Introduction to Databases

- Albert Bifet (class responsible, course author)
- Antoine Amarilli (teacher)

Albert Bifet

- Professor at Telecom ParisTech
- Teaching at Telecom ParisTech and Ecole Polytechnique
- Worked at Yahoo Labs, Huawei, University of Waikato
- Doing Research in
 - Data Stream Mining, Machine Learning, Artificial Intelligence
 - Leading Open Source Projects
 - MOA, Apache SAMOA, StreamDM

Antoine Amarilli

- Associate professor at Telecom ParisTech
- Researcher in database theory

Course

- Introduction to Databases and Relational Model
- Relational Algebra
- SQL, Views and Updates
- Functional Dependencies and Normalization
- E/R Design

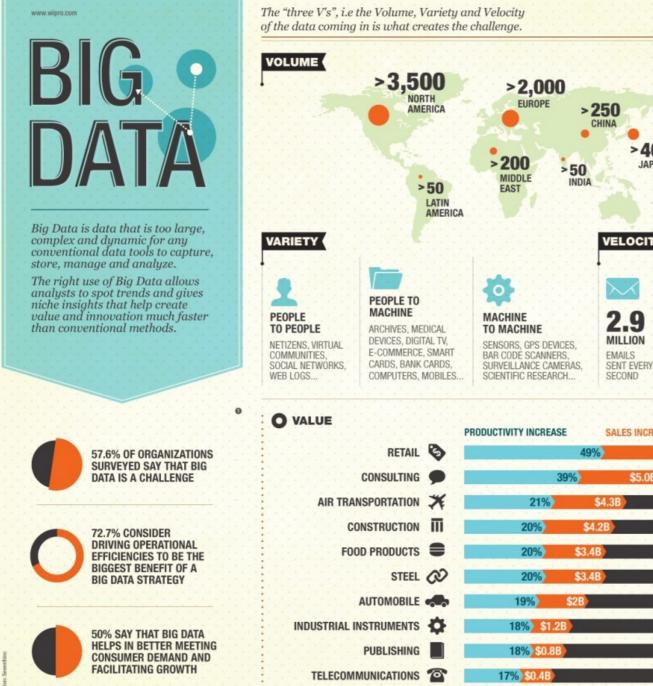
Labs: Jupyter

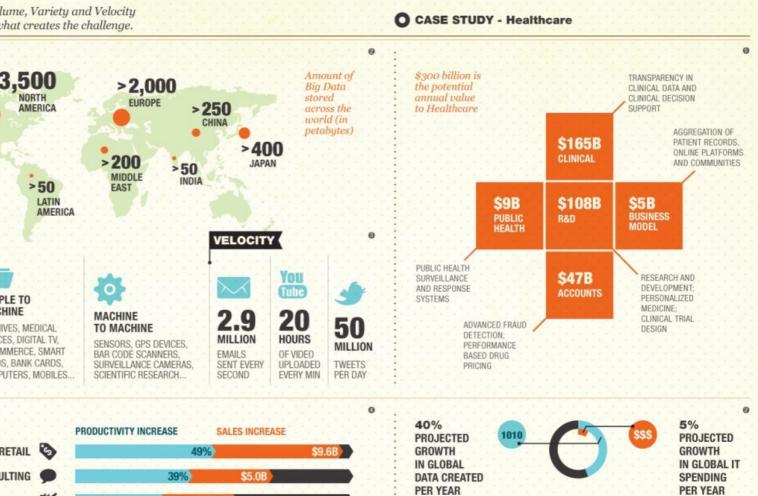
- Jupyter notebooks are interactive shells which save output in a nice notebook format
- Notebooks will be in **python**
- 1 Lab: Functional Dependencies
- 2 Lab: SQL
- 3 Lab: SQL

Resources

- Class website
 - http://albertbifet.com/teaching/
 - https://a3nm.net/work/teaching/#y2018-sd202
- MOOC Videos
- References on the Website

Databases


Data-driven Society



Big Data

The estimated size of the digital universe in 2011 was 1.8 zettabytes. It is predicted that between 2009 and 2020, this will grow 44 fold to 35 zettabytes per year. A well defined data management strategy is essential to successfully utilize Big Data.

Sources - Theoping the Rewards of Big Data - Wipon Report 🖗 Big Data: The Next Fresher for Innovation, Competition and Preductivity - MoKimery Global Institute Report 🔮 consCourt, Radical Group 🖗 Measuring the Basimess Inspects of Effective Data - study by University of Resus, Austin 🕲 Dispectment of Labour.

DO BUSINESS BETTER

NYSE-WIT I OVER 130,000 EMPLOYEES I 54 COUNTRIES I CONSULTING I SYSTEM INTEGRATION I OUTSOURCING

0

All business manage data

• SNCF : 5M travelers/day.

All business manage data

• Walmart : 275M customers/week

Data-intensive Applications

- Store data (databases)
- Speed up reads, remembering results (caches)
- Search data by keywords (search index)
- Send messages to another process asynchronously (stream application)
- Periodically crunch a large amount of accumulated data (batch processing)

Popular SQL Databases

- Open Source Databases
 - MySQL
 - PostgreSQL
 - MariaDB
- Commercial Databases
 - Oracle 12c
 - Microsoft SQL Server
 - IBM DB2

My5G MariaDB PostgreSQL

• SAP Hana

Small Data

- SQLite is a self-contained, high-reliability, embedded, full-featured, public-domain, SQL database engine.
- SQLite is the most used database engine in the world
- SQLite competes with fopen().

Let's build a database!

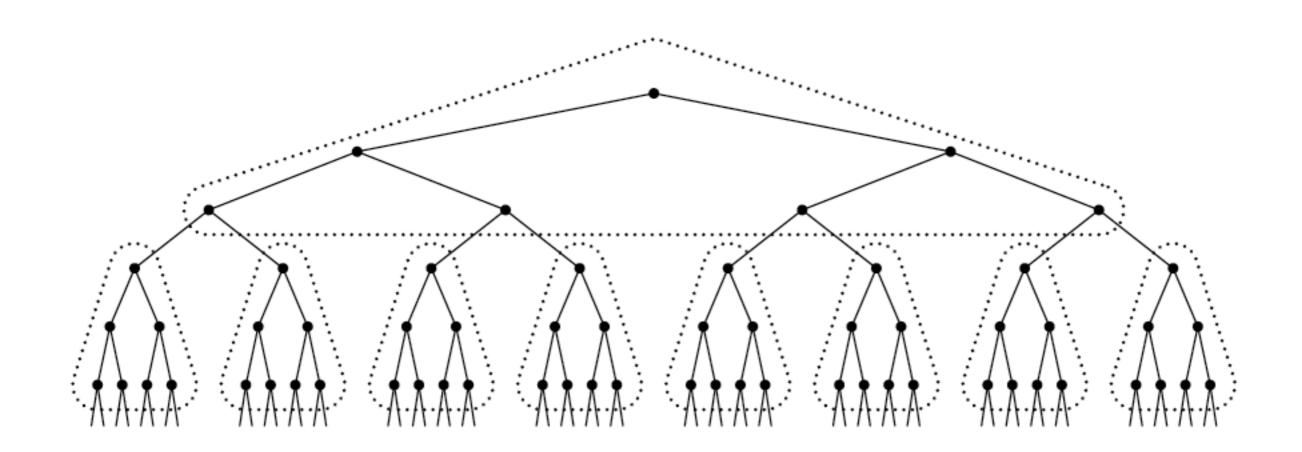
Simplest Database

```
#!/bin/bash
```

}

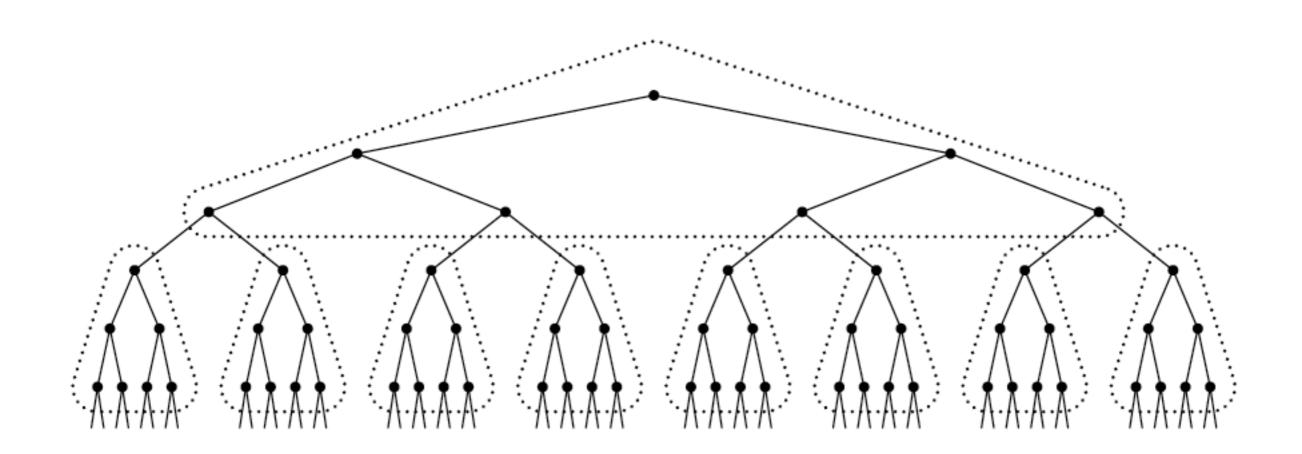
```
db_set (){
    echo "$1,$2" >> database
```

```
db_get () {
   grep "^$1," database | cut -d, -f2
}
```

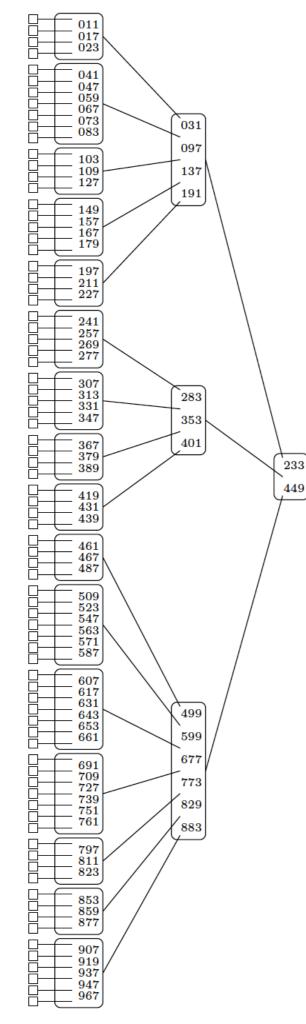

Simplest Database

db_set 1324 'John Doe, Rue Barrault, Paris' db_set 4324 'Paul Ryan, Avenue Italie, Paris' db_get 4324 Paul Ryan, Avenue Italie, Paris

What is missing?


Database Indexing

Database Index



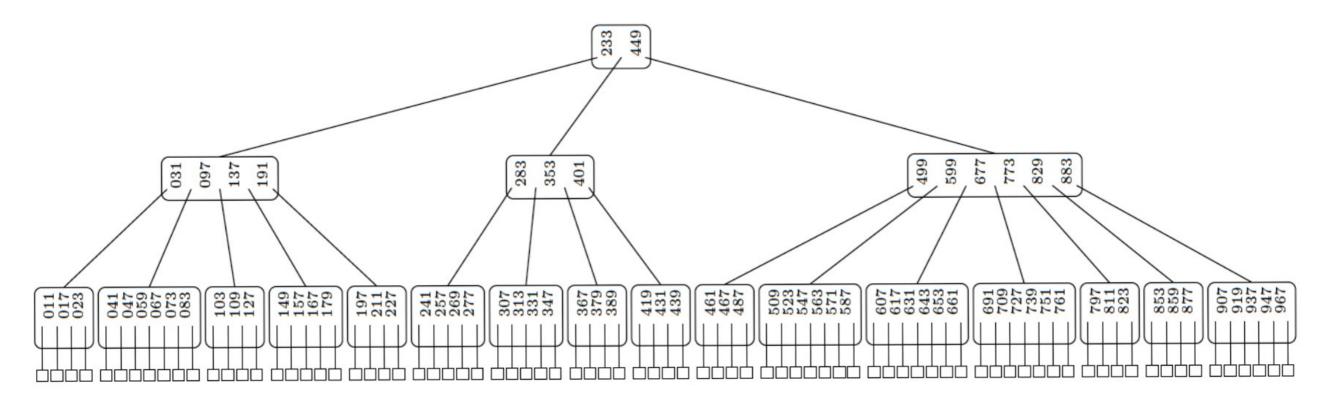
 Large binary search trees can be divided into "pages"

Database Index

 B-Trees are balanced search trees designed to work on disks and other storage devices

Motivation

B-Tree is a data structure that makes it possible to maintain an ordered list of records so we can


- search
- update/insert/delete

in time O(lg(*n*)) with a good constant factor

Motivation

The origin of the name "**B-Tree**" is unknown:

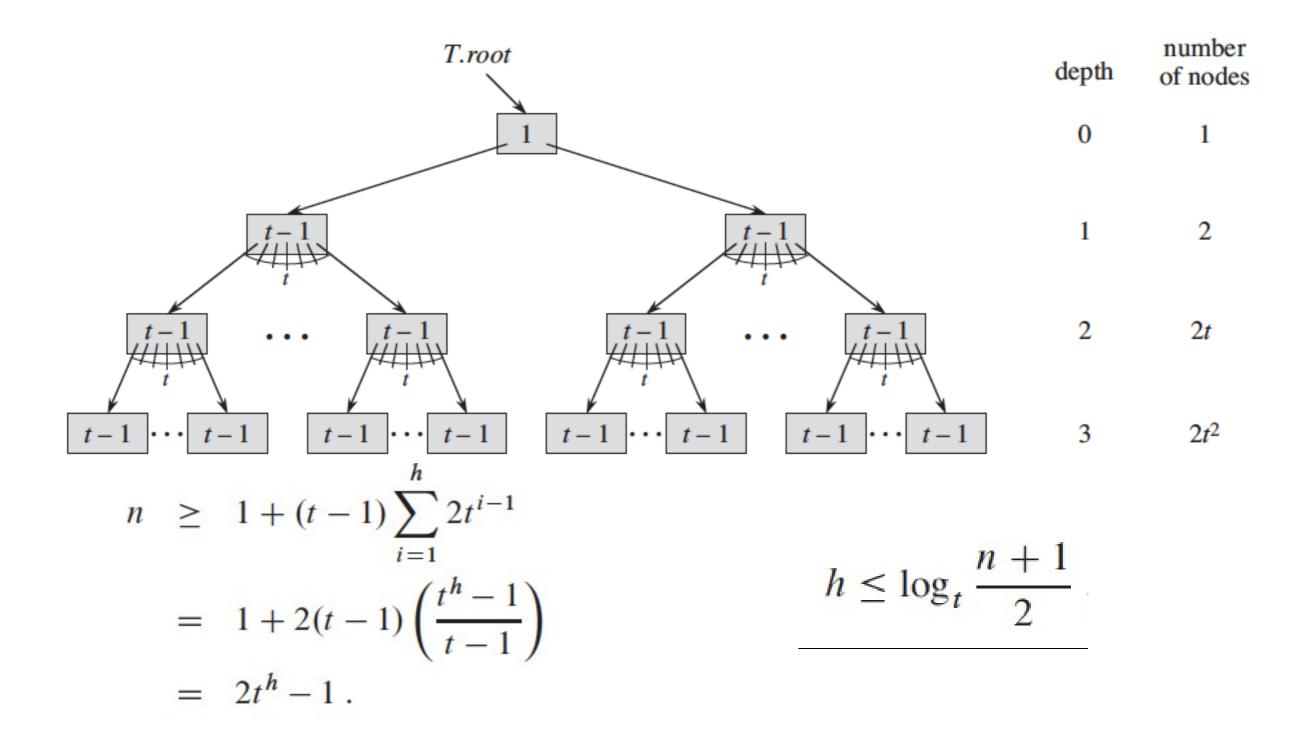
Balanced, Broad, Bushy, Boeing, Bayer

Definition (Knuth)

- A **B-tree** of *minimum degree t* is a tree that satisfies:
 - Every node has at most 2t children
 - Every node, except for the root and the leaves, has at least t children
 - The root has at least 2 children (unless it is a leaf)
 - All leaves appear on the same level, and carry no information
 - A non leaf node with k children contains k-1 keys

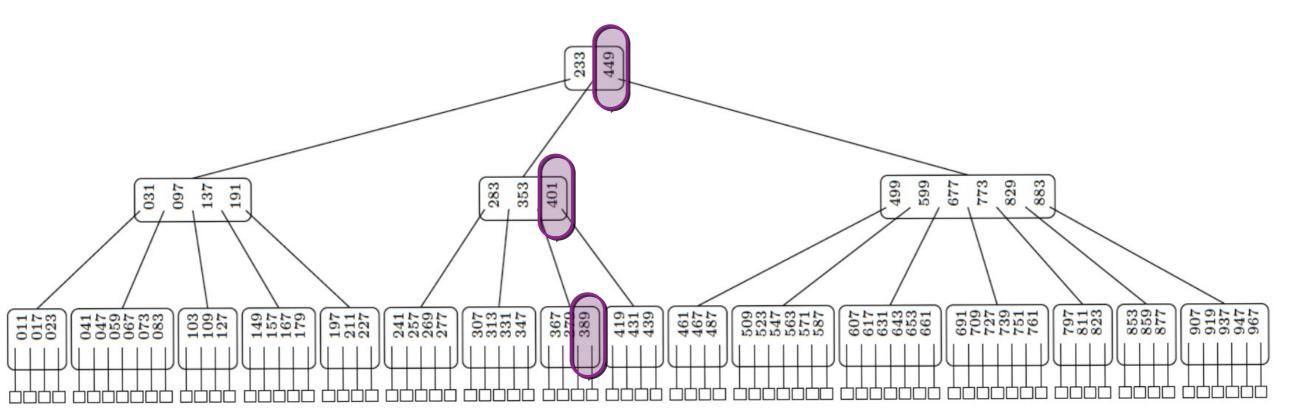
2-3-4 Tree

- A **B-tree** of *minimum degree* **t**=**2** is a tree that satisfies:
 - Every node has at most 4 children
 - Every node, except for the root and the leaves, has at least 2 children
 - The root has at least 2 children (unless it is a leaf)
 - All leaves appear on the same level, and carry no information
 - A non leaf node with k children contains k-1 keys


B-Tree Operations

- Search: essentially like a binary search tree
- Insert: if a node gets too big, we split it into two nodes
- Delete: if a node gets too small, we combine two nodes

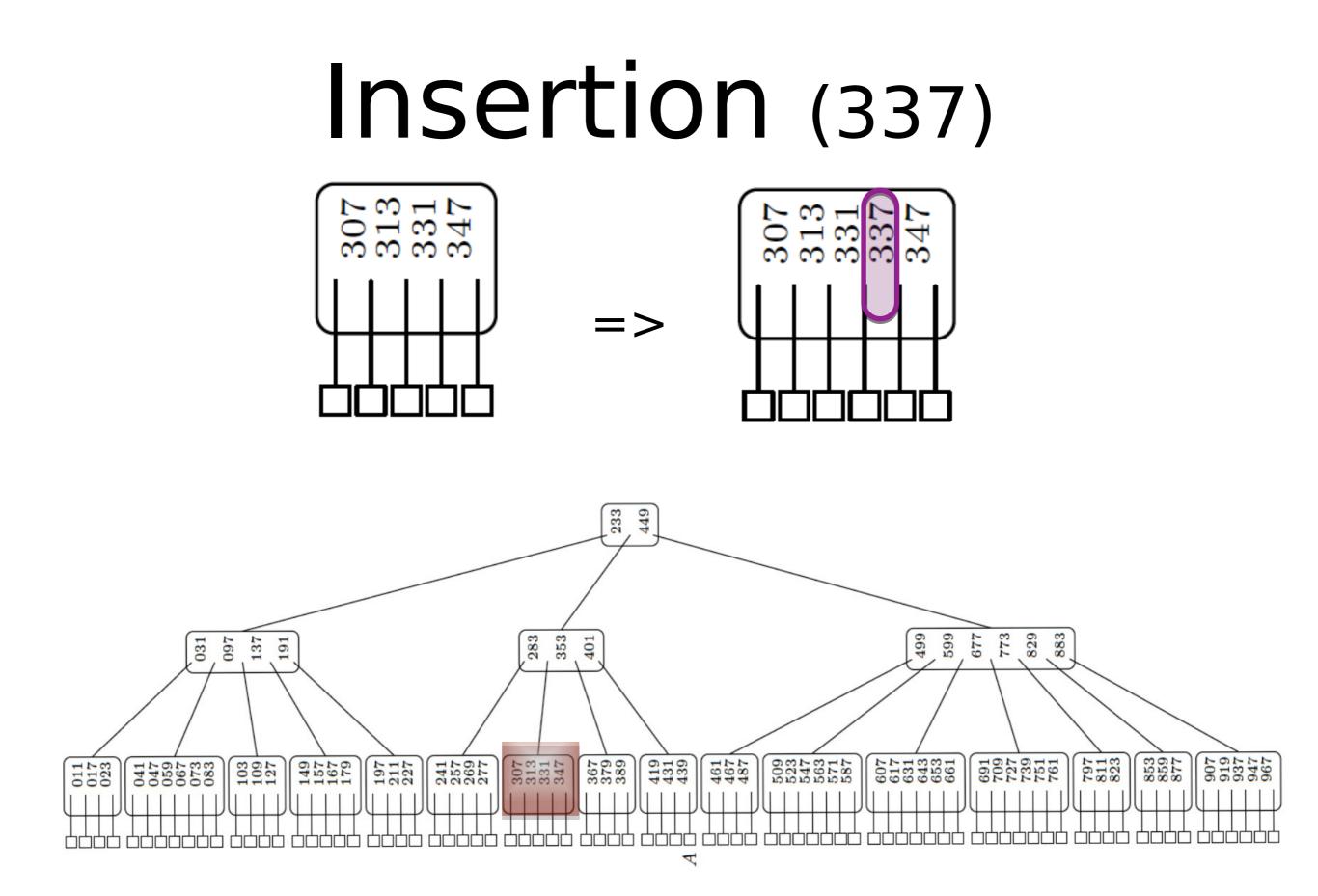
Balance is achieved from the top of the tree


since the height is only modified when the root splits or merges

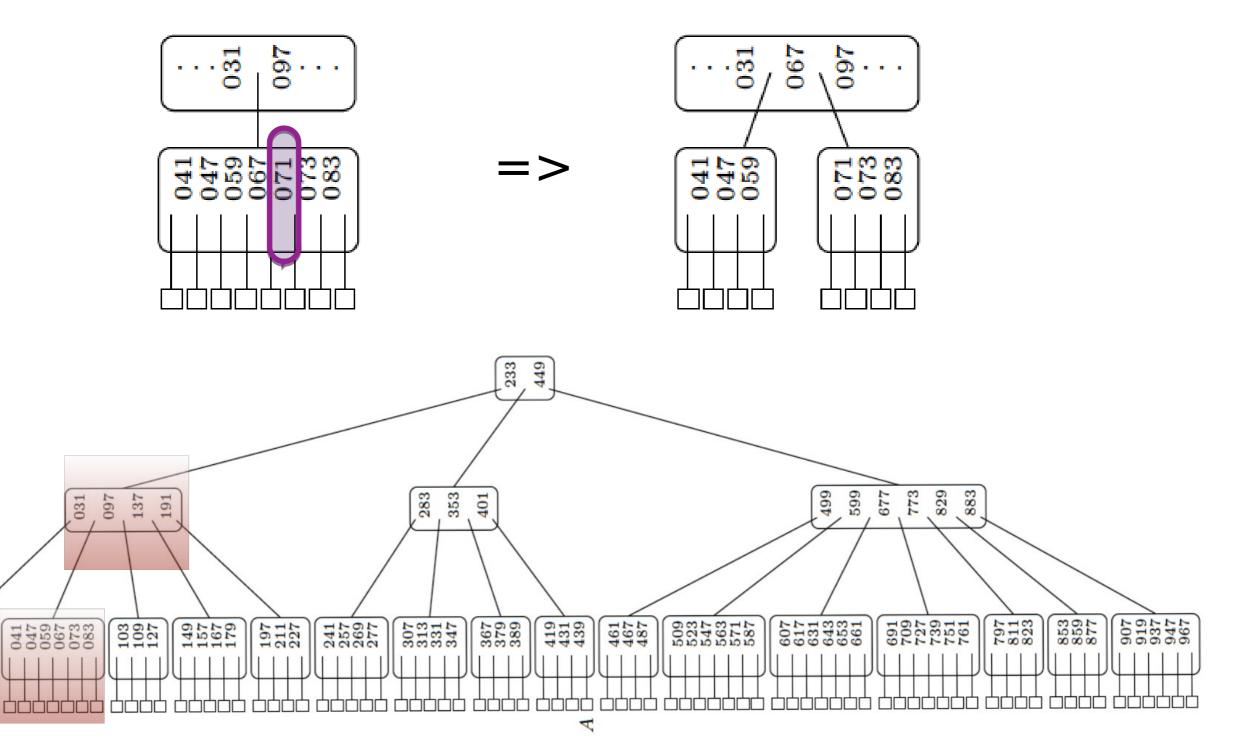
Operation Costs

Search

 Form a simple path downward from the root of the tree

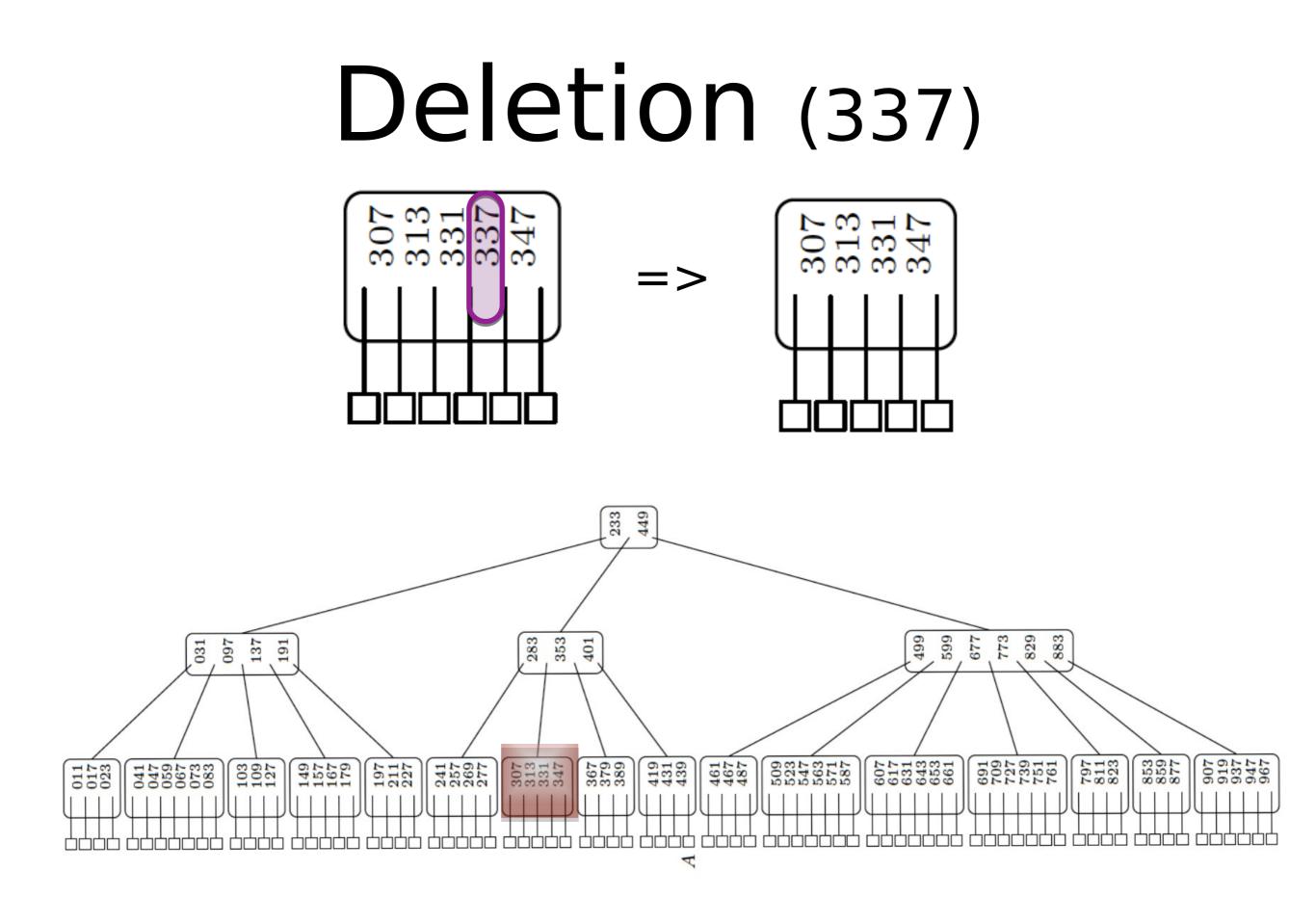


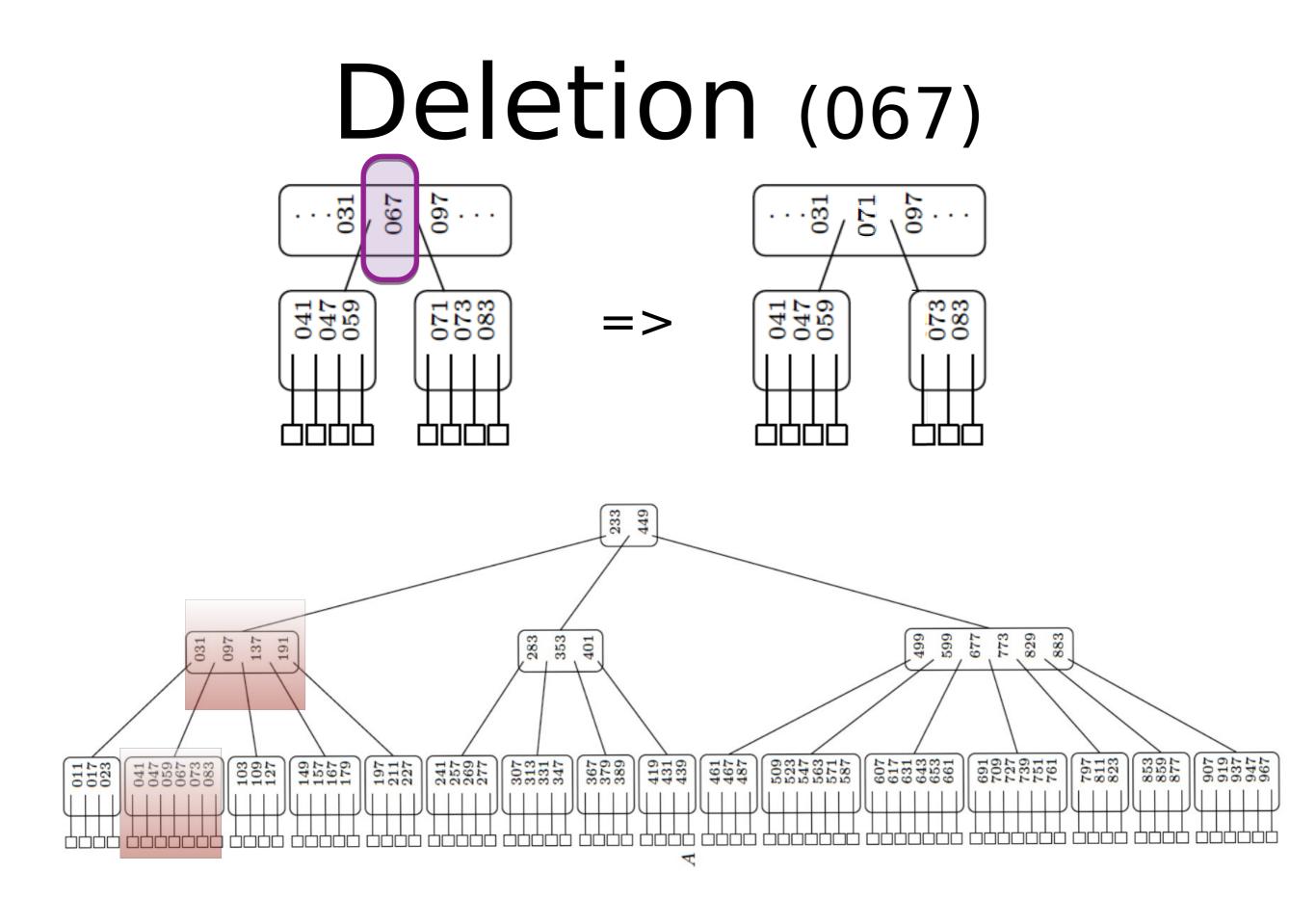
Search


- Form a simple path downward from the root of the tree
 - Recursively, starting at the root
 - Look for the appropriate position in the node
 - if the key is found, return the key
 - · else
 - if the node is a leaf, return NIL
 - else continue recursively checking the appropriate child

Insertion

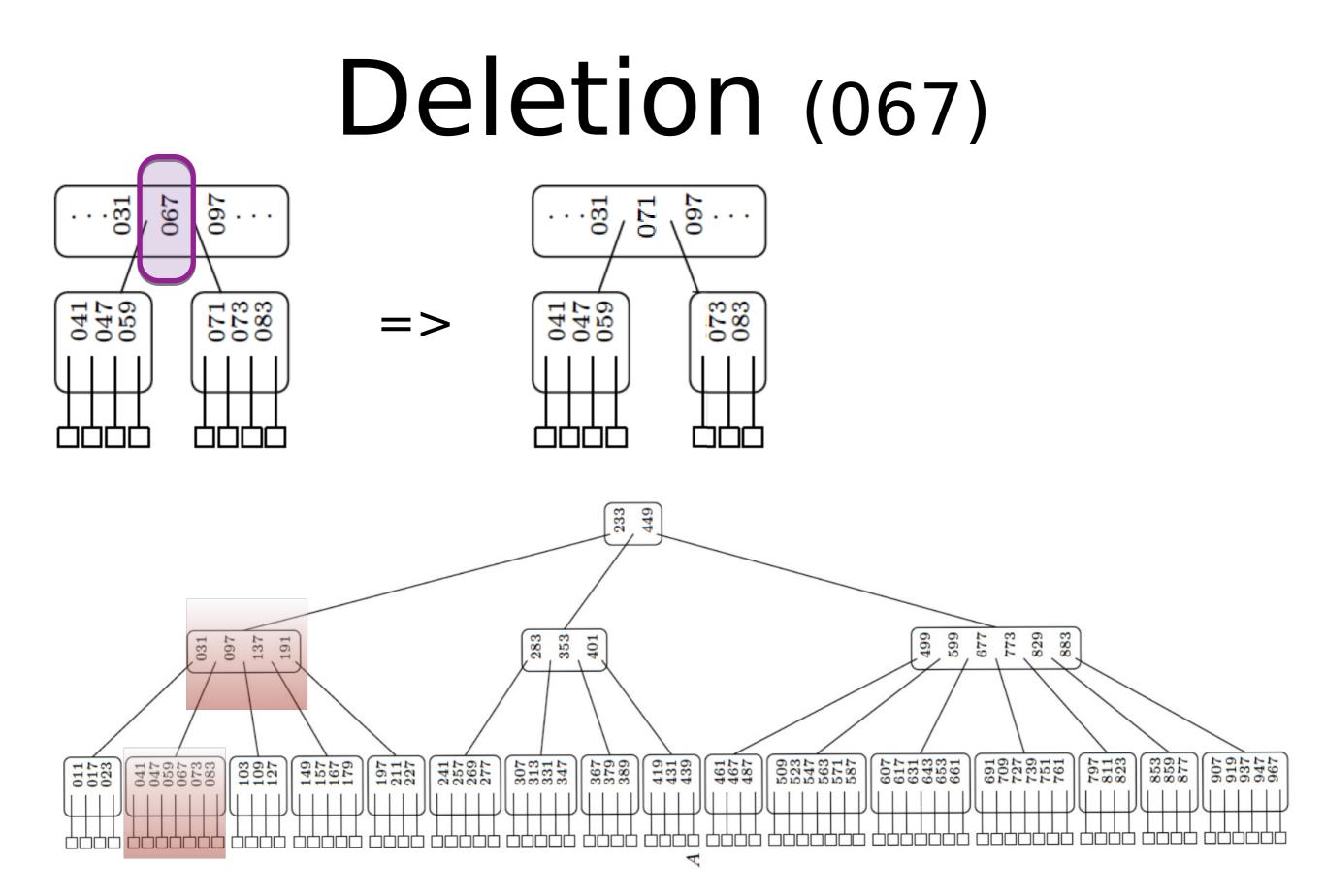
- search from the root a leaf where we can insert the key
- add the key to the leaf
- if the leaf is now too large, split it in two and propagate the middle key to the parent
- recursively split parents, propagating an extra key upwards, until we no longer need to split or we reach the root

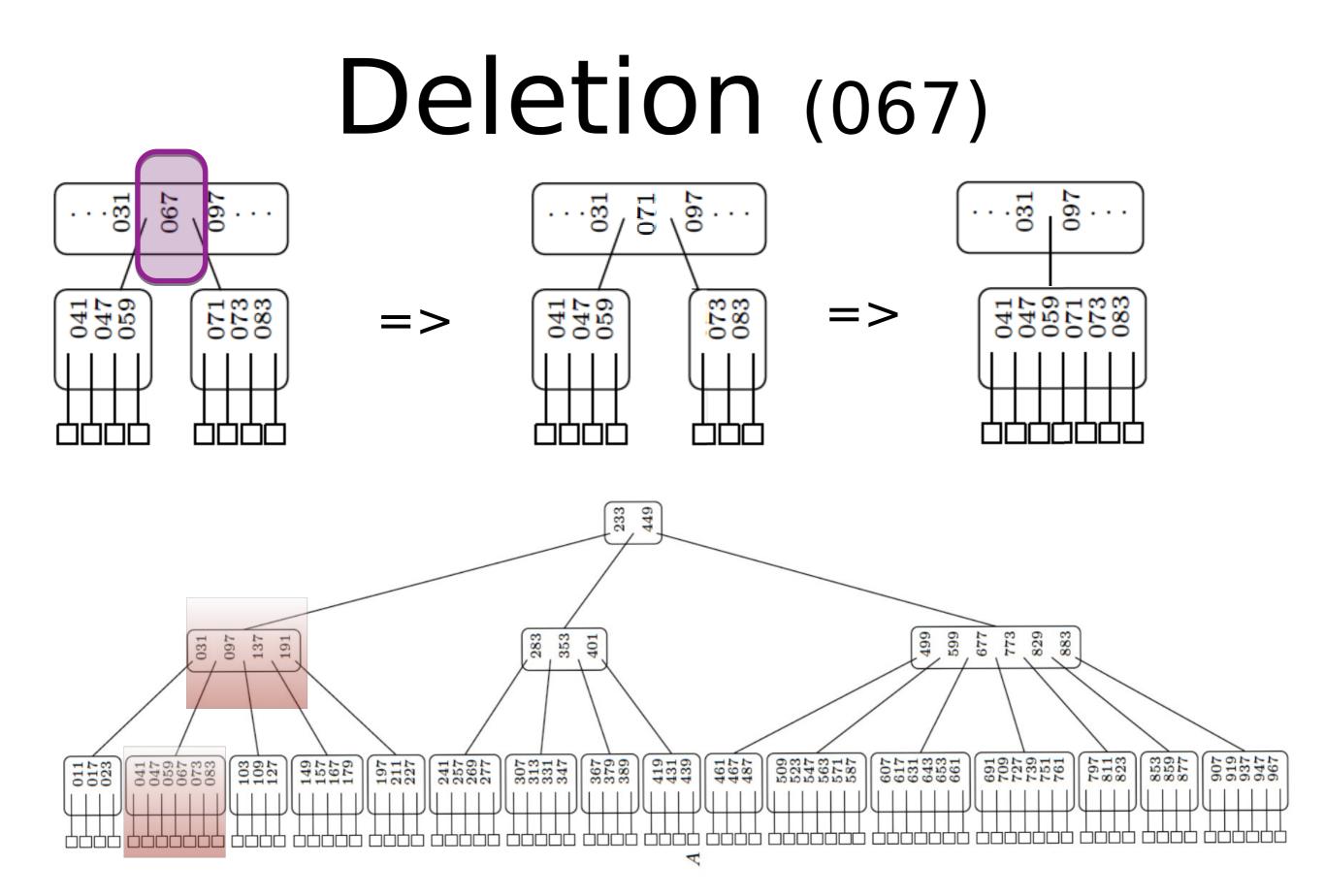




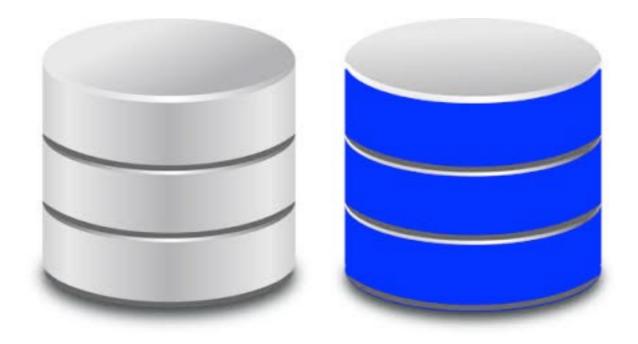
 $\begin{array}{c} 011\\ 017\\ 023\\ 023 \end{array}$

Deletion


- search from the root the key to delete
 - key resides in a leaf : remove it
 - key resides in a non-leaf node
 - replace it by the previous key (last key in the previous subtree) or the next key (first key in the next subtree)
 - remove the replaced key, which is stored at a leaf



Fixing underflow if the leaf node no longer has not enough keys (underflow) :


- steal a key from the left neighbor subtree if it exists and this does not cause underflow
- otherwise, steal from the right neighbor
- if we cannot steal a key without causing underflow, concatenate the leaf with a neighbor and with a parent element
- fix underflow on the parent if needed

Applications

- Databases
- Filesystems
- File indexes

\rightarrow Used in PostgreSQL

 \rightarrow Used in Sqlite for indexes and for data

B-Tree Summary

- Balanced Tree for storage devices
 - Search, Update in time O(lg(n))
- Insert: if a node gets too big, split into two nodes
- Delete: if a node gets too small, merge two nodes

Balance is achieved from the top of the tree

 since the height is only modified when the root splits or merges

Exercise

• Insert the following keys in a 2-3-4 tree in order :

4 8 13 2 11 12 5 1 6 3 7 9 10

DBMS

DBMS

- A Database Management System (DBMS) is a software package designed to store and manage databases
 - Data independence and efficient access.
 - Reduced application development time.
 - Data integrity and security.
 - Uniform data administration.
 - Concurrent access, recovery from crashes.

Most basic form : Spreadsheet

	A2	(*)	- Ix	1						
1	A	В	c	D	E	F	G	н	I.	
1	Number Gi	venName	MiddleInitial	Surname	Gender	StreetAddress	City	State	ZipCode	Co
2	1 8/	uce	R	Bloch	male	3151 Ferrell Street	Argyle	MN	56713	U!
3	2 M	arie	ε	Humphreys	female	3062 Bond Street	Woonsocket	81	2895	U
4	3 5)	lvia	н	Carter	female	1481 Lakeland Terrace	Westland	MI	48185	U
5	4 W	illiam	ε	Bentz	male	3318 Briercliff Road	New York	NY	10011	U;
6	5 Sh	ielly	R	Preston	female	3592 Todds Lane	San Antonio	TX	78212	U
7	6 Cł	had	P	Henry	male	3553 Grant Street	Tyler	TX	75702	U
8	7 Di	rvid	L	Richardson	male	1289 Metz Lane	Mariton	NJ	8053	U?
9	8 St	ephen	A	Pond	male	4316 Bridge Avenue	Lafayette	LA	70503	U!
10	9 Je	nny	P	Thomas	female	2941 Harron Drive	Baltimore	MD	21202	U'
11	10 W	illiam	V	Fries	male	4300 Tanglewood Road	Jackson	MS	39201	U
12	11 Ju	lio	D	Bessette	male	4177 Lauren Drive	Madison	WI	53718	U;
13	12 Je	rry	1	Nicholas	male	2722 Elk Street	Irvine	CA	92718	U
14	13 TP	iomas	A	Hunter	male	4112 Stadium Drive	Franklin	MA	2038	U
15	14 Ec	Imund	C	Chagoya	male	3685 Essex Court	Brattleboro	VT	5301	U!
16	15 Di	avid	ε	Meador	male	1215 Stratford Drive	Kona	HI	96740	U!
17	16 Jo	an	L	Mayfield	female	3137 Pin Oak Drive	Whittier	CA	90603	ч
18	17 M	aria	н	Gomez	female	1723 Yorkie Lane	Richmond Hill	GA	31324	U
19	18 Gr	regory	G	Miguel	male	3233 Breezewood Court	Macksville	KS	67557	U:
20	19 G	ail	L	Griffin	female	2252 Arbutus Drive	Miami	FL	33179	u

Data Models

- A <u>data model</u> is a collection of concepts for describing data.
- A <u>schema</u> is a description of a particular collection of data, using the given data model.
- The <u>relational model of data</u> is the most widely used model today.
 - Main concept: <u>relation</u>, basically a table with rows and columns.
 - The <u>schema</u> gives the names of the relations and the name and type of their columns

Example Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

Levels of Abstraction

- Many <u>views</u>, single <u>conceptual (logical)</u> <u>schema</u> and <u>physical</u> <u>schema</u>.
 - Views describe how users see the data.
 - Conceptual schema defines logical structure
 - Physical schema describes the files and indexes used.

Example: University Database

- Conceptual schema: Students(sid: string, name: string, login: string, age: integer, gpa: real) Courses(cid: string, cname: string, credits: integer) Enrolled(sid: string, cid: string, grade: string)
- Physical schema:
 - Relations stored as unordered files.
 - Index on first column of Students.
- External Schema (View): *Course_info(cid: string, enrollment: integer)*

Data Independence

- Applications insulated from how data is structured and stored.
- Logical data independence: Protection from changes in logical structure of data (e.g., adding attributes).
- Physical data independence: Protection from changes in physical structure of data.

One of the most important benefits of using a DBMS!

Concurrency Control

- Concurrent execution of user programs is essential for good DBMS performance.
 - Because disk accesses are frequent and slow, keep the CPU humming by working on several user programs concurrently.
- Interleaving actions of different users can lead to inconsistency: e.g., selling the same item twice
 - If item.*quantity*>0 then
 - Add item to user[i].basket
 - Decrement item.*quantity*
- DBMS ensures such problems don't arise: users can pretend they are using a single-user system.

Transaction: An Execution of a DB Program

- Key concept is <u>transaction</u>, which is an <u>atomic</u> sequence of database actions (reads/writes).
- Each transaction, executed completely, must leave the DB in a <u>consistent state</u> if DB is consistent when the transaction begins.
 - Users can specify some simple <u>integrity</u>
 <u>constraints</u> on the data, and the DBMS will enforce these constraints.
 - Beyond this, the DBMS does not really understand the semantics of the data (e.g., it does not understand how the interest on a bank account is computed).
 - Thus, ensuring that a transaction (run alone) preserves consistency is ultimately the user's responsibility!

Scheduling Concurrent Transactions

- DBMS ensures that execution of {T1, ..., Tn} is equivalent to some <u>serial</u> execution T1' ... Tn'.
- Have a lock on each value to ensure it can only be written (or read) by one transaction at once
- Each transaction runs (acquiring locks as needed), and releases all locks at the end (strict 2-phase locking)
- Two transactions may be blocked by one another (deadlock), then one is **aborted** and restarted later
 - Need to rollback the effects of aborted transactions
 - Possible cascading aborts

Relational Model

Relational Database: Definitions

- Relational database: a set of relations
- *Relation:* made up of 2 parts:
 - Instance : a table, with rows and columns.
 #Rows = cardinality, #fields = degree / arity.
 - Schema : specifies name of relation, plus name and type of each column.
 - E.G. Students(*sid*: string, *name*: string, *login*: string, *age*: integer, *gpa*: real).
- Can think of a relation as a set of rows or tuples (i.e., all rows are distinct).

Example Instance of Students Relation

sid	name	login	age	gpa
53666	Jones	jones@cs	18	3.4
53688	Smith	smith@eecs	18	3.2
53650	Smith	smith@math	19	3.8

- Cardinality = 3, degree = 5, all rows distinct
- Do all columns in a relation instance have to be distinct?

Relational Query Languages

- A major strength of the relational model: supports simple, powerful *querying* of data.
- Queries can be written intuitively, and the DBMS is responsible for efficient evaluation.
 - The key: precise semantics for relational queries.
 - Allows the optimizer to extensively re-order operations, and still ensure that the answer does not change.

The SQL Query Language

- Developed by IBM (system R) in the 1970s
- Need for a standard since it is used by many vendors
- First version : SQL'86
- Latest version : SQL 2016
- Not all latest features (e.g., JSON support) are commonly implemented
- The official SQL standard is not freely available but widely documented online

The SQL Query Language

- To find all 18 year old students, we can write:

SELECT *	sid	name	login	age	gpa
FROM Students S	53666	Jones	jones@cs	18	3.4
WHERE S.age=18	53688	Smith	smith@ee	18	3.2

- To find just names and logins, replace the first line: SELECT S.name, S.login

Querying Multiple Relations

- What does the following query compute?

SELECT S.name, E.cid FROM Students S, Enrolled E WHERE S.sid=E.sid AND E.grade="A"

Given the following instance of Enrolled

sid	cid	grade
53831	Carnatic101	С
53831	Reggae203	В
53650	Topology112	Α
53666	History105	В

S.name	E.cid
Smith	Topology112

we get:

Creating Relations in SQL

- Creates the Students relation.
 - Observe that the type (domain) of each field is specified, and enforced by the DBMS whenever tuples are added or modified.
- Creates the Enrolled table

CREATE TABLE Students (sid: CHAR(20), name: CHAR(20), login: CHAR(10), age: INTEGER, gpa: REAL)

CREATE TABLE Enrolled (sid: CHAR(20), cid: CHAR(20), grade: CHAR(2))

Destroying and Altering Relations

DROP TABLE Students

Destroys the relation Students. The schema information and the tuples are deleted.

ALTER TABLE Students ADD COLUMN firstYear: integer

 The schema of Students is altered by adding a new field; every tuple in the current instance is extended with a *null* value in the new field.

Adding and Deleting Tuples

- Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa) VALUES (53688, 'Smith', 'smith@ee', 18, 3.2)

Can delete all tuples satisfying some condition (e.g., name = Smith):

DELETE FROM Students S WHERE S.name = 'Smith'

- Powerful variants of these commands are available; more later!

Integrity Constraints (ICs)

- IC: condition that must be true for any instance of the database; e.g., <u>domain constraints.</u>
 - ICs are specified when schema is defined.
 - ICs are checked when relations are modified.
- A *legal* instance of a relation is one that satisfies all specified ICs.
 - DBMS should not allow illegal instances.
- If the DBMS checks ICs, stored data is more faithful to real-world meaning.
 - Avoids data entry errors, too!

Primary Key Constraints

- A set of fields is a <u>superkey</u> for a relation if no two distinct tuples can have same values in all key fields
- If this is not true for any strict subset of the superkey, then we call it a key.
- We usually choose a primary key to make sure that we can refer to tuples with some identifiers
- Examples :
 - *sid* is a key for Students.
 - What about name?
 - The set {*sid, gpa*} is a superkey.

Foreign Keys, Referential Integrity

- Foreign key: Set of fields in one relation that is used to `refer' to a tuple in another relation.
 (Must correspond to primary key of the second relation.)
- E.g. *sid* is a foreign key referring to Students:
 - Enrolled(*sid*: string, *cid*: string, *grade*: string)
 - If all foreign key constraints are enforced, <u>referential</u> <u>integrity</u> is achieved, i.e., no dangling references.
 - Can you name a data model w/o referential integrity? \rightarrow Links in HTML!

Foreign Keys in SQL

 Only students listed in the Students relation should be allowed to enroll for courses.

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students)

Enrolled

cid		Stude	ents				
	C		sid	name	login	age	gpa
	B -		53666	Jones	jones@cs	18	3.4
00	A		53688	Smith	smith@eecs	18	3.2
	B /		53650	Smith	smith@math	19	3.8
	cid Carnatic101 Reggae203 Topology112 History105	Carnatic101CReggae203BTopology112A	ClicgradeCarnatic101CReggae203BTopology112A	ClinicgradicCarnatic101CReggae203BTopology112A	Carnatic101CsidnameReggae203B53666JonesTopology112A53688Smith	Carnatic101CsidnameloginReggae203B53666Jonesjones@csTopology112A53688Smithsmith@eecs	Carnatic101CsidnameloginageReggae203B53666Jonesjones@cs18Topology112A53688Smithsmith@eecs18

Enforcing Referential Integrity

- Consider Students and Enrolled; sid in Enrolled is a foreign key that references Students.
- What should be done if an Enrolled tuple with a nonexistent student id is inserted? (*Reject it!*)
- What should be done if a Students tuple is deleted?
 - Also delete all Enrolled tuples that refer to it.
 - Disallow deletion of a Students tuple that is referred to.
 - Set sid in Enrolled tuples that refer to it to a *default sid*.
 - Set sid in Enrolled tuples that refer to it to a special value null, denoting `unknown' or `inapplicable'.
- Similar if primary key of Students tuple is updated.

Referential Integrity in SQL/92

- SQL/92 supports all 4 options on deletes and updates.
 - Default is NO ACTION (delete/update is rejected)
 - CASCADE (also delete all tuples that refer to deleted tuple)
 - SET NULL / SET DEFAULT (sets foreign key value of referencing tuple)

CREATE TABLE Enrolled (sid CHAR(20), cid CHAR(20), grade CHAR(2), PRIMARY KEY (sid,cid), FOREIGN KEY (sid) REFERENCES Students ON DELETE CASCADE ON UPDATE SET DEFAULT)

Relational Algebra

Relational Query Languages

- <u>Query languages</u>: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

-Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:

- <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
- <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Nonoperational, <u>declarative</u>.)

Understanding Algebra & Calculus is key to understanding SQL, query processing!

Preliminaries

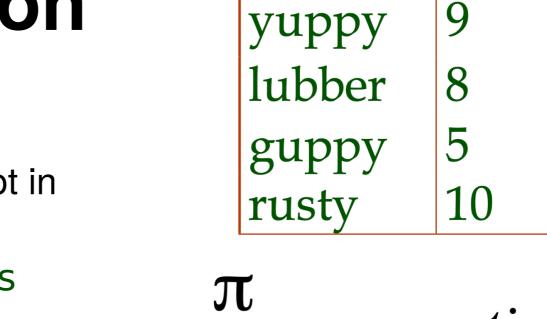
- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

Sailors

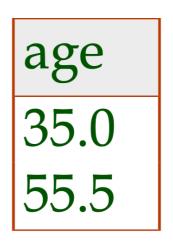
S1	sid	sname	rating	age
	22	dustin	7	45.0
	31	lubber	8	55.5
	58	rusty	10	35.0


	Reser	rves		S2	sid	sname	rating	age
R1	sid	bid	day		28	yuppy	9	35.0
	22	101	10/10/96		31	lubber	8	55.5
	58	103	11/12/96		44	guppy	5	35.0
					58	rusty	10	35.0

Relational Algebra

- Basic operations:
 - <u>Selection</u> (σ) Selects a subset of rows from relation.
 - <u>Projection</u> (π) Deletes unwanted columns from relation.
 - <u>Cross-product</u> (×) Allows us to combine two relations.
 - <u>Set-difference</u> (-) Tuples in reln. 1, but not in reln. 2.
 - <u>Union</u> (\boldsymbol{U}) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, join, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection


- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*!
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it.

sname

 $\pi_{sname,rating}(S2)$

rating

Selection

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

- Selects rows that satisfy selection condition.
- No duplicates in result!
- Schema of result identical to schema of the input relation.
- *Result* relation can be the *input* for another relational algebra operation! (*Operator composition*.)

 $\sigma_{rating>8}^{(S2)}$

sname	rating
yuppy	9
rusty	10

 $\pi_{sname,rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must have the same fields
- The result has the same schema

sid	sname	rating	age		
22	dustin	7	45.0		
31	lubber	8	55.5		
58	rusty	10	35.0		
44	guppy	5	35.0		
28	yuppy	9	35.0		
$S1\cup S2$					

				1	sid	sname	rating	age
sid	sname	rating	age		31	lubber	8	55.5
22	dustin	7	45.0		58	rusty	10	35.0
S1-S2					S1	$\cap S2$		

Cross-Product S1 × R1

- Each row of S1 is paired with each row of R1.
- Result schema has the fields of S1 and of R1

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

<u>Renaming operator</u>: ρ ($C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1$)

Joins

$$R \bowtie_{c} S = \sigma_{c} (R \times S)$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

$$S1 \bowtie_{S1.sid < R1.sid} R1$$

- *Result schema* same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a *theta-join*.

<u>Condition Join</u>:

Joins

Equi-Join: A special case of condition join where the condition *c* contains only **equalities**.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96

 $S1 \bowtie_{sid} R1$

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- *Natural Join*: Equijoin on *all* common fields.

Exercises

- Tables :
 - Sailors : sid, sname, rating, age
 - Reserves : sid, bid, day
 - Boats : bid, color
- Find names of sailors who have reserved boat #103
- Find names of sailors who have reserved a red boat
- Find sailors who have reserved a red or a green boat

Find names of sailors who have reserved boat #103

Solution 1: $\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{ Sailors})$

Solution 2: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Which solution is the most efficient ?
Whose job is it to find it ?

Find names of sailors who have reserved a red boat

Information about boat color only available in Boats; so need an extra join:

 $\pi_{sname}((\sigma_{color='red'}^{Boats}) \bowtie \text{Reserves} \bowtie \text{Sailors})$

A more efficient solution:

 π sname $(\pi_{sid}((\pi_{bid}\sigma_{color} = 'red', Boats)) \bowtie \operatorname{Res}) \bowtie Sailors)$

A query optimizer can find this given the first solution!

Find sailors who have reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

 ρ (Tempboats, ($\sigma_{color='red' \vee color='green'$, Boats))

 π_{sname} (*Tempboats* \bowtie Reserves \bowtie Sailors)

Can also define Tempboats using union! (How?) What happens if \lor is replaced by \land in this query?

Find sailors who've reserved a red <u>and</u> a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

$$\rho$$
 (*Tempred*, π_{sid} (($\sigma_{color='red'}$ Boats) \bowtie Reserves))

 ρ (Tempgreen, π_{sid} (($\sigma_{color} = green'$ Boats) \bowtie Reserves))

$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.