metrizable
    122 P000122 S space
    123 P000123 Locally Euclidean
    124 P000124 Topological manifold
    125 P000125 $k$-Lindelöf
    126 P100052 Trivial