
Introduction to Databases

• Albert Bifet (class responsible, course author)

• Antoine Amarilli (teacher)

Albert Bifet
• Professor at Telecom ParisTech

• Teaching at Telecom ParisTech and Ecole Polytechnique

• Worked at Yahoo Labs, Huawei, University of Waikato

• Doing Research in

• Data Stream Mining, Machine Learning, Artificial
Intelligence

• Leading Open Source Projects

• MOA, Apache SAMOA, StreamDM

Antoine Amarilli

• Associate professor at Telecom ParisTech

• Researcher in database theory

Course

• Introduction to Databases and Relational Model

• Relational Algebra

• SQL, Views and Updates

• Functional Dependencies and Normalization

• E/R Design

Labs: Jupyter

• Jupyter notebooks are interactive shells which
save output in a nice notebook format

• Notebooks will be in python

• 1 Lab: Functional Dependencies

• 2 Lab: SQL

• 3 Lab: SQL

Resources

• Class website

• http://albertbifet.com/teaching/

• https://a3nm.net/work/teaching/#y2018-sd202

• MOOC Videos

• References on the Website

http://albertbifet.com/teaching/

Databases

Data-driven Society

Big Data

All business manage data
● SNCF : 5M travelers/day.

All business manage data
● Walmart : 275M customers/week

Data-intensive Applications

• Store data (databases)

• Speed up reads, remembering results (caches)

• Search data by keywords (search index)

• Send messages to another process asynchronously
(stream application)

• Periodically crunch a large amount of accumulated
data (batch processing)

Popular SQL Databases

• Open Source Databases

• MySQL

• PostgreSQL

• MariaDB

• Commercial Databases

• Oracle 12c

• Microsoft SQL Server

• IBM DB2

• SAP Hana

Small Data

• SQLite is a self-contained, high-reliability,
embedded, full-featured, public-domain, SQL
database engine.

• SQLite is the most used database engine in the
world

• SQLite competes with fopen().

Let’s build a database!

Simplest Database

#!/bin/bash

db_set (){

 echo "$1,$2" >> database

}

db_get (){

 grep "^$1," database | cut -d, -f2

}

Simplest Database

db_set 1324 ‘John Doe, Rue Barrault, Paris’

db_set 4324 ‘Paul Ryan, Avenue Italie, Paris’

db_get 4324

Paul Ryan, Avenue Italie, Paris

What is missing?

Database Indexing

Database Index
• A

• Large binary search trees can be divided into
“pages”

Database Index
• A

• B-Trees are balanced search trees designed to
work on disks and other storage devices

Motivation
B-Tree is a data structure that
makes it possible to maintain an
ordered list of records so we can

• search

• update/insert/delete

in time O(lg(n)) with a good
constant factor

Motivation
The origin of the name “B-Tree” is unknown:

• Balanced, Broad, Bushy, Boeing, Bayer

• Tr

Definition (Knuth)

• A B-tree of minimum degree t is a tree that satisfies:

• Every node has at most 2t children

• Every node, except for the root and the leaves,
has at least t children

• The root has at least 2 children (unless it is a leaf)

• All leaves appear on the same level, and carry no
information

• A non leaf node with k children contains k-1 keys

2-3-4 Tree
• A B-tree of minimum degree t=2 is a tree that satisfies:

• Every node has at most 4 children

• Every node, except for the root and the leaves,
has at least 2 children

• The root has at least 2 children (unless it is a leaf)

• All leaves appear on the same level, and carry no
information

• A non leaf node with k children contains k-1 keys

B-Tree Operations
• Search: essentially like a binary search tree

• Insert: if a node gets too big, we split it into two
nodes

• Delete: if a node gets too small, we combine
two nodes

Balance is achieved from the top of the tree

• since the height is only modified when the
root splits or merges

Operation Costs

Search

• Form a simple path downward from the root of
the tree

Search
• Form a simple path downward from the root of the tree

• Recursively, starting at the root

• Look for the appropriate position in the node

• if the key is found, return the key

• else

• if the node is a leaf, return NIL

• else continue recursively checking the
appropriate child

Insertion
• search from the root a leaf where we can

insert the key

• add the key to the leaf

• if the leaf is now too large, split it in two and
propagate the middle key to the parent

• recursively split parents, propagating an
extra key upwards, until we no longer need to
split or we reach the root

Insertion (337)

=>

Insertion (071)

=>

Deletion

• search from the root the key to delete

• key resides in a leaf : remove it

• key resides in a non-leaf node
● replace it by the previous key (last key in

the previous subtree) or the next key (first
key in the next subtree)

● remove the replaced key, which is stored at
a leaf

Deletion (337)

=>

Deletion (067)

=>

Fixing underflow
if the leaf node no longer has not enough
keys (underflow) :

• steal a key from the left neighbor subtree if
it exists and this does not cause underflow

• otherwise, steal from the right neighbor

• if we cannot steal a key without causing
underflow, concatenate the leaf with a
neighbor and with a parent element

• fix underflow on the parent if needed

Deletion (067)

=>

Deletion (067)

=> =>

Applications
• Databases

• Filesystems

• File indexes

→ Used in PostgreSQL

→ Used in Sqlite for indexes and for data

B-Tree Summary
• Balanced Tree for storage devices

• Search, Update in time O(lg(n))

• Insert: if a node gets too big, split into two nodes

• Delete: if a node gets too small, merge two nodes

Balance is achieved from the top of the tree

• since the height is only modified when the root
splits or merges

Exercise

● Insert the following keys in a 2-3-4 tree in order :

4 8 13 2 11 12 5 1 6 3 7 9 10

DBMS

DBMS
• A Database Management System (DBMS) is a

software package designed to store and manage
databases

• Data independence and efficient access.

• Reduced application development time.

• Data integrity and security.

• Uniform data administration.

• Concurrent access, recovery from crashes.

Most basic form : Spreadsheet

Data Models

• A data model is a collection of concepts for
describing data.

• A schema is a description of a particular collection
of data, using the given data model.

• The relational model of data is the most widely
used model today.
• Main concept: relation, basically a table with

rows and columns.
• The schema gives the names of the relations

and the name and type of their columns

Database Management Systems, R. Ramakrishnan and J. Gehrke

Example Instance of Students
Relation

Levels of Abstraction

• Many views, single
conceptual (logical)
schema and physical
schema.
• Views describe how users

see the data.

• Conceptual schema defines
logical structure

• Physical schema describes
the files and indexes used.

Physical Schema

Conceptual Schema

View 1 View 2 View 3

Example: University Database

• Conceptual schema:
Students(sid: string, name: string, login: string,

 age: integer, gpa: real)
Courses(cid: string, cname: string, credits: integer)
Enrolled(sid: string, cid: string, grade: string)

• Physical schema:
• Relations stored as unordered files.
• Index on first column of Students.

• External Schema (View):
 Course_info(cid: string, enrollment: integer)

Data Independence

• Applications insulated from how data is structured
and stored.

• Logical data independence: Protection from
changes in logical structure of data (e.g., adding
attributes).

• Physical data independence: Protection from
changes in physical structure of data.

 One of the most important benefits of using a DBMS!

Concurrency Control
• Concurrent execution of user programs is essential

for good DBMS performance.
• Because disk accesses are frequent and slow,

keep the CPU humming by working on several
user programs concurrently.

• Interleaving actions of different users can lead to
inconsistency: e.g., selling the same item twice

• If item.quantity>0 then
● Add item to user[i].basket
● Decrement item.quantity

• DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.

Transaction: An Execution of a DB Program

• Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

• Each transaction, executed completely, must leave the
DB in a consistent state if DB is consistent when the
transaction begins.
• Users can specify some simple integrity

constraints on the data, and the DBMS will
enforce these constraints.

• Beyond this, the DBMS does not really understand
the semantics of the data (e.g., it does not
understand how the interest on a bank account is
computed).

• Thus, ensuring that a transaction (run alone)
preserves consistency is ultimately the user’s
responsibility!

Scheduling Concurrent Transactions

• DBMS ensures that execution of {T1, ... , Tn} is
equivalent to some serial execution T1’ ... Tn’.

• Have a lock on each value to ensure it can only be
written (or read) by one transaction at once

• Each transaction runs (acquiring locks as needed), and
releases all locks at the end (strict 2-phase locking)

• Two transactions may be blocked by one another
(deadlock), then one is aborted and restarted later
– Need to rollback the effects of aborted transactions
– Possible cascading aborts

Relational Model

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Database: Definitions

– Relational database: a set of relations
– Relation: made up of 2 parts:

– Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.

– Schema : specifies name of relation, plus
name and type of each column.
 E.G. Students(sid: string, name: string, login: string,

 age: integer, gpa: real).
– Can think of a relation as a set of rows or

tuples (i.e., all rows are distinct).

Database Management Systems, R. Ramakrishnan and J. Gehrke

Example Instance of Students
Relation

– Cardinality = 3, degree = 5, all rows distinct

– Do all columns in a relation instance have to
 be distinct?

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Query Languages

– A major strength of the relational model:
supports simple, powerful querying of data.

– Queries can be written intuitively, and the DBMS
is responsible for efficient evaluation.
– The key: precise semantics for relational queries.
– Allows the optimizer to extensively re-order

operations, and still ensure that the answer does not
change.

Database Management Systems, R. Ramakrishnan and J. Gehrke

The SQL Query Language

– Developed by IBM (system R) in the 1970s
– Need for a standard since it is used by many

vendors
– First version : SQL’86
– Latest version : SQL 2016
– Not all latest features (e.g., JSON support) are

commonly implemented
– The official SQL standard is not freely available

but widely documented online

Database Management Systems, R. Ramakrishnan and J. Gehrke

The SQL Query Language

– To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

– To find just names and logins, replace the first line:

SELECT S.name, S.login

Database Management Systems, R. Ramakrishnan and J. Gehrke

 Querying Multiple Relations
– What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

Given the following
instance of Enrolled

we get:

Database Management Systems, R. Ramakrishnan and J. Gehrke

Creating Relations in SQL
– Creates the Students

 relation.
– Observe that the type

(domain) of each field is
specified, and enforced
by the DBMS whenever
tuples are added or
modified.

– Creates the Enrolled table

CREATE TABLE Students
(sid: CHAR(20),
 name: CHAR(20),
 login: CHAR(10),
 age: INTEGER,
 gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
 cid: CHAR(20),
 grade: CHAR(2))

Database Management Systems, R. Ramakrishnan and J. Gehrke

Destroying and Altering Relations

– Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

– The schema of Students is altered by adding a new
field; every tuple in the current instance is
extended with a null value in the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Database Management Systems, R. Ramakrishnan and J. Gehrke

Adding and Deleting Tuples
– Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

– Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

– Powerful variants of these commands are available; more later!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Integrity Constraints (ICs)
– IC: condition that must be true for any instance of

the database; e.g., domain constraints.
– ICs are specified when schema is defined.
– ICs are checked when relations are modified.

– A legal instance of a relation is one that satisfies all
specified ICs.
– DBMS should not allow illegal instances.

– If the DBMS checks ICs, stored data is more faithful
to real-world meaning.
– Avoids data entry errors, too!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Primary Key Constraints
– A set of fields is a superkey for a relation if no two
distinct tuples can have same values in all key fields

– If this is not true for any strict subset of the superkey,
then we call it a key.

– We usually choose a primary key to make sure that
we can refer to tuples with some identifiers

– Examples :
– sid is a key for Students.
– What about name?
– The set {sid, gpa} is a superkey.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Foreign Keys, Referential Integrity

– Foreign key: Set of fields in one relation that is
used to `refer’ to a tuple in another relation.
(Must correspond to primary key of the second
relation.)

– E.g. sid is a foreign key referring to Students:
– Enrolled(sid: string, cid: string, grade: string)
– If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
– Can you name a data model w/o referential integrity?

→ Links in HTML!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Foreign Keys in SQL
– Only students listed in the Students relation should be

allowed to enroll for courses.
CREATE TABLE Enrolled
 (sid CHAR(20), cid CHAR(20), grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid) REFERENCES Students)

Enrolled
Students

Database Management Systems, R. Ramakrishnan and J. Gehrke

Enforcing Referential Integrity
– Consider Students and Enrolled; sid in Enrolled is a

foreign key that references Students.
– What should be done if an Enrolled tuple with a non-

existent student id is inserted? (Reject it!)
– What should be done if a Students tuple is deleted?

– Also delete all Enrolled tuples that refer to it.
– Disallow deletion of a Students tuple that is referred to.
– Set sid in Enrolled tuples that refer to it to a default sid.
– Set sid in Enrolled tuples that refer to it to a special value null,

denoting `unknown’ or `inapplicable’.
– Similar if primary key of Students tuple is updated.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Referential Integrity in SQL/92

– SQL/92 supports all 4 options
on deletes and updates.
– Default is NO ACTION

(delete/update is
rejected)

– CASCADE (also delete all
tuples that refer to deleted
tuple)

– SET NULL / SET DEFAULT (sets
foreign key value of
referencing tuple)

CREATE TABLE Enrolled
 (sid CHAR(20),
 cid CHAR(20),
 grade CHAR(2),
 PRIMARY KEY (sid,cid),
 FOREIGN KEY (sid)
 REFERENCES Students

ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Relational Algebra

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Query Languages
– Query languages: Allow manipulation and

retrieval of data from a database.
– Relational model supports simple, powerful QLs:

– Strong formal foundation based on logic.
– Allows for much optimization.

– Query Languages != programming languages!
– QLs not expected to be “Turing complete”.
– QLs not intended to be used for complex

calculations.
– QLs support easy, efficient access to large data

sets.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Understanding Algebra & Calculus is key to
understanding SQL, query processing!

Formal Relational Query Languages

–Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:
– Relational Algebra: More operational, very
useful for representing execution plans.

– Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative.)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Preliminaries
– A query is applied to relation instances, and

the result of a query is also a relation instance.
– Schemas of input relations for a query are

fixed (but query will run regardless of
instance!)

– The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

– Positional vs. named-field notation:
– Positional notation easier for formal definitions,

named-field notation more readable.
– Both used in SQL

Database Management Systems, R. Ramakrishnan and J. Gehrke

R1

S1

S2

Example Instances

– “Sailors” and “Reserves”
relations for our examples.

– We’ll use positional or named
field notation, assume that
names of fields in query results
are `inherited’ from names of
fields in query input relations.

Reserves

Sailors

Database Management Systems, R. Ramakrishnan and J. Gehrke

– Basic operations:
– Selection (σ) Selects a subset of rows from relation.
– Projection (π) Deletes unwanted columns from

relation.
– Cross-product (×) Allows us to combine two relations.
– Set-difference (-) Tuples in reln. 1, but not in reln. 2.
– Union (∪) Tuples in reln. 1 and in reln. 2.

– Additional operations:
– Intersection, join, division, renaming: Not essential, but

(very!) useful.
– Since each operation returns a relation, operations can

be composed! (Algebra is “closed”.)

Relational Algebra

Database Management Systems, R. Ramakrishnan and J. Gehrke

Projection

– Deletes attributes that are not in
projection list.

– Schema of result contains
exactly the fields in the
projection list, with the
same names that they had
in the (only) input relation.

– Projection operator has to
eliminate duplicates!
– Note: real systems typically

don’t do duplicate elimination
unless the user explicitly
asks for it.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Selection

– Selects rows that satisfy
selection condition.

– No duplicates in result!
– Schema of result
identical to schema of
the input relation.

– Result relation can be
the input for another
relational algebra
operation! (Operator
composition.)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Union, Intersection, Set-Difference

– All of these operations take two
input relations, which must have
the same fields

– The result has the same
schema

Database Management Systems, R. Ramakrishnan and J. Gehrke

Renaming operator:

Cross-Product

– Each row of S1 is paired with each row of R1.
– Result schema has the fields of S1 and of R1

S1 × R1

Database Management Systems, R. Ramakrishnan and J. Gehrke

Joins
Condition Join:

– Result schema same as that of cross-product.
– Fewer tuples than cross-product, might be able to compute

more efficiently
– Sometimes called a theta-join.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Joins

Equi-Join: A special case of condition join where
the condition c contains only equalities.

– Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

– Natural Join: Equijoin on all common fields.

Exercises

• Tables :
– Sailors : sid, sname, rating, age
– Reserves : sid, bid, day
– Boats : bid, color

• Find names of sailors who have reserved boat #103

• Find names of sailors who have reserved a red boat

• Find sailors who have reserved a red or a green boat

Database Management Systems, R. Ramakrishnan and J. Gehrke

Solution 2:

Find names of sailors who have
reserved boat #103

Solution 1:

- Which solution is the most efficient ?
- Whose job is it to find it ?

Database Management Systems, R. Ramakrishnan and J. Gehrke

 A more efficient solution:

 A query optimizer can find this given the first solution!

Find names of sailors who have
reserved a red boat

Information about boat color only available in
Boats; so need an extra join:

Database Management Systems, R. Ramakrishnan and J. Gehrke

Can also define Tempboats using union! (How?)

What happens if is replaced by in this query?

Find sailors who have reserved a red or
a green boat

Can identify all red or green boats, then find
sailors who’ve reserved one of these boats:

Database Management Systems, R. Ramakrishnan and J. Gehrke

Find sailors who’ve reserved a red and a
green boat

Previous approach won’t work! Must identify
sailors who’ve reserved red boats, sailors
who’ve reserved green boats, then find the
intersection (note that sid is a key for Sailors):

Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary

– The relational model has rigorously defined
query languages that are simple and
powerful.

– Relational algebra is more operational;
useful as internal representation for query
evaluation plans.

– Several ways of expressing a given query; a
query optimizer should choose the most
efficient version.

	Slide 1
	Albert Bifet
	Albert Bifet
	Course
	Labs: Jupyter
	Resources
	Databases
	Data-driven Society
	Big Data
	All business manage data
	All business manage data
	Data-intensive Applications
	Popular SQL Databases
	Small Data
	Let’s build a database!
	Simplest Database
	Simplest Database
	What is missing?
	Database Indexing
	Database Index
	Database Index
	Motivation
	Motivation
	Definition (Knuth)
	2-3-4 Tree
	B-Tree Operations
	Operation Costs
	Search
	Search
	Insertion
	Insertion (337)
	Insertion (071)
	Deletion
	Deletion (337)
	Deletion (067)
	Deletion
	Deletion (067)
	Deletion (067)
	Applications
	B-Tree Summary
	Slide 41
	DBMS
	DBMS
	Spreadsheet
	Data Models
	Example Instance of Students Relation
	Levels of Abstraction
	Example: University Database
	Data Independence
	Concurrency Control
	Transaction: An Execution of a DB Program
	Scheduling Concurrent Transactions
	Relational Model
	Relational Database: Definitions
	Example Instance of Students Relation
	Relational Query Languages
	The SQL Query Language
	The SQL Query Language
	Querying Multiple Relations
	Creating Relations in SQL
	Destroying and Altering Relations
	Adding and Deleting Tuples
	Integrity Constraints (ICs)
	Primary Key Constraints
	Foreign Keys, Referential Integrity
	Foreign Keys in SQL
	Enforcing Referential Integrity
	Referential Integrity in SQL/92
	Relational Algebra
	Relational Query Languages
	Formal Relational Query Languages
	Preliminaries
	Example Instances
	Relational Algebra
	Projection
	Selection
	Union, Intersection, Set-Difference
	Cross-Product
	Joins
	Joins
	Exercises
	Find names of sailors who’ve reserved boat #103
	Find names of sailors who’ve reserved a red boat
	Find sailors who’ve reserved a red or a green boat
	Find sailors who’ve reserved a red and a green boat
	Summary

