
SD202: Databases
SQL language: advanced topics

Antoine Amarilli

Télécom Paris

1/7



SQL injection

Common pattern in server applications: build an SQL query from user data:

"SELECT name, phone FROM Staff WHERE name='%s'" % name

If the user supplies john as a value for name, we want to run:

SELECT name, phone FROM Staff WHERE name='john'

But if we get: john’ UNION ALL SELECT name, password FROM Staff --

The database will execute:

SELECT name, phone FROM Staff WHERE name='john'

UNION ALL SELECT name, password FROM Staff -- '

To avoid this, use preparated queries in the host language

cursor.execute("SELECT name, phone FROM Staff WHERE name = %s", [('name', name)])

2/7



Geometric objects

• PostgreSQL has support for geometric objects: points,
circles, polygons...

• Efficient support for, e.g., nearest neighbor searches
• Efficient indexes
• PostGIS: PostgreSQL extension to support spatial and

geographic objects

3/7



Natural language support

• PostgreSQL has some support to index and search natural language text:

• Split text into tokens
• Remove stop words
• Normalize tokens into lexemes (stemming)
• Keeping an index of lexemes with their position in the text

• All of this is specific to the language in use
• There are more advanced indexing tools for this job (e.g., Apache Lucene,

Apache Solr, ElasticSearch...)

4/7



Performance

• Recall that SQL is declarative: you specify what you want, not how to obtain it
• A plan is a concrete choice of how to implement a query, using tables,

indexes, and operators (e.g., intersection)
• The same query can have different plans giving the same result but different

performance
• For instance, perform a selection before a join if possible (reduces the number

of tuples)
• For instance, joining multiple tables: in which order should they be joined?

• You can use EXPLAIN to see the actual plan in use for a query
• You can use EXPLAIN ANALYZE to time the actual query execution

5/7



Advanced optimizations

You can help PostgreSQL compute the right execution plans by:

• Instructing it to create statistics on specific tuple subsets
• Updating statistics on tables manually
• Writing joins in a way that restricts the possible plans

PostgreSQL supports other optimizations:

• Parallel queries: evaluating a query using multiple threads
• Just-in-time compilation: accelerate the evaluation of WHERE clauses

6/7



Indexes

• We have seen that declaring a PRIMARY KEY or UNIQUE constraint would
create an index

• PostgreSQL makes it possible to manually declare additional indexes
• Tradeoff: indexes can be useful to speed up some queries, but take space

and cost some overhead to maintain
• Several index types:

• B-trees: see later
• Hash indexes: a hash table
• Indexes for geometric structures
• Inverted indexes for composite values (arrays, set of natural language tokens),

block range indexes...

• The query planner is in charge of finding the best way to use indexes
7/7


