TELECOM

Paris

SD202: Databases
Advanced SQL and PostgreSQL features

Antoine Amarilli

Teléecom Paris

1/23



Views

2/23



Views

3/23



Views: definition

- You can define a view to represent the result of a complex query:

CREATE VIEW Movie_with_actor AS
SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

- View definition: simply a SELECT query as usual.

- You can then use the view as if it were a regular table

4/23



- Logical schema: Employee entity, every employee is either Secretary or
Professor

- This is specialization (complete and disjoint)

- Physical schema: one Secretary table and one Professor table

- The Employee table is their union, projected on the common attributes

- Instead of storing it, we can define it with a view

5/23



Advantages of views

What are views good for?

- Logical independence: you can change the definition of the view in an
application without changing the rest of the code

- Can be used to restrict access rights (only allow users to see a specific view)

- Can be switched easily to a materialized view for performance

Views can be a “fix” to address problems with the schema, or to redefine the
logical schema from the physical one

6/23



Materialized views

CREATE MATERIALIZED VIEW Movie_with_actor ...
Must then be manually updated with:

REFRESH MATERIALIZED VIEW Movie_with_actor ...
How to make the view refresh automatically? Workaround:

- Make the materialized view a regular table

- Define triggers to update it in the right way whenever the underlying tables
are changed

7123



Example of maintaining a materialized view

- Logical schema: Employee entity, each employee is Secretary or Professor
- Physical schema: one Secretary table and one Professor table

- The Employee table is their union, projected on the common attributes
- How to reflect updates from Professor and Secretary?
- When a tuple in inserted in either table, insert its projection in Professor
- When a tuple is modified, also modify the projection
- When a tuple is deleted, also delete it
— We assume that no tuple in Employee corresponds to two tuples in Professor
and Secretary (common key)
— Question: can we accept updates to Employee? how to reflect them?

- Other common use case: maintaining an aggregate, e.g,, a sum

8/23



Stored procedures

You can write custom procedures in PostgreSQL

CREATE OR REPLACE PROCEDURE transfer

(origin INT, destination INT, amount DECIMAL)
LANGUAGE plpgsql
AS [9]
BEGIN
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
UPDATE Account SET balance = balance - amount WHERE id
UPDATE Account SET balance = balance + amount WHERE id
COMMIT;

END;

Also possible to write custom functions, custom aggregation operators...

origin;

destination;

9/23



Why use stored procedures

- For triggers (see later)
- To factor some application logic in the database for consistency across
applications
- For performance (execute code closer to the data)
- Stored procedures can be written in C

10/23



- Procedures can be created as triggers to be automatically run whenever data
is changed
- Whenever a table is modified
- For every modified tuple in a table
- Can be run before or after the operation or instead of the operation

- Possible uses:

- Complex consistency check, or normalization/reformatting

- Recomputing auxiliary tables, automatically creating dependent data
- Manually updating an aggregate (e.g.,, a sum)

- Manually log database operations

1/23



Table inheritance

12/23



Table inheritance

13/23



Table inheritance

You can define tables that refine another table (inherit from it)

CREATE
CREATE
CREATE
INSERT
INSERT
INSERT
SELECT
SELECT
SELECT
SELECT

TABLE Employee (id SERIAL PRIMARY KEY, name VARCHAR, salary INT);
TABLE Professor (field VARCHAR) INHERITS (Employee);

TABLE Secretary (building VARCHAR) INHERITS (Employee);

INTO Employee(name, salary) VALUES ('John', 424);

INTO Professor(name, salary, field) VALUES ('Patricia', 343, 'CS');
INTO Secretary(name, salary, building) VALUES ('Simon', 252, 'A');
* FROM Professor;

* FROM Secretary;

* FROM Employee;

* FROM ONLY Employee;

/23



Table inheritance subtleties

- Tables can inherit from multiple tables

- Deleting a parent table cascades to the tables that inherit from it

- Warning: uniqueness constraints and keys do not take inheritance into
account!

INSERT INTO Professor(id, name, salary, field) VALUES
(3, 'Paula', '454', 'CS');
SELECT * FROM Employee;

-- 2d's are no longer unique!

- Warning: inserting in a “parent” table does not work

—-- This does not work
INSERT INTO Employee(name, salary, field) VALUES
('Priscilla', '4242', 'CS');

15/23



Transactions and Concurrency

16/23



Transactions and Concurrency

17/23



Reminder on ACID

SQL guarantees the ACID properties:
- Atomicity: a transaction block is either completely executed or not executed
at all
- Consistency: the database always satisfies the integrity constraints

- Isolation: if there are multiple transactions, they happen as if one had taken
place before the other

- Durability: one executed, transactions will not be lost

18/23



Transactions

- Default: every query (SELECT, INSERT, etc.) is a transaction

- We can manually define a transaction block with BEGIN ... COMMIT
- Start a transaction with BEGIN, and issue queries

- To perform the transaction, use COMMIT

- To abort the transaction, use ROLLBACK

- To define a savepoint, use SAVEPOINT label

- To roll back to a savepoint, use ROLLBACK TO SAVEPOINT label

Exercise: Can you think of a use case for transactions?

19/23



Challenges with single transactions

To correctly support transactions (one at a time) we must:

- Prepare the effects of the transaction, and atomically commit them
- Make sure the commits are durable, even if the hardware fails
- Be able to revert the effects of the transaction

- With save points, be able to revert its partial effects

20/23



Challenges with concurrent transactions

- Transactions: a sequence of read/write database operations

- These transactions are not ordered a priori (e.g., one may arrive while
another is running)

- We want to execute them in parallel for performance

- Problems:

- Two transactions can access the same data item at the same time
- Even if individual operations do not conflict, the sequence of operations of a
transaction may be affected by other transactions

- Strongest ACID guarantees: serializability

— What will happen is consistent with a serial ordering of the transactions
— Challenge: Parallelize as much as possible while respecting this

21/23



Concurrency

- Satisfying serializability is complicated and may cause transactions to:

- wait for another transaction to complete, possibly deadlock
- fail if we have started to execute it, but another transaction affected its data

- PostgreSQL supports several transaction isolation levels relaxing
serializability
- Each level describes which kinds of anomalies may take place

- More restrictive isolation means:

- worse performance
- more failures, but
- less inconsistency problems

- Also supports explicit locking in transactions (in addition to these
mechanisms)

22/23



Replication and clustering

- Having more than one server has several uses:

- partition the data if it is large

- do load balancing to use multiple servers

- evaluate a query on multiple servers in parallel
- have failover servers for high availability

- PostgreSQL has some support to propagate changes from a main database to
read-only failovers

- PostgreSQL did not focus initially on replication and clustering

-+ Many third party solutions

23/23



	Views
	Table inheritance
	Transactions and Concurrency

