properties (2977B)
1 P000001 "$T_0$" 2 P000002 "$T_1$" 3 P000003 "$T_2$" 4 P000004 "$T_{2 \\frac{1}{2}}$" 5 P000005 "$T_3$" 6 P000006 "$T_{3 \\frac{1}{2}}$" 7 P000007 "$T_4$" 8 P000008 "$T_5$" 9 P000009 Completely Hausdorff 10 P000010 Semiregular 11 P000011 Regular 12 P000012 Completely regular 13 P000013 Normal 14 P000014 Completely normal 15 P000015 Perfectly Normal 16 P000016 Compact 17 P000017 "$\\sigma$-compact" 18 P000018 Lindelof 19 P000019 Countably compact 20 P000020 Sequentially Compact 21 P000021 Weakly Countably Compact 22 P000022 Pseudocompact 23 P000023 Locally Compact 24 P000024 Strongly Locally Compact 25 P000025 "$\\sigma$-Locally Compact" 26 P000026 Separable 27 P000027 Second Countable 28 P000028 First Countable 29 P000029 Countable chain condition 30 P000030 Paracompact 31 P000031 Metacompact 32 P000032 Countably paracompact 33 P000033 Countably metacompact 34 P000034 Fully normal 35 P000035 Fully $T_4$ 36 P000036 Connected 37 P000037 Path Connected 38 P000038 Arc connected 39 P000039 Hyperconnected 40 P000040 Ultraconnected 41 P000041 Locally Connected 42 P000042 Locally Path Connected 43 P000043 Locally Arc Connected 44 P000044 Biconnected 45 P000045 Has Dispersion Point 46 P000046 Totally Path Disconnected 47 P000047 Totally Disconnected 48 P000048 Totally Separated 49 P000049 Extremally Disconnected 50 P000050 Zero Dimensional 51 P000051 Scattered 52 P000052 Discrete 53 P000053 Metrizable 54 P000054 "$\\sigma$-Locally Finite Base" 55 P000055 Completely metrizable 56 P000056 Non-meager 57 P000057 Countable 58 P000058 Smaller than the continuum 59 P000059 Smaller or same as the continuum 60 P000060 Strongly Connected 61 P000061 Cozero complemented 62 P000062 Weakly Lindelof 63 P000063 Čech complete 64 P000064 Baire 65 P000065 Continuum-sized 66 P000066 Menger 67 P000067 "$T_6$" 68 P000068 Rothberger 69 P000069 Strategic Menger 70 P000070 Markov Menger 71 P000071 "$\\sigma$-relatively-compact" 72 P000072 2-Markov Menger 73 P000073 Sober 74 P000074 Cosmic 75 P000075 Spectral space 76 P000076 Proximal 77 P000077 Corson compact 78 P000078 Finite 79 P000079 sequential 80 P000080 Fréchet Urysohn 81 P000081 Countably tight 82 P000082 Locally metrizable 83 P000083 Almost Čech Complete 84 P000084 locally Hausdorff 85 P000085 Ascoli 86 P000086 homogenous 87 P000087 Groupable topology 88 P000088 Collectionwise normal 89 P000089 Fixed Point Property 90 P000090 Alexandrov 91 P000091 Eberlein compact 92 P000092 Moving Off Property 93 P000093 Locally countable 94 P000094 q Space 95 P000095 I-tactic Banach-Mazur 96 P000096 II-tactic Banach-Mazur 97 P000097 Homotopy Dense 98 P000098 $k_omega$ 99 P000099 Sequentially Hausdorff 100 P000100 KC 101 P000101 Anti-Hausdorff 102 P000102 semimetrizable 103 P000103 Strongly KC 104 P000104 K Analytic 105 P000105 Angelic 106 P000106 Strictly Angelic 107 P000107 Pointwise Countable Type 108 P000108 Locally Čech Complete 109 P000109 Countable Type 110 P000110 Has A Compact Resolution 111 P000111 Hemicompact 112 P000112 Submetrizable 113 P000113 k$\mathbb{R}$ Space 114 P000114 $\aleph_0$ 115 P000115 Weakly K Analytic 116 P000116 Pseudocomplete 117 P000117 M Space 118 P000118 Pseudo-Polish 119 P000119 Z-Compact 120 P000120 r Space 121 P000121 Pseudo-Metrizable 122 P000122 S space 123 P000123 Locally Euclidean 124 P000124 Topological manifold 125 P000125 $k$-Lindelöf 126 P100052 Trivial