
SD202: Databases
SQL language

Antoine Amarilli

Télécom Paris

1/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

2/57

General information

3/57

SQL basics

• SQL: Structured Query Language
• Language to manage data in a relational database
• Several sublanguages:

• Data definition language: create/modify table schema
• Data manipulation language: create/edit/query data
• Data control language: users and rights
• Procedural extensions: PL/SQL, SQL/PSM, PL/pgSQL...

• Implemented by common database engines

4/57

The SQL standard

SQL is an industry standard:
• First version in 1974
• Latest version in 2016
• 78 pages (not so long!)
• Price: 178 CHF (!)
• Theory: easy migration from a

database engine to another
• Practice: many incompatibilities
• Practice: database engines do not

usually implement the full
standard, and/or add extensions

5/57

Declarativity

SQL is a declarative language:

• specify what you want
• “find all female actors who played in Hollywood movies”

• not how to compute it

• “take all films and keep the ones from Hollywood, then take the actors who
played there and keep the ones who are female”

• “take all actors and keep the ones who are female, then take the films where
they played and keep the ones from Hollywood”

The database engine will translate SQL to a concrete execution plan (more later)

6/57

Declarativity

SQL is a declarative language:

• specify what you want
• “find all female actors who played in Hollywood movies”

• not how to compute it
• “take all films and keep the ones from Hollywood, then take the actors who

played there and keep the ones who are female”
• “take all actors and keep the ones who are female, then take the films where

they played and keep the ones from Hollywood”

The database engine will translate SQL to a concrete execution plan (more later)

6/57

Basic syntax

SELECT * FROM Movie WHERE title = 'Avatar';

• Keywords are English words and (typically) in uppercase
• Whitespace is ignored (line breaks, etc.)
• Statements are finished by a semicolon
• Comments, with -- or /* ... */

7/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

8/57

Implementation and setup

9/57

Step 1: installing an RDBMS

• Install a Relational DataBase Management System
• Let’s choose PostgreSQL

10/57

Step 2: interacting with the RDBMS

• Simplest way: use the command line
• Special commands (for PostgreSQL):

• \l to list databases
• \c database to change database
• \dt to list tables
• \d table to show details about a table

• You can issue commands (do not forget the semicolon)
• You can retrieve query results on standard output
• You can pipe a command from standard input

11/57

Step 2a: using a graphical interface

You can install phppgadmin:

12/57

Step 2b: using an API

First create a user to connect to the database:

CREATE USER testuser WITH ENCRYPTED PASSWORD 'PASS'

GRANT ALL PRIVILEGES ON DATABASE test TO testuser;

\c test

GRANT ALL PRIVILEGES ON ALL TABLES IN SCHEMA public TO testuser;

Then write code (here, psycopg2 with Python):

import psycopg2

conn = psycopg2.connect(

"host=localhost dbname=test port=5432 user=testuser password=PASS")

cur = conn.cursor()

cur.execute("SELECT * FROM Movies")

print (cur.fetchone())

conn.close()
13/57

Other approach: SQLite

• Install sqlite
• Run sqlite3 file.sqlite

• That’s it!
• Graphical interface: sqlitebrowser

14/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

15/57

Schema creation

16/57

Overall structure

Database cluster Database 1 Database 2 ...

Schema "public"

Table A Table B...

Other schema...

Table A Table B...
Users and
rights...

• A database cluster contains users/groups and databases
• A database contains several schemas (the default one is public)
• A schema contains tables

• The same table name can occur in multiple schemas
• Can be qualified with the schema name
• Notion of search path to disambiguate unqualified names

• A table has a structure (also called its schema) and data (rows)
17/57

Basics

Recall that the relational model is composed of several tables:

Movie

id name year

1 Avatar 2009
2 Avengers: Endgame 2019

Basic instruction to create a table:

CREATE TABLE Movie(id SERIAL, title VARCHAR, year INT);

18/57

Naming tables and attributes

• Table names should be singular
• No accents, no special characters, underscores rather than spaces

• You can use double quotes for this, but discouraged
• Table and attribute names are not case-sensitive

• Except if using double quotes – still discouraged

• Probably have a column named id for the primary key (later)
• Several tables can have the same attribute name, but they will need to be

disambiguated (e.g., R.id vs S.id)
• Avoid any reserved names (e.g., end)
• Most important: consistency!

19/57

Basic PostgreSQL types

• BOOLEAN for Boolean values
• INT for integers (4-byte)

• SERIAL for an auto-incrementing identifier (4-byte),
or AUTO INCREMENT with MySQL

• REAL for floating-point numbers (4-byte)
• NUMERIC for high-precision numbers (1000 digits)
• TEXT or VARCHAR: text

• VARCHAR(42): text of length at most 42

• BYTEA or BLOB for binary strings
• TIMESTAMP for date and time (can be WITH TIME ZONE), DATE, etc.
• Other: money, enumerated types (enums), geometric types, JSON and XML,

network addresses, UUIDs, arrays...
20/57

Modifying and deleting a table

ALTER TABLE Movie ADD COLUMN test BOOLEAN;

ALTER TABLE Movie ALTER COLUMN test TYPE int USING test::integer;

ALTER TABLE Movie RENAME COLUMN test TO test2;

ALTER TABLE Movie DROP COLUMN test;

ALTER TABLE Movie RENAME TO Movie2;

DROP TABLE Movie2;

21/57

Constraints

We can enforce some constraints on the tuples that we create:

• Check constraints
• Keys and uniqueness constraints (related to schema design)
• Foreign key constraints

22/57

Check constraints

CREATE TABLE Filming(id SERIAL PRIMARY KEY, title VARCHAR,

tstart DATE CHECK (tstart > '1895-01-01'),

tend DATE,

CHECK (tstart < tend));

• Constraints can check values in the current tuple
• You can give names to constraints to refer to them
• Special case: NOT NULL to disallow the default value (NULL)

23/57

Primary keys and uniqueness constraints

• PRIMARY KEY: value is unique, non-NULL, and is the “main
way” to refer to a tuple of the table

• In practice, you often use a column id just for that purpose
• Can be an existing identifier (e.g., ISBN) if you trust it
• Can be multiple columns for an n:n-relation (more later)

• UNIQUE: value (or tuple of values) is unique
These constraints automatically create an index (see later)

24/57

Foreign keys

ALTER TABLE Movie ADD COLUMN filming INT REFERENCES Filming(id)

The value of the filming attribute must be the id of a tuple in Filming relation

• You can have a foreign key on a tuple of columns, e.g.,
FOREIGN KEY (a, b) REFERENCES Table(c, d))

• The target attribute(s) must have a uniqueness constraint
• Usually, it is the primary key, and you can omit the attribute name

• NULL is allowed (unless you imposed NOT NULL)
• This constraint can be broken when changing the referenced table!

25/57

Repairing foreign key violations

• Default: prohibit deletion (except in a transaction, see later)
• ON DELETE RESTRICT: completely prohibit deletion
• ON DELETE CASCADE: also delete referencing tuples (dangerous)
• ON DELETE SET NULL: replace the reference by a NULL

• ON DELETE SET DEFAULT: replace the reference by the default value
(which must also obey the foreign key constraint)

• Same questions when updating tuples

26/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

27/57

Creating data

28/57

INSERT query

INSERT INTO Movie (title, year) VALUES ('Titanic', '1997');

• Can specify multiple tuples to insert
• Can omit the field names, they are then filled in order
• Instead of specifying VALUES, we can put a SELECT query to execute on

existing data (see later)

29/57

Default values for an insert

For fields that are not specified:

• For a SERIAL, automatically use a “next” value
• If a DEFAULT value was supplied, use it
• Otherwise, use NULL

• (Failure if NOT NULL was specified)

30/57

Performance of bulk INSERTs

Doing multiple INSERTs can be slow... to improve performance:

• Do the INSERTs within a single transaction rather than committing after each
INSERT

• Run a single INSERT command with multiple values
• Temporarily remove keys and indexes (and rebuild them at the end)
• Use the COPY command to load a file directly

31/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

32/57

Reading data

33/57

Most basic SELECT query

SELECT * FROM Movie;

id | title | year

----+------------------------------+------

1 | Frozen II | 2019

2 | Titanic | 1997

3 | Avengers: Endgame | 2019

4 | Avengers: Infinity War | 2018

5 | Star Wars: The Force Awakens | 2015

6 | Avatar | 2009

34/57

Projection: removing some attributes

SELECT year FROM Movie;

SELECT DISTINCT year FROM Movie;

SELECT DISTINCT ON (year) * FROM movie;

The DISTINCT keyword is not enabled by default (performance)

35/57

Renaming output attributes

SELECT title AS t, year AS y FROM Movie;

id | t | y

----+------------------------------+------

1 | Frozen II | 2019

2 | Titanic | 1997

3 | Avengers: Endgame | 2019

4 | Avengers: Infinity War | 2018

5 | Star Wars: The Force Awakens | 2015

6 | Avatar | 2009

36/57

Filtering: the WHERE clause

SELECT * FROM Movie WHERE year = '2019';

SELECT title FROM Movie WHERE year = '2019';

SELECT title FROM Movie WHERE year = '2019' AND title LIKE '%Frozen%';

37/57

Possible conditions

• Compare attribute values to constants, or among themselves
• Test equality, inequality, order
• Boolean conditions : AND, OR, NOT
• Value lists: year IN (’2019’, ’43’)

• LIKE operator: tests string equality to a pattern with ’%’ and ’ ’
• ILIKE: case-insensitive

• More complex expressions, e.g., WHERE LENGTH(title) > 10

• For performance, distinguish between:
• Conditions that require a full scan of the table
• Conditions implementable using indexes

38/57

Selecting multiple tables: PRODUCT

SELECT * FROM Movie, Actor;

SELECT * FROM Movie, Actor, Actor_in_movie;

Exercise: how to select the titles of movies and the names of actors who played
in that movie?

We want to do a join:

SELECT title, year, name FROM Movie, Actor, Actor_in_movie

WHERE Actor.id = Actor_in_movie.actor

AND Movie.id = Actor_in_movie.movie;

Note the disambiguation of ambiguous attribute names

39/57

Selecting multiple tables: PRODUCT

SELECT * FROM Movie, Actor;

SELECT * FROM Movie, Actor, Actor_in_movie;

Exercise: how to select the titles of movies and the names of actors who played
in that movie?

We want to do a join:

SELECT title, year, name FROM Movie, Actor, Actor_in_movie

WHERE Actor.id = Actor_in_movie.actor

AND Movie.id = Actor_in_movie.movie;

Note the disambiguation of ambiguous attribute names

39/57

Other kinds of join

SELECT title, actor FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

SELECT title, actor FROM Movie INNER JOIN Actor_in_movie

ON Movie.id = Actor_in_movie.movie;

SELECT title, actor FROM Movie LEFT OUTER JOIN Actor_in_movie

ON Movie.id = Actor_in_movie.movie;

SELECT title, actor FROM Movie RIGHT OUTER JOIN Actor_in_movie

ON Movie.id = Actor_in_movie.movie;

SELECT title, actor FROM Movie FULL OUTER JOIN Actor_in_movie

ON Movie.id = Actor_in_movie.movie;

Can you guess the difference?

40/57

Difference between joins

These two are equivalent: they drop any rows that do not match:

SELECT title, actor FROM Movie, Actor_in_movie WHERE Movie.id = Actor_in_movie.movie;

SELECT title, actor FROM Movie INNER JOIN Actor_in_movie ON Movie.id = Actor_in_movie.movie;

This one adds one copy of the left table rows that do not match (with NULLs):

SELECT title, actor FROM Movie LEFT OUTER JOIN Actor_in_movie ON Movie.id = Actor_in_movie.movie;

Likewise for the right table rows:

SELECT title, actor FROM Movie RIGHT OUTER JOIN Actor_in_movie ON Movie.id = Actor_in_movie.movie;

Likewise for both tables:

SELECT title, actor FROM Movie FULL OUTER JOIN Actor_in_movie ON Movie.id = Actor_in_movie.movie;

Exercise: In this example, some of these are equivalent. Why?
41/57

Unioning: UNION

SELECT * FROM Teacher UNION SELECT * FROM Actor;

• The number of columns and types must be the same
(but the names do not have to be)

• Removes duplicates unless you use UNION ALL

42/57

Difference: EXCEPT

SELECT id FROM Teacher EXCEPT SELECT id FROM Actor;

• Same condition on columns; also EXCEPT ALL

• Also INTERSECT and INTERSECT ALL for intersection

43/57

Ordering data

By default, the data is not sorted and the order is not consistent:

• ORDER BY date

• ORDER BY date DESC

• ORDER BY a + b

44/57

LIMIT and OFFSET

Sometimes, we do not want the full result (e.g., pagination)

• LIMIT 1

• LIMIT 2

• OFFSET 1 LIMIT 1

• OFFSET 1 LIMIT 2

Do not forget to use ORDER BY!

45/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

46/57

Advanced SELECT clauses

47/57

Groups and aggregation

SELECT genre, MAX(year) FROM Movie GROUP BY genre;

• Create one group per value of genre (could be multiple attributes)
• Attributes not in GROUP BY can only be aggregated
• Common aggregate functions: min, max, count, average, sum
• You can filter out groups with a HAVING clause (like WHERE, but evaluated

after the aggregation)

48/57

Subqueries in FROM

The FROM clause of a SELECT query can refer to a table evaluated with another
SELECT query:

SELECT * FROM

(SELECT * FROM Movie WHERE title LIKE 'Avengers%') AS M1

WHERE year = '2019';

The subquery must have an alias (here, M1), even if it is not used

Exercise: Can you simplify this query?

49/57

Subqueries in FROM

The FROM clause of a SELECT query can refer to a table evaluated with another
SELECT query:

SELECT * FROM

(SELECT * FROM Movie WHERE title LIKE 'Avengers%') AS M1

WHERE year = '2019';

The subquery must have an alias (here, M1), even if it is not used

Exercise: Can you simplify this query?

49/57

Subqueries in WHERE (with EXISTS, etc.)

The WHERE clause of a SELECT query can check existence of a query result

SELECT id, title FROM Movie WHERE EXISTS

(SELECT 1 FROM Actor_in_movie WHERE movie = Movie.id);

Other possibility:

SELECT id, title FROM Movie WHERE id IN

(SELECT movie FROM Actor_in_movie);

Exercise: Can you simplify this query?

SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

Other operators : = ANY, = SOME, etc.

50/57

Subqueries in WHERE (with EXISTS, etc.)

The WHERE clause of a SELECT query can check existence of a query result

SELECT id, title FROM Movie WHERE EXISTS

(SELECT 1 FROM Actor_in_movie WHERE movie = Movie.id);

Other possibility:

SELECT id, title FROM Movie WHERE id IN

(SELECT movie FROM Actor_in_movie);

Exercise: Can you simplify this query?

SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

Other operators : = ANY, = SOME, etc.

50/57

Subqueries in WHERE (with EXISTS, etc.)

The WHERE clause of a SELECT query can check existence of a query result

SELECT id, title FROM Movie WHERE EXISTS

(SELECT 1 FROM Actor_in_movie WHERE movie = Movie.id);

Other possibility:

SELECT id, title FROM Movie WHERE id IN

(SELECT movie FROM Actor_in_movie);

Exercise: Can you simplify this query?

SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

Other operators : = ANY, = SOME, etc.

50/57

Subqueries in WHERE (with EXISTS, etc.)

The WHERE clause of a SELECT query can check existence of a query result

SELECT id, title FROM Movie WHERE EXISTS

(SELECT 1 FROM Actor_in_movie WHERE movie = Movie.id);

Other possibility:

SELECT id, title FROM Movie WHERE id IN

(SELECT movie FROM Actor_in_movie);

Exercise: Can you simplify this query?

SELECT DISTINCT Movie.id, title FROM Movie, Actor_in_movie

WHERE Movie.id = Actor_in_movie.movie;

Other operators : = ANY, = SOME, etc.
50/57

Exercise

Exercise: How can you find the latest films in the database? (the ones whose year
is the greatest)

-- first select the greatest year

SELECT max(year) AS maxyear FROM Movie;

-- now select where the year is greatest

SELECT title, year

FROM Movie, (SELECT max(year) AS maxyear FROM MOVIE) AS T

WHERE Movie.year = T.maxyear;

How can you find the latest films for each genre?

SELECT title, year, Movie.genre FROM Movie,

(SELECT genre, max(year) AS maxyear FROM MOVIE GROUP BY genre) AS T

WHERE Movie.year = T.maxyear AND Movie.genre = T.genre;

51/57

Exercise

Exercise: How can you find the latest films in the database? (the ones whose year
is the greatest)

-- first select the greatest year

SELECT max(year) AS maxyear FROM Movie;

-- now select where the year is greatest

SELECT title, year

FROM Movie, (SELECT max(year) AS maxyear FROM MOVIE) AS T

WHERE Movie.year = T.maxyear;

How can you find the latest films for each genre?

SELECT title, year, Movie.genre FROM Movie,

(SELECT genre, max(year) AS maxyear FROM MOVIE GROUP BY genre) AS T

WHERE Movie.year = T.maxyear AND Movie.genre = T.genre;

51/57

Exercise

Exercise: How can you find the latest films in the database? (the ones whose year
is the greatest)

-- first select the greatest year

SELECT max(year) AS maxyear FROM Movie;

-- now select where the year is greatest

SELECT title, year

FROM Movie, (SELECT max(year) AS maxyear FROM MOVIE) AS T

WHERE Movie.year = T.maxyear;

How can you find the latest films for each genre?

SELECT title, year, Movie.genre FROM Movie,

(SELECT genre, max(year) AS maxyear FROM MOVIE GROUP BY genre) AS T

WHERE Movie.year = T.maxyear AND Movie.genre = T.genre;

51/57

Exercise

Exercise: How can you find the latest films in the database? (the ones whose year
is the greatest)

-- first select the greatest year

SELECT max(year) AS maxyear FROM Movie;

-- now select where the year is greatest

SELECT title, year

FROM Movie, (SELECT max(year) AS maxyear FROM MOVIE) AS T

WHERE Movie.year = T.maxyear;

How can you find the latest films for each genre?

SELECT title, year, Movie.genre FROM Movie,

(SELECT genre, max(year) AS maxyear FROM MOVIE GROUP BY genre) AS T

WHERE Movie.year = T.maxyear AND Movie.genre = T.genre;
51/57

Recap: full SELECT syntax

SELECT [DISTINCT] [attrs]

FROM [tables, possibly with subexpressions]

WHERE [condition]

GROUP BY [grouping element]

HAVING [filter on groups]

UNION/INTERSECT/EXCEPT [ALL] [other queries...]

ORDER BY [criterion]

LIMIT [limit]

OFFSET [offset]

52/57

General information

Implementation and setup

Schema creation

Creating data

Reading data

Advanced SELECT clauses

Modifying and deleting data

53/57

Modifying and deleting data

54/57

DELETE and TRUNCATE commands

To remove tuples:

DELETE FROM Table WHERE [condition]

Warning:

• This can remove more data than expected if the condition is wrong
• There is no confirmation

To remove all rows (faster):

TRUNCATE TABLE Table

Warning: this will remove all data (without confirming)

55/57

UPDATE command

UPDATE Actor SET name = 'Eliott Page' WHERE id = 42;

UPDATE Movie SET year = year+1 WHERE title LIKE 'Avengers%';

Warning:

• This can mess up more data than expected if the condition is wrong
• There is no confirmation!

56/57

Avoiding data disasters

• Use a transaction and only COMMIT when you are sure of the result
• Have backups, e.g., use pg dump

• Run a SELECT before UPDATE or DELETE, with the same WHERE clause

57/57

	General information
	Implementation and setup
	Schema creation
	Creating data
	Reading data
	Advanced SELECT clauses
	Modifying and deleting data

