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Course

Introduction to Databases and Relational Model
Relational Algebra

SQL, Views and Updates

Functional Dependencies and Normalization

E/R Design



Labs: Jupyter

* Jupyter notebooks are interactive shells which ® o
save output in a nice notebook format

* Notebooks will be in python JU pyte I

* 1 Lab: Functional Dependencies

* 2 Lab: SQL

* 3Lab: SQL



Resources

Class website
®* http://albertbifet.com/teaching/

®* https://a3nm.net/work/teaching/#y2018-sd202

MOOC Videos

References on the Website
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Data-driven Society
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Big Data is data that is too large,
complex and t}unamt‘c any
conventional data tools to capture,
store, manage and analyze.

The right use of Big Data allows
analysts to spot trends and gives
niche in::c‘?hts that help create
value and innovation much faster
than conventional methods.
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BIG DATA STRATEGY

50% SAY THAT BIG DATA
HELPS IN BETTER MEETING
CONSUMER DEMAND AND
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Big Data

The “three V's”, i.e the Volume, Variety and Velocity
of the data coming in is what creates the challenge.
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Data-intensive Applications

Store data (databases)
Speed up reads, remembering results (caches)
Search data by keywords (search index)

Send messages to another process asynchronously
(stream application)

Periodically crunch a large amount of accumulated
data (batch processing)



Popular SQL Databases

® Open Source Databases !
* MySQL

® PostgreSQL M H S QL@
®* MariaDB

®* Commercial Databases ﬁ
®* Oracle 12c

®* Microsoft SQL Server M C] rl C] D B PostgreSQL

°* IBM DB2

¢ SAP Hana



Small Data

®* SQLite is a self-contained, high-reliability,
embedded, full-featured, public-domain, SQL
database engine.

® SQLite is the most used database engine in the
world

®* SQLite competes with fopen().

MSQLRE’,




Let’s build a database!



Simplest Database

#!/bin/bash
db _set () {

echo "S$1,$2" >> database

db_get () {

grep "7S$1," database | cut -d, -f2



Simplest Database

db_set 1324 ‘John Doe, Rue Barrault, Paris’

db_set 4324 ‘Paul Ryan, Avenue Italie, Paris’

db_get 4324

Paul Ryan, Avenue Italie, Paris



What is missing?



Database Indexing



Database Index
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* Large binary search trees can be divided into
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Database Index
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* B-Trees are balanced search trees designhed to

work on disks and other storage devices



T TTET PTTT ITTT ITTET PTETT JTT TT0T TIIT JTITLTT IT7T

TTTITT TTIT TT0T JTLTTT JTITT JT1T

031
097
137
191

499

599

Wi

Motivation

B-Tree Is a data structure that

makes it possible to maintain an

ordered list of records so we can
* search

* update/insert/delete

In time O(lg(n)) with a good
constant factor



Motivation

The origin of the name “B-Tree” Is unknown:

* Balanced, Broad, Bushy, Boeing, Bayer
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Definition (knuth)

* A B-tree of minimum degree t is a tree that satisfies:
* Every node has at most 2t children

* Every node, except for the root and the leaves,
has at least t children

* The root has at least 2 children (unless it is a leaf)

* All leaves appear on the same level, and carry no
iInformation

* A non |leaf node with k children contains k-1 keys



2-3-4 Tree

* A B-tree of minimum degree t=2 is a tree that satisfies:
* Every node has at most 4 children

* Every node, except for the root and the leaves,
has at least 2 children

* The root has at least 2 children (unless it is a leaf)

* All leaves appear on the same level, and carry no
iInformation

* A non leaf node with k children contains k-1 keys



B-Tree Operations

* Search: essentially like a binary search tree

* Insert: if a node gets too big, we split it into two
nodes

* Delete: if a node gets too small, we combine
two nodes

Balance is achieved from the top of the tree

since the height is only modified when the
root splits or merges



Operation Costs
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Search

* Form a simple path downward from the root of
the tree
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Search

* Form a simple path downward from the root of the tree

* Recursively, starting at the root
* Look for the appropriate position in the node
* if the key is found, return the key
* else
* If the node is a leaf, return NIL

* else continue recursively checking the
appropriate child



Insertion

* search from the root a leaf where we can

insert the key
* add the key to the leaf

* If the leaf Is now too large, split it in two and
propagate the middle key to the parent

* recursively split parents, propagating an
extra key upwards, until we no longer need to
split or we reach the root
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Insertion
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Deletion

* search from the root the key to delete

* key resides in a leaf : remove it

* key resides in a non-leaf node

* replace it by the previous key (last key In
the previous subtree) or the next key (first
key in the next subtree)

* remove the replaced key, which is stored at
a leaf
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(067)

Deletion
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Fixing underflow

If the leaf node no longer has not enough
keys (underflow) :

* steal a key from the left neighbor subtree if
It exists and this does not cause underflow

* otherwise, steal from the right neighbor
* If we cannot steal a key without causing
underflow, concatenate the leaf with a

neighbor and with a parent element

* fix underflow on the parent if needed
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Deletion
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(067)

Deletion
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Applications

* Databases

* Filesystems S

* File indexes

.~
M —

- Used in PostgreSQL

- Used in Sqglite for indexes and for data



B-Tree Summary

* Balanced Tree for storage devices

* Search, Update in time O(lg(n))
* Insert: If a node gets too big, split into two nodes
* Delete: if a node gets too small, merge two nodes
Balance is achieved from the top of the tree

since the height is only modified when the root
splits or merges



Exercise

* Insert the following keys in a 2-3-4 tree in order :

4 8 13 2 11 12 5 1 6 3 7 9 10



DBMS



DBMS

®* A Database Management System (DBMS) is a
software package designed to store and manage
databases

®* Data independence and efficient access.
®* Reduced application development time.
®* Data integrity and security.

®* Uniform data administration.

® Concurrent access, recovery from crashes.
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Data Models

®* A data model is a collection of concepts for
describing data.

® A schema is a description of a particular collection
of data, using the given data model.

®* The relational model of data is the most widely
used model today.

®* Main concept: relation, basically a table with
rows and columns.

®* The schema gives the names of the relations
and the name and type of their columns




Example Instance of Students

Relation
sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34
53688 [Smith |[smith@eecs 18 | 3.2
53650 [Smith |smith@math | 19 | 3.8

Database Management Systems, R. Ramakrishnan and J. Gehrke




Levels of Abstraction

®* Many views, single View 1 | |[View 2 | |View 3

conceptual (logical) \ ! /

schema and physical Conceptual Schema

schema

Views describe how users
see the data.

Physical Schema

v >

* Conceptual schema defines
logical structure
Physical schema describes —
the files and indexes used.




Example: University Database

®* Conceptual schema:
Students(sid: string, name: string, login: string,
age: integer, gpa: real)
Courses(cid: string, chame: string, credits: integer)
Enrolled(sid: string, cid: string, grade: string)

®* Physical schema:
® Relations stored as unordered files.

®* Index on first column of Students.

®* External Schema (View):
Course Info(cid: string, enrollment: integer)



Data Independence

®* Applications insulated from how data is structured
and stored.

® Logical data independence: Protection from
changes in logical structure of data (e.qg., adding
attributes).

®* Physical data independence: Protection from
changes in physical structure of data.

l One of the most important benefits of using a DBMS!



Concurrency Control

®* Concurrent execution of user programs is essential
for good DBMS performance.

® Because disk accesses are frequent and slow,
keep the CPU humming by working on several
user programs concurrently.

® Interleaving actions of different users can lead to
iInconsistency: e.qg., selling the same item twice

®* If item.quantity>0 then
* Add item to user|i].basket
* Decrement item.quantity

®* DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.



Transaction: An Execution of a DB Program

®* Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

®* Each transaction, executed completely, must leave the
DB In a consistent state if DB Is consistent when the

transaction begins.

®* Users can specify some simple integrity
constraints on the data, and the DBMS will
enforce these constraints.

®* Beyond this, the DBMS does not really understand
the semantics of the data (e.q., it does not
understand how the interest on a bank account is
computed).

® Thus, ensuring that a transaction (run alone)
preserves consistency is ultimately the user’s
responsibility!




Scheduling Concurrent Transactions

DBMS ensures that execution of {T1, ..., Tn} iIs
equivalent to some serial execution T1' ... Tn’.

Have a lock on each value to ensure it can only be
written (or read) by one transaction at once

Each transaction runs (acquiring locks as needed), and
releases all locks at the end (strict 2-phase locking)

Two transactions may be blocked by one another
(deadlock), then one is aborted and restarted later

- Need to rollback the effects of aborted transactions
- Possible cascading aborts



Relational Model



Relational Database: Definitions

- Relational database: a set of relations

- Relation: made up of 2 parts:
- Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.
- Schema : specifies name of relation, plus

name and type of each column.
I E.G. Students(sid: string, name: string, login: string,
age: integer, gpa: real).

— Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

Database Management Systems, R. Ramakrishnan and J. Gehrke



Example Instance of Students

Relation
sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34

53688 [Smith |[smith@eecs 18 | 3.2
53650 |Smith [smith@math | 19 | 3.8

— Cardinality = 3, degree = 5, all rows distinct

— Do all columns In a relation instance have to
be distinct?

Database Management Systems, R. Ramakrishnan and J. Gehrke



Relational Query Languages

— A major strength of the relational model:
supports simple, powerful querying of data.

- Queries can be written intuitively, and the DBMS

is responsible for efficient evaluation.

— The key: precise semantics for relational queries.

— Allows the optimizer to extensively re-order
operations, and still ensure that the answer does not

change.

Database Management Systems, R. Ramakrishnan and J. Gehrke



The SQL Query Language

— Developed by IBM (system R) in the 1970s

— Need for a standard since it is used by many
vendors

- First version : SQL86
- Latest version : SQL 2016

- Not all latest features (e.g., JSON support) are
commonly implemented

- The official SQL standard is not freely available
but widely documented online

Database Management Systems, R. Ramakrishnan and J. Gehrke



The SQL Query Language

— To find all 18 year old students, we can write:

SELECT * sid 'name login |age gpa

FROM Students S [53666 Jones |jones@cs |18 3.4
WHERE S.age=18 |53688 Smith smith@ee |18 3.2

- To find just names and logins, replace the first line:
SELECT S.name, S.login

Database Management Systems, R. Ramakrishnan and J. Gehrke



Querying Multiple Relations

- What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade="A"

sid

cid grade

Given the following 53831 Carnatic101

Instance of Enrolled 53831 Reggae203
53650 Topologyl12

53666 |History105

> W O

we get: S.name

E.cid

Smith

Topologyl112

Database Management Systems, R. Ramakrishnan and J. Gehrke




Creating Relations in SQL

- Creates the Students CREATE TABLE Students
relation. (sid: CHAR(20),

- Observe that the type name: CHAR(20),
(domain) of each field is login: CHAR(10),
specified, and enforced age: INTEGER,
by the DBMS whenever gpa: REAL)
tuples are added or
modified.

CREATE TABLE Enrolled
- Creates the Enrolled table (sid: CHAR(20),

cid: CHAR(20),
grade: CHAR(2))

Database Management Systems, R. Ramakrishnan and J. Gehrke



Destroying and Altering Relations

DROP TABLE Students

— Destroys the relation Students. The schema
information and the tuples are deleted.

ALTER TABLE Students
ADD COLUMN firstYear: integer

- The schema of Students is altered by adding a new
field; every tuple in the current instance is
extended with a null value in the new field.

Database Management Systems, R. Ramakrishnan and J. Gehrke



Adding and Deleting Tuples

- Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

- Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

— Powerful variants of these commands are available; more later!

Database Management Systems, R. Ramakrishnan and J. Gehrke



Integrity Constraints (ICs)

- |C: condition that must be true for any instance of

the database; e.g., domain constraints.
- |Cs are specified when schema is defined.
- |Cs are checked when relations are modified.

- A legal instance of a relation is one that satisfies all
specified ICs.
- DBMS should not allow illegal instances.

- |f the DBMS checks ICs, stored data is more faithful

to real-world meaning.
— Avoids data entry errors, too!

Database Management Systems, R. Ramakrishnan and J. Gehrke



Primary Key Constraints

- A set of fields is a superkey for a relation if no two
distinct tuples can have same values in all key fields

- If this is not true for any strict subset of the superkey,
then we call it a key.

- We usually choose a primary key to make sure that
we can refer to tuples with some identifiers

- Examples :

- sid is a key for Students.
- What about name?
- The set {sid, gpa} is a superkey.

Database Management Systems, R. Ramakrishnan and J. Gehrke



Foreign Keys, Referential Integrity

- Foreign key: Set of fields in one relation that is
used to refer’ to a tuple in another relation.

(Must correspond to primary key of the second
relation.)

- E.g. sid is a foreign key referring to Students:
- Enrolled(sid: string, cid: string, grade: string)
- If all foreign key constraints are enforced, referential
Inteqrity is achieved, i.e., no dangling references.

- Can you name a data model w/o referential integrity?
— Links in HTML!

Database Management Systems, R. Ramakrishnan and J. Gehrke



Foreign Keys in SQL

- Only students listed in the Students relation should be
allowed to enroll for courses.

CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students )

Enrolled

sid cid grade
53666 |Carnaticl01 C —
53666 Reggae203 B
53650 Topologyll2 | A —
53666 |Historyl05 B

Students
sid 'name login age gpa
—_|53666 Jones |jones@cs 18 | 34
j
><53688 Smith smith@eecs @ 18 | 3.2
53650 Smith smith@math @ 19 3.8
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Enforcing Referential Integrity

— Consider Students and Enrolled; sid in Enrolled is a
foreign key that references Students.

- What should be done if an Enrolled tuple with a non-
existent student id is inserted? (Reject it!)

- What should be done if a Students tuple is deleted?

- Also delete all Enrolled tuples that refer to it.

- Disallow deletion of a Students tuple that is referred to.

- Set sid in Enrolled tuples that refer to it to a default sid.

- Set sid in Enrolled tuples that refer to it to a special value null,
denoting unknown’ or inapplicable’.

- Similar if primary key of Students tuple is updated.
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Referential Integrity in SQL/92

- SQL/92 supports all 4 options CREATE TABLE Enrolled

on deletes and updates. (sid CHAR(20),

- Default is NO ACTION cid CHAR(20),
(delete/update is grade CHAR(2),
rejected) PRIMARY KEY (sid,cid),

- CASCADE (also delete all FOREIGN KEY (sid)
tuples that refer to deleted REFERENCES Students
tuple) ON DELETE CASCADE

- SET NULL/ SET DEFAULT (sets ON UPDATE SET DEFAULT )

foreign key value of
referencing tuple)
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Relational Algebra



Relational Query Languages

- Query languages: Allow manipulation and
retrieval of data from a database.

- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
— Allows for much optimization.

- Query Languages = programming languages!
- QLs not expected to be “Turing complete”.
- QLs not intended to be used for complex
calculations.
- QLs support easy, efficient access to large data
sets.
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Formal Relational Query Languages

-Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

- Relational Algebra: More operational, very
useful for representing execution plans.

- Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative.)

Understanding Algebra & Calculus is key to
understanding SQL, query processing!
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Preliminaries

- A query is applied to relation instances, and

the result of a query is also a relation instance.

- Schemas of input relations for a query are
fixed (but query will run regardless of
instance!)

- The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

— Positional vs. named-field notation:
— Positional notation easier for formal definitions,
named-field notation more readable.

- Both used in SQL
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Example Instances

Sailors
- “Sailors” and “Reserves” : '
clations for oot oamples,  S1 |S1d sname rating |age
- We'll use positional or named 22  |dustin 7 45.0
field notation, assume that
names of _fielc,zls in query results 31 lubber 8 55.5
felds n query input relations, |98 |Tusty | 10 35.0
Reserves Ss2 |sid |sname rating age
R1|sid bid day 28 |yuppy | 9  35.0
22 1101 110/10/96 31 |lubber | 8 55.5
58 103 |11/12/96 44 guppy | 5 35.0
58 |rusty | 10 |35.0
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Relational Algebra

— Basic operations:

- Selection (o) Selects a subset of rows from relation.
- Projection (m) Deletes unwanted columns from
relation.

— Cross-product (x) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
— Union (uv) Tuplesinreln. 1l and in reln. 2.

— Additional operations:

- Intersection, join, division, renaming: Not essential, but
(very!) useful.

— Since each operation returns a relation, operations can
be composed! (Algebra is “closed”.)
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Projection

- Deletes attributes that are not in
projection list.

- Schema of result contains
exactly the fields in the
projection list, with the
same names that they had
in the (only) input relation.

- Projection operator has to
eliminate duplicates!

— Note: real systems typically
don’t do duplicate elimination
unless the user explicitly
asks for it.
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: sid sname rating age
Selection .~ = . 2=
58 |rusty |10 35.0
- Selects rows that satisfy
selection condition. O rating > 8(S2)
- No duplicates in result!
-Schema of result
identical to schema of .
the input relation. sname |rating
- Result relation can be yuppy O
the input for another ¢ 10
relational algebra Tusty
operation! (Operator
s N
composition.) J1:Sname,J'*'cztz'ng(()'mzifi'1g> 8(S )
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Union, Intersection, Set-Difference

- All of these operations take two
input relations, which must have
the same fields

- The result has the same
schema

sid |sname rating age

22 |dustin |7 45.0

S1-82
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sid |sname rating age
22 |dustin |7 45.0
31 |lubber |8 55.5
58 |rusty |10 35.0
44 |guppy | 35.0
28 |yuppy |9 35.0
S1US2
sid sname rating |age
31 |lubber |8 55.5
58 |rusty |10 35.0
S1MS2




Cross-Product
S1xR1

- Each row of S1 is paired with each row of R1.
- Result schema has the fields of S1 and of R1

(sid) sname rating age (sid) bid day
22 |dustin | 7 450 22 |101 |10/10/96
22 |dustin | 7 450 58 [103 |11/12/96
31 |lubber | 8 555 | 22 |101 10/10/96
31 |[lubber | 8 555 | 58 [103 11/12/96
58 |rusty 10 350 | 22 |101 |10/10/96
58 |rusty 10 350 | 58 |103 |11/12/96

Renaming operator: p (C(1—sidl,5—sid2), S1x Rl)
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Condition Join:

Joins
R><1 .§ =0 . (RXS)

- Result schema same as that of cross-product.

(sid) |sname rating age (sid) bid day

22 dustin |7 45.0 |58 103 [11/12/96

31 lubber |8 55.5 |58 103 |11/12/96
Sl < Sl.sid < Rl.sid Rl

- Fewer tuples than cross-product, might be able to compute
more efficiently

- Sometimes called a theta-join.
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Joins

Equi-Join: A special case of condition join where

the condition ¢ contains only equalities.

sid sname rating age  bid day
22 |dustin |7 45.0 |101 |10/10/96
58 |rusty |10 35.0 |103 |11/12/96
Sl - Rl
sid

- Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

- Natural Join: Equijoin on all common fields.
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Exercises

Tables :

- Sailors : sid, shame, rating, age
- Reserves : sid, bid, day

- Boats : bid, color

FiInd names of sailors who have reserved boat #103
FiInd names of sailors who have reserved a red boat

Find sailors who have reserved a red or a green boat



Find names of sailors who have
reserved boat #103

Solution 1: T sngme (O hid <103 Reserves) > Sailors)

Solution 2: T o 100(O bid=103(Reservesl><1 Sailors))

- Which solution I1s the most efficient ?
- Whose job is it to find it ?
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Find names of sailors who have
reserved a red boat

Information about boat color only available in
Boats; so need an extra join:

T Boats) ><t Reserves<i Sailors)

O
sname( color=red’

A more efficient solution:

TC Boats) ><t Res)><t Sailors)

sname® Sid((ﬂ: bid Gcolar =red'

A query optimizer can find this given the first solution!
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Find sailors who have reserved a red or
a green boat

Can identify all red or green boats, then find
sailors who've reserved one of these boats:

P (Tempboats, (o Boats))

color=red' v color ='green'
T cnamell empboats><t Reserves>< Sailors)

Can also define Tempboats using union! (How?)

What happens if V is replaced by A in this query?
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Find sailors who’ve reserved a red and a
green boat

Previous approach won't work! Must identify
sailors who've reserved red boats, sailors
who've reserved green boats, then find the
intersection (note that sid is a key for Sailors):

0 (Tempred, w |

o d((cr color = red' Boats)r><i Reserves))

0 (Tempgreen, i Boats)><i Reserves))

sid (€ color = green'’

T nam(lempred (N Tempgreen)>< Sailors)
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Summary

— The relational model has rigorously defined
guery languages that are simple and
powerful.

- Relational algebra is more operational,
useful as internal representation for query
evaluation plans.

- Several ways of expressing a given query; a
guery optimizer should choose the most
efficient version.
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