INF280
Graph Traversals & Paths

Florian Brandner

1/21



Introduction

2/21



Introduction

You all know graphs:

- Setof nodes N
- SetofedgesEC N x N
- Edges can be undirected or directed, i.e, (a, b) # (b, a)

(A —(®)
N {A,B,C}

e £ {(AB),(A0),(B,C)}

3/21



Data Structures

Several options to represent graphs:

- Adjacency matrix:
- bool G[MAXN] [MAXN];
- G[x] [y] is true if an edge between node x and y exists
- Replace bool by int to represent weighted edges
- Adjacency list:
* vector<int> Ad]j[MAXN];
- yisin adjrx] if an edge between node x and y exists
- Pairs to represent weights
- Edge list:
+ vector<pair<int, int> > Edges;

-+ Edges contains a pair of nodes if an edge exists between them

- Nodes and edges may also be custom structs or classes

421



Simple Traversals
Depth-First Search
Breadth-First Search

5/21



Depth-First Search

Visit each node in the graph once:

- Recursive implementation below
- Manage stack yourself for iterative version
- First visit child nodes then siblings

bool Visited[MAXN] = {};
void DFS (int u) {
if (Visited[u])
return;
Visited[u] = true;
// maybe do something with u (pre-order)
for (auto v : Adj[u])
DES (V) ;

// or do something here (post-order)

6/21



Applications of DFS

- Determine a topological order of nodes
- Only works for graphs without cycles (i.e, x =y —z — x)
- Add visited node at the head of an ordered list
(at the end of DFS: ordering.push_front (u))
- Detect if a cycle exists:
- Check if the currently visited node is on the stack

A) Use three states for visited array:
UNVISITED, ONSTACK, VISITED
B) Explicitly search in the stack of the iterative algorithm

- Examples: https://visualgo.net/dfsbfs

7/21


https://visualgo.net/dfsbfs

Breadth-First Search

Visit each node in the graph once:

- Similar to DFS, but replaces stack by queue

queue<int> Q;
bool Visited[MAXN] = {};
void BFS (int root) {
Q.push (root) ;
while (!Q.empty()) {
int u = Q.front ();
Q.pop ()i
if (Visited([ul)
continue;
Visited[u] = true;
for (auto v : Adj[u])
Q.push (v) ; // usually do something with v

8/21



Applications of BFS

- Shortest path search

- Stop processing when a given node 4 was found
- Minimizes number of hops, i.e., all edges have same weight
- Generalization follows next

- Examples: https://visualgo.net/dfsbfs

9/21


https://visualgo.net/dfsbfs

Finding Paths
Dijkstra
Bellman-Ford
Floyd-Warshall

Improvements

10/21



BFS can only be used if edge weights are uniform

- Dijkstra’s algorithm generalizes this

- Constraint: all edges need to have non-negative weights
- Use a priority queue to choose which node to examine next
- Would require a function to update the priority of an element
- Would need to update order in the priority queue
- We'll use the standard priority queue of STL

- Simply insert a new element in the queue (no update)
- Ok since priorities decrease monotonically
- This slightly diverges from Dijkstra’s algorithm

- May revisit nodes several times

1/21



Dijkstra’s Algorithm

unsigned int Dist [MAXN];
typedef pair<unsigned int, int> WeightNode; // weight goes first
priority queue<WeightNode, std::vector<WeightNode>,
std::greater<WeightNode> > Q;
void Dijkstra (int root) {
f£ill_n(Dist, MAXN, MAXLEN);

Dist[root] = 0; Q.push(make_pair (0, root));
while (!Q.empty()) {
int d = Q.top().first, u = Q.top() .second; // node of least priority
Q.pop ()
if (Dist[u] <= d)
continue; // node already processed, ignore leftover in queue
for (auto tmp : Adj[ul) |
int v = tmp.second;
unsigned int weight = tmp.first;
if (Dist[v] > Dist[u] + weight) { // shorter path found?
Dist[v] = Dist[u] + weight;
Q.push (make_pair (Dist[v], v)); // simply push, no update here

) https://visualgo.net/sssp

12/21


https://visualgo.net/sssp

- Dijkstra’s algorithm is limited to non-negative edge weights
- Bellman-Ford extends this to general edge weights
- Constraint: no cycle with negative total costs

- May again revisit nodes several times

13/21



Bellman-Ford Algorithm

unsigned int Dist [MAXN];
void BellmanFord (int root) {
fill n(Dist, MAXN, MAXLEN);
Dist[root] = 0;
for (int k=0; k < N - 1; k++) { // Jjust iterate N - 1 times
for (auto tmp : Edges) {
unsigned int weight = get<0> (tmp);
int u = get<l>(tmp); // similar to Dijkstra before
int v = get<2>(tmp);
Dist[v] = min(Dist([v], Dist[u] + weight);

} https://visualgo.net/sssp

Wl


https://visualgo.net/sssp

Floyd-Warshall

- Dijkstra and Bellman-Ford compute shortest paths

- From a single source (root)
- To all other (reachable) nodes
- This is known as: single-source shortest path problem

- Floyd-Warshall extends this to compute the shortest paths
between all pairs of nodes

- This is known as: all-pairs shortest path problem

15/21



Floyd-Warshall Algorithm

int Dist [MAXN] [MAXN];
void FloydWarshall () {
fill n((int+)Dist, MAXN+MAXN, MAXLEN) ;
for (int u=0; u < N; u++) {
Dist[u] [u] = 0;
for (auto tmp : Adjlu])
Dist[u] [tmp.second] = tmp.first;
}
for (int k=0; k < N; k++) // check sub-path combinations
for (int i=0; i < N; 1i++)

for (int j=0; j < N; Jj++) // concatenate paths

Dist[i][J] = min(Dist[i1][Jj], Dist([i][k] + Dist([k]l[3j]);

16/21



Keeping track of the path

We only considered the length of the path so far:

- All of the above algorithms can track the actual shortest path

- This allows to print each edge/node along the path
- Basic idea:
+ Introduce an array int Predecessor [MAXN]
(Use two-dimensional array for Floyd-Warshall)
- Updated whenever pist [v] changes
- Simply set to the new predecessor u

17/21



Heuristics — A* Search

Heuristics may speed-up the path search

- Bellman-Ford and Floyd-Warshall equally explore all possibilities

- Dijkstra prefers nodes with shorter distance
- Basic idea behind A* Search:

- Extension to Dijkstra’s algorithm

- Introduce an estimation of the remaining distance

- Prefer nodes with minimal estimated remaining distance
- Advantages

- May converge faster than Dijkstra

- Can be used to compute approximate solutions

(trading speed for precision)

18/21



Eulerian Circuits

19/21



Eulerian Circuits

We study undirected graphs and assume they are connected:
- Eulerian path:
Use every edge of a graph exactly once. Start and end may differ

- Eulerian circuit:
Use every edge exactly once. Start and end at the same node

- Conditions to find Eulerian path:

- All nodes have even degree or
- Precisely two nodes have odd degree

- For Eulerian circuit, all nodes must have even degree

20/21



Hierholzer’s Algorithm for Eulerian Paths (assuming they exist)

set<int> Adj[MAXN]; wvector<int> Circuit;

void Hierholzer () {
int v = 0; // find node with odd degree, else start with node 0
for (int u=0; u < N && v == 0; u++)
if (Adj[u].size() & 1)
v = u; // node with odd degree

stack<int> Stack;
Stack.push (v) ;
while (!Stack.empty()) {
if (!'Adj[v].empty()) | // follow edges until stuck
Stack.push (v);
int tmp = *Adj[v].begin();

Adj[v] .erase (tmp); // remove edge, modifying graph
Adj[tmp] .erase (V) ;
v = tmp;

} else { // got stuck: stack contains a circuit
Circuit.push_back (v); // append node at the end of circuit
v = Stack.top(); // backtrack using stack, find larger circuit

Stack.pop () ;

https://www-m9.ma.tum.de/graph-algorithms/hierholzer/index_en.html

21/21


https://www-m9.ma.tum.de/graph-algorithms/hierholzer/index_en.html

	Introduction
	Simple Traversals
	Depth-First Search
	Breadth-First Search

	Finding Paths
	Dijkstra
	Bellman-Ford
	Floyd-Warshall
	Improvements

	Eulerian Circuits

