Introduction to Databases

® Albert Bifet (class responsible, course author)

®* Antoine Amarilli (teacher)

TELECOM

Parislech

mHa

Albert Bifet

Professor at Telecom ParisTech

Teaching at Telecom ParisTech and Ecole Polytechnique
Worked at Yahoo Labs, Huawei, University of Waikato
Doing Research in

®* Data Stream Mining, Machine Learning, Artificial
Intelligence

®* Leading Open Source Projects

®* MOA, Apache SAMOA, StreamDM

Antoine Amarilli

®* Associate professor at Telecom ParisTech

®* Researcher in database theory

Course

Introduction to Databases and Relational Model
Relational Algebra

SQL, Views and Updates

Functional Dependencies and Normalization

E/R Design

Labs: Jupyter

* Jupyter notebooks are interactive shells which ® o
save output in a nice notebook format

* Notebooks will be in python JU pyte I

* 1 Lab: Functional Dependencies

* 2 Lab: SQL

* 3Lab: SQL

Resources

Class website
®* http://albertbifet.com/teaching/

®* https://a3nm.net/work/teaching/#y2018-sd202

MOOC Videos

References on the Website

http://albertbifet.com/teaching/

Databases

Data-driven Society

F 0 Google

‘Wsuakipalion: Seventhenc

Big Data is data that is too large,
complex and t}unamt‘c any
conventional data tools to capture,
store, manage and analyze.

The right use of Big Data allows
analysts to spot trends and gives
niche in::c‘?hts that help create
value and innovation much faster
than conventional methods.

57.6% OF ORGANIZATIONS
SURVEYED SAY THAT BIG
DATA IS A CHALLENGE

72.7% GONSIDER
DRIVING OPERATIONAL
EFFICIENCIES TO BE THE
BIGGEST BENEFIT OF A
BIG DATA STRATEGY

50% SAY THAT BIG DATA
HELPS IN BETTER MEETING
CONSUMER DEMAND AND
FAGILITATING GROWTH

Big Data

The “three V's”, i.e the Volume, Variety and Velocity
of the data coming in is what creates the challenge.

© CASE STUDY - Healthcare

Amount of
I >3,900 >2,000 Big Data
ik 4 EUROPE 2 s P
-3 w \.'f_|-J-|H-:'-{
. CHINA world (in
[] . I‘I.'l’l.'llil.a'-ll"i)
e >400
>200 4 JAPAN
. MIDDLE .'-,?[',‘,,L
>50 EAST
LATIN
AMERICA
.1 | - Y - Wi -:;.:-_'f_--._-:. .'1 4 v
Lo, PEOPLE TO 7 — . >
PEOPLE MACHINE MACHINE 2 9 20
TO PEOPLE ARCHIVES, MEDICAL TO MACHINE L 50
NETIZENS,VIRTUAL DEVICES, DIGITAL TV SENSORS, GPS DEVices, ~~ MILLION HOURS
COMMUNITIES, E-COMMERCE, SMART BAR CODE SCANNERS, EMAILS oFvipeo | ILLION
SOCIAL NETWORKS, CARDS, BANK CARDS, SURVEILLANCE CAMERAS, SENT EVERY =~ UPLOADED | TWEETS
WEB LOGS... COMPUTERS, MOBILES.. SCIENTIFIC RESEARCH. .. SECOND EVERY MIN | PER DAY
. @ VALUE
; PRODUCTIVITY INCREASE SALES INCREASE
RETAIL @) | 49% $9.68
CONSULTING ¢ 39% $5.08
AIR TRANSPORTATION ¢ 21% $4.38
consTrucTioN [Tl 200 T D
FOOD PRODUCTS & 2% N
STEEL (D 200% 0T
AUTOMOBILE «fify 19% 0 I
INDUSTRIAL INSTRUMENTS {(} 18% 1 D
pusListing [l 1%
TELECOMMUNICATIONS T iosos®

S300 hillion 1s
the potential

annul v 2
o .f.'I\'II.'I.' 1care

TRANSPARENCY IN
CLINICAL DATA AND
CLINICAL DECISION

AGGREGATION OF

PATIENT RECORDS,
ONLINE PLATFORMS
AND COMMUNITIES

PUBLIC HEALTH

SUPPORT
$165B
CLINICAL
SURVEILLANCE

$108B | S$S5B
BUSINESS
- MODEL
S47B RESEARCH AND
AND RESPONSE ACCOUNTS
ADVANCED FRAUD

DEVELOPMENT;

SYSTEMS PERSONALIZED
MEDICINE;
CLINICAL TRIAL
£ DESIGN
DETECTION;
PERFORMANCE
BASED DRUG
PRICING
[}
40% 5%
PROJECTED PROJECTED
GROWTH GROWTH
IN GLOBAL IN GLOBAL IT
DATA CREATED SPENDING
PER YEAR PER YEAR
o

The estimated size of the digital universe in 2011 was
1.8 zettabytes. It is predicted that between 2009 and
2020, this will grow 44 fold to 35 zettabytes per year.
A well defined data management strategy is essential

to successfully utilize Big Data.
Ill.r ‘\I
| |

WIFRO /
=)

Sources - @ Feapng Be Rewards of lig Data - Wipeo Report i Blig Datac The Hext Framter for nsvation
Competiion and Preducthaty - McKinsey Global institute Report i@comScor, adica Goup i) Measenng
The Peesinesss Imgacls of Eflective Dl - shudy by University of Texes, Austin {115 Departmen ol | sbour

DO BUSINESS BETTER

NYSEWT | ONER 120,000 EMPLOYEES | 54 COUNTRIES | CONSULTING | SYSTEM INTEGRATION | DUTSOURCING

7016 09004 3

BILLET-RESERVATION KOLOBOVA/DEUX
THALYS 01ADULTE
CIV 1187 a4
| 23 | B | f:i‘rl s 1 K
—— S| '-'_:f) | Départ -> Arrivée f l } Dl
£7=/25/12 |17H16 | AMSTERDAM CENTRAA->PARIS NORD zﬁmzlzoﬁas 2
| X X | ¥ - X | .

s=tee TRAIN 9354 TGH VOITURE 15 PLACE ASSISE 57 g

SARAE= A UTILISER DANS CE TRAIN
Cae aroes| SALLE DUO 01COULOIR
R INON FUMEUR
NI ECHANGEABLE NI REMBOURSABLE TRANSPORTEURS |,
SMOOVE 1284 1088 1187||Prix EUR ¥¥45 .00
A g | FRF %¥295.18
THRGSH1 IV 415285791 TS 476433350 C0CS40
BG DO30AD 18415225720 INTERNET TGV EURD 251110 11H38 Dossier RWINQX rage 1/

0701161150966

All business manage data
* SNCF : 5M travelers/day.

ol
Walmart > <

Save money. Live better.

(2109 377i= 1899
MANAGER SCOTT REDMAN
8500 JONES MALTSBERGER RD
SAN ANTONIO TX 78216

ST# 2404 OP# 00008097 TE# 01 TR# 01680
GARD GARLRYE 001600019333 F 2.18 N
CHEETOS 002840023985 F 1.98 N
CHEETOS 002840023986 F 1.98 N
CHEETOS 002840023988 F 1.98 N

SUBTOTAL 8.12

TOTAL 8.12

CASH TEND 8.12

CHANGE DUE 0.00

ITEMS SOLD 4

IR

Guarant Low Prices
ﬂre Unbeafable ulfh Ad Match!
06/03/14 21:21:56

All business manage data

* Walmart : 275M customers/week

Data-intensive Applications

Store data (databases)
Speed up reads, remembering results (caches)
Search data by keywords (search index)

Send messages to another process asynchronously
(stream application)

Periodically crunch a large amount of accumulated
data (batch processing)

Popular SQL Databases

® Open Source Databases !
* MySQL

® PostgreSQL M H S QL@
®* MariaDB

®* Commercial Databases ﬁ
®* Oracle 12c

®* Microsoft SQL Server M C] rl C] D B PostgreSQL

°* IBM DB2

¢ SAP Hana

Small Data

®* SQLite is a self-contained, high-reliability,
embedded, full-featured, public-domain, SQL
database engine.

® SQLite is the most used database engine in the
world

®* SQLite competes with fopen().

MSQLRE’,

Let’s build a database!

Simplest Database

#!/bin/bash
db _set () {

echo "S$1,$2" >> database

db_get () {

grep "7S$1," database | cut -d, -f2

Simplest Database

db_set 1324 ‘John Doe, Rue Barrault, Paris’

db_set 4324 ‘Paul Ryan, Avenue Italie, Paris’

db_get 4324

Paul Ryan, Avenue Italie, Paris

What is missing?

Database Indexing

Database Index

s
L]
*
.
A
* g

W
W
"4

ll

* Large binary search trees can be divided into

llpagesll

Database Index

s
L]
*
.
A
* g

W
W
"4

ll

* B-Trees are balanced search trees designhed to

work on disks and other storage devices

T TTET PTTT ITTT ITTET PTETT JTT TT0T TIIT JTITLTT IT7T

TTTITT TTIT TT0T JTLTTT JTITT JT1T

031
097
137
191

499

599

Wi

Motivation

B-Tree Is a data structure that

makes it possible to maintain an

ordered list of records so we can
* search

* update/insert/delete

In time O(lg(n)) with a good
constant factor

Motivation

The origin of the name “B-Tree” Is unknown:

* Balanced, Broad, Bushy, Boeing, Bayer

—_ I~ I~ —

Mmoo N O

O O v w
//‘, \ \\\

=21 el el
Q=N
(= J =Nl

(AR

[

b=t [2pl=2] o
= ol Tal o
I~ 0000 00 00 00

AN

e m— . =0~ I=I= v 07 07 v=i v T b= O vl v
oM Do SNt OI~00 SN D 0N MIND
= =f =t == Vo RTaRTa B TaR Tal Ta) LOOPOODO QOi==I=I=I=

Ll b byt bt bbbt

el =] S ==~ I= v=i = - == =00 vt I~ oo
oM SO - (= Rl = O I~ Q== O b=00
v - bbb -y [Mo N N I e
L |

b e il i b ebon

QOO0 OO0O0O

Definition (knuth)

* A B-tree of minimum degree t is a tree that satisfies:
* Every node has at most 2t children

* Every node, except for the root and the leaves,
has at least t children

* The root has at least 2 children (unless it is a leaf)

* All leaves appear on the same level, and carry no
iInformation

* A non |leaf node with k children contains k-1 keys

2-3-4 Tree

* A B-tree of minimum degree t=2 is a tree that satisfies:
* Every node has at most 4 children

* Every node, except for the root and the leaves,
has at least 2 children

* The root has at least 2 children (unless it is a leaf)

* All leaves appear on the same level, and carry no
iInformation

* A non leaf node with k children contains k-1 keys

B-Tree Operations

* Search: essentially like a binary search tree

* Insert: if a node gets too big, we split it into two
nodes

* Delete: if a node gets too small, we combine
two nodes

Balance is achieved from the top of the tree

since the height is only modified when the
root splits or merges

Operation Costs

1

number
of nodes

depth
0

2t

212

r—1
AR

A

T.root

RN

r—1

N R

r—1

AR

AHEERRN

N

r—1
A EREAY

AN AN A

n—+ 1
2

o
=31

h <lo

Search

* Form a simple path downward from the root of
the tree

ix m

o

S — I~ (=282 Sl Rl b= b= v=d 0 0F) =i L b2l = B K b~ [ar N =70 o =Cit=It=I=
- W Nt O~ O-HMPIND SIOMNMINO S = B Tal o0 O=NO
= = =f o= (Yo RTaRTa R Tal Tal T Ha Ve Jialiva) a]a] QO b= b= ==~ I~ 0000 00 0D o0 (= o J e R o]

et SObOOin S0 GHe0 Dbt

ll‘Il‘ |J_-|l'_|'IIJL_I IJ__H%]JTI JOIC

Search

* Form a simple path downward from the root of the tree

* Recursively, starting at the root
* Look for the appropriate position in the node
* if the key is found, return the key
* else
* If the node is a leaf, return NIL

* else continue recursively checking the
appropriate child

Insertion

* search from the root a leaf where we can

insert the key
* add the key to the leaf

* If the leaf Is now too large, split it in two and
propagate the middle key to the parent

* recursively split parents, propagating an
extra key upwards, until we no longer need to
split or we reach the root

337)

(

Insertion

mmm\

LIL L

4 &&&j ARAMAR

J

&&é[&&&géaﬂlé$%HHHH

IHH&&lHHﬁ]£$£g£

|
S Ghtoten

Serbibernh i

&HHilié

:

(

Insertion

071)

160

\

L90

/

[ED

160

mmm_\
6C8
€44
LLO
66S

2 _r X\

66V

€0

JegEl

LI l|£|£| Il IIJ_-IIJ__l |£|J_-||£|£|£ géél&llj__]

|

|

I

Dbyl e b ot tomon

L

IJ__“%HJ__H%I \J_-IéIUL_I IJ__|$A’II L]

UU&IJ_'I LII_IIJIJI_IU|J__|

Deletion

* search from the root the key to delete

* key resides in a leaf : remove it

* key resides in a non-leaf node

* replace it by the previous key (last key In
the previous subtree) or the next key (first
key in the next subtree)

* remove the replaced key, which is stored at
a leaf

HEE

L

mmm\

4 &&&j ARAMAR

J

&&é[&&&géaﬂlé$%HHHH

IHH&&lHHﬁ]£$£g£

|
S Ghtoten

Serbibernh i

&HHilié

:

(067)

Deletion

hm..__m_....x

L0

£80
€20
[]

mwm\

uumgg] [gi g RRRQ AR

I%II IL Ié]élJ__HE

lj__llglglll |J_-|é|UL_I IJ__|$A’II L]

LI l|£|£| Il IIJ_-IIJ__l éé’éﬂ%\% géélé!lj__]

UU&IJ_'I 1_II_IIJIJI_IU|J__J

Fixing underflow

If the leaf node no longer has not enough
keys (underflow) :

* steal a key from the left neighbor subtree if
It exists and this does not cause underflow

* otherwise, steal from the right neighbor
* If we cannot steal a key without causing
underflow, concatenate the leaf with a

neighbor and with a parent element

* fix underflow on the parent if needed

(067)

Deletion

S
” £80
. €20

L60 []
-.1.......

120
ri--l-

1€0

._,..|._.__

mwm\

uumgg] [gi g RRRQ AR

I%II IL Ié]élJ__HE

lj__llglglll |J_-|é|UL_I IJ__|$A’II L]

LI l|£|£| Il IIJ_-IIJ__l éé’éﬂ%\% géélé!lj__]

UU&IJ_'I LII_IIJIJI_IlJlj__l

(067)

Deletion

L60

reo

£80
€20
L]

mmm\

uumgg] [gi g RRRQ AR

I%Ii IL Ié]élJ__Hg

[J__”gl%lll lJ_-I&II I JIJ__H%J’II L]

LI l|£[|:|| Il ||£I£ éé’éﬂ%\% %éélé!lj__]

UU&IJ_'I l_II_IIJIJI_II_HJ__l

Applications

* Databases

* Filesystems S

* File indexes

.~
M —

- Used in PostgreSQL

- Used in Sqglite for indexes and for data

B-Tree Summary

* Balanced Tree for storage devices

* Search, Update in time O(lg(n))
* Insert: If a node gets too big, split into two nodes
* Delete: if a node gets too small, merge two nodes
Balance is achieved from the top of the tree

since the height is only modified when the root
splits or merges

Exercise

* Insert the following keys in a 2-3-4 tree in order :

4 8 13 2 11 12 5 1 6 3 7 9 10

DBMS

DBMS

®* A Database Management System (DBMS) is a
software package designed to store and manage
databases

®* Data independence and efficient access.
®* Reduced application development time.
®* Data integrity and security.

®* Uniform data administration.

® Concurrent access, recovery from crashes.

Most basic form : Spreadsheet

7

1
F)
3
4
5
6

d -
m Home Insedd Fage Layaut Formislas
A - A1
[E C D
Mumber GivenMame Middielnrial Sumame
Brnace R Eloch
2 harwe E Humphreays
3 Lylvia H Cartar
A williarn E Barle
5 Shally R Frastan
b Chad - Flanry
7 David L Richardscn
B Stephen i, Pond
9 bariny e Ihomasz
10 William ') Fries
11 milsd G Busyelles
12 Marry I Micholas
13 Tharras A Hunier
14 Edmund C Chagoya
15 David E Ml ead or
16 faan L Mayfield
17 M L Gomes
18 Garegory L] Migued
19 Gall L Griffin

Ciaks

E
Gender
male
female
famale
il
famala
miale
maile
male
female
male
e
male
e
male
Mdle
female
famials
meale
famale

B ey a1 TE2aTi

Streetidddress

3151 Feirell Strast
3062 Bond Stresq

1481 Lakelamd Tefracs
A31B Brierchilfl Bosd
3592 Todds Lans

A553 Grant Streat

1289 Metr Lane

4316 Bridge Avenye
2941 Harran Cerve
430 Tanglewood Road
417F Lauran Denve

2732 Elk Straet

4112 Stadium Drive
3685 Eszan Couwrt

1215 Strattond Drive
3137 Pin Cas Drivee
1723 Yorkie Lare

3233 Breerewood Caurt
2252 Arhirtis Drkve

Crby

Argyle
Wioonsocket
Wiastland
Maw York
Sanm Antonlo
Tyler
Mariton
Latayetta
Baltimore
lackson
Magason
Inving
Franklim
Erattlebaro
Kdra
whittier
Richimand Hll
Mack=yi| e
Mlamil

H

Sate fiplode (C

MM
Rl
M
oY
TX
TX
o
L
ML
[T L
Wi
A
LT
VT
]
A
il
%
FL

RET1A LIE
2895 uj
48185 L
10011 L
JEila u
75702 U
BOS3 U
03 LIS
41204 LIgF
ag201 U
53718 L
92718 U
2038 U
3301 UE
Sn7a0 L5
SO603 L
a1324 1
Lo L
adl\u

T

Data Models

®* A data model is a collection of concepts for
describing data.

® A schema is a description of a particular collection
of data, using the given data model.

®* The relational model of data is the most widely
used model today.

®* Main concept: relation, basically a table with
rows and columns.

®* The schema gives the names of the relations
and the name and type of their columns

Example Instance of Students

Relation
sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34
53688 [Smith |[smith@eecs 18 | 3.2
53650 [Smith |smith@math | 19 | 3.8

Database Management Systems, R. Ramakrishnan and J. Gehrke

Levels of Abstraction

®* Many views, single View 1 | |[View 2 | |View 3

conceptual (logical) \ ! /

schema and physical Conceptual Schema

schema

Views describe how users
see the data.

Physical Schema

v >

* Conceptual schema defines
logical structure
Physical schema describes —
the files and indexes used.

Example: University Database

®* Conceptual schema:
Students(sid: string, name: string, login: string,
age: integer, gpa: real)
Courses(cid: string, chame: string, credits: integer)
Enrolled(sid: string, cid: string, grade: string)

®* Physical schema:
® Relations stored as unordered files.

®* Index on first column of Students.

®* External Schema (View):
Course Info(cid: string, enrollment: integer)

Data Independence

®* Applications insulated from how data is structured
and stored.

® Logical data independence: Protection from
changes in logical structure of data (e.qg., adding
attributes).

®* Physical data independence: Protection from
changes in physical structure of data.

l One of the most important benefits of using a DBMS!

Concurrency Control

®* Concurrent execution of user programs is essential
for good DBMS performance.

® Because disk accesses are frequent and slow,
keep the CPU humming by working on several
user programs concurrently.

® Interleaving actions of different users can lead to
iInconsistency: e.qg., selling the same item twice

®* If item.quantity>0 then
* Add item to user|i].basket
* Decrement item.quantity

®* DBMS ensures such problems don’t arise: users
can pretend they are using a single-user system.

Transaction: An Execution of a DB Program

®* Key concept is transaction, which is an atomic
sequence of database actions (reads/writes).

®* Each transaction, executed completely, must leave the
DB In a consistent state if DB Is consistent when the

transaction begins.

®* Users can specify some simple integrity
constraints on the data, and the DBMS will
enforce these constraints.

®* Beyond this, the DBMS does not really understand
the semantics of the data (e.q., it does not
understand how the interest on a bank account is
computed).

® Thus, ensuring that a transaction (run alone)
preserves consistency is ultimately the user’s
responsibility!

Scheduling Concurrent Transactions

DBMS ensures that execution of {T1, ..., Tn} iIs
equivalent to some serial execution T1' ... Tn’.

Have a lock on each value to ensure it can only be
written (or read) by one transaction at once

Each transaction runs (acquiring locks as needed), and
releases all locks at the end (strict 2-phase locking)

Two transactions may be blocked by one another
(deadlock), then one is aborted and restarted later

- Need to rollback the effects of aborted transactions
- Possible cascading aborts

Relational Model

Relational Database: Definitions

- Relational database: a set of relations

- Relation: made up of 2 parts:
- Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.
- Schema : specifies name of relation, plus

name and type of each column.
I E.G. Students(sid: string, name: string, login: string,
age: integer, gpa: real).

— Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

Database Management Systems, R. Ramakrishnan and J. Gehrke

Example Instance of Students

Relation
sid |name login age | gpa
53666 |Jones |jones@cs 18 | 34

53688 [Smith |[smith@eecs 18 | 3.2
53650 |Smith [smith@math | 19 | 3.8

— Cardinality = 3, degree = 5, all rows distinct

— Do all columns In a relation instance have to
be distinct?

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Query Languages

— A major strength of the relational model:
supports simple, powerful querying of data.

- Queries can be written intuitively, and the DBMS

is responsible for efficient evaluation.

— The key: precise semantics for relational queries.

— Allows the optimizer to extensively re-order
operations, and still ensure that the answer does not

change.

Database Management Systems, R. Ramakrishnan and J. Gehrke

The SQL Query Language

— Developed by IBM (system R) in the 1970s

— Need for a standard since it is used by many
vendors

- First version : SQL86
- Latest version : SQL 2016

- Not all latest features (e.g., JSON support) are
commonly implemented

- The official SQL standard is not freely available
but widely documented online

Database Management Systems, R. Ramakrishnan and J. Gehrke

The SQL Query Language

— To find all 18 year old students, we can write:

SELECT * sid 'name login |age gpa

FROM Students S [53666 Jones |jones@cs |18 3.4
WHERE S.age=18 |53688 Smith smith@ee |18 3.2

- To find just names and logins, replace the first line:
SELECT S.name, S.login

Database Management Systems, R. Ramakrishnan and J. Gehrke

Querying Multiple Relations

- What does the following query compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E

WHERE S.sid=E.sid AND E.grade="A"

sid

cid grade

Given the following 53831 Carnatic101

Instance of Enrolled 53831 Reggae203
53650 Topologyl12

53666 |History105

> W O

we get: S.name

E.cid

Smith

Topologyl112

Database Management Systems, R. Ramakrishnan and J. Gehrke

Creating Relations in SQL

- Creates the Students CREATE TABLE Students
relation. (sid: CHAR(20),

- Observe that the type name: CHAR(20),
(domain) of each field is login: CHAR(10),
specified, and enforced age: INTEGER,
by the DBMS whenever gpa: REAL)
tuples are added or
modified.

CREATE TABLE Enrolled
- Creates the Enrolled table (sid: CHAR(20),

cid: CHAR(20),
grade: CHAR(2))

Database Management Systems, R. Ramakrishnan and J. Gehrke

Destroying and Altering Relations

DROP TABLE Students

— Destroys the relation Students. The schema
information and the tuples are deleted.

ALTER TABLE Students
ADD COLUMN firstYear: integer

- The schema of Students is altered by adding a new
field; every tuple in the current instance is
extended with a null value in the new field.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Adding and Deleting Tuples

- Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

- Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

— Powerful variants of these commands are available; more later!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Integrity Constraints (ICs)

- |C: condition that must be true for any instance of

the database; e.g., domain constraints.
- |Cs are specified when schema is defined.
- |Cs are checked when relations are modified.

- A legal instance of a relation is one that satisfies all
specified ICs.
- DBMS should not allow illegal instances.

- |f the DBMS checks ICs, stored data is more faithful

to real-world meaning.
— Avoids data entry errors, too!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Primary Key Constraints

- A set of fields is a superkey for a relation if no two
distinct tuples can have same values in all key fields

- If this is not true for any strict subset of the superkey,
then we call it a key.

- We usually choose a primary key to make sure that
we can refer to tuples with some identifiers

- Examples :

- sid is a key for Students.
- What about name?
- The set {sid, gpa} is a superkey.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Foreign Keys, Referential Integrity

- Foreign key: Set of fields in one relation that is
used to refer’ to a tuple in another relation.

(Must correspond to primary key of the second
relation.)

- E.g. sid is a foreign key referring to Students:
- Enrolled(sid: string, cid: string, grade: string)
- If all foreign key constraints are enforced, referential
Inteqrity is achieved, i.e., no dangling references.

- Can you name a data model w/o referential integrity?
— Links in HTML!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Foreign Keys in SQL

- Only students listed in the Students relation should be
allowed to enroll for courses.

CREATE TABLE Enrolled

(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

Enrolled

sid cid grade
53666 |Carnaticl01 C —
53666 Reggae203 B
53650 Topologyll2 | A —
53666 |Historyl05 B

Students
sid 'name login age gpa
—_|53666 Jones |jones@cs 18 | 34
j
><53688 Smith smith@eecs @ 18 | 3.2
53650 Smith smith@math @ 19 3.8

Database Management Systems, R. Ramakrishnan and J. Gehrke

Enforcing Referential Integrity

— Consider Students and Enrolled; sid in Enrolled is a
foreign key that references Students.

- What should be done if an Enrolled tuple with a non-
existent student id is inserted? (Reject it!)

- What should be done if a Students tuple is deleted?

- Also delete all Enrolled tuples that refer to it.

- Disallow deletion of a Students tuple that is referred to.

- Set sid in Enrolled tuples that refer to it to a default sid.

- Set sid in Enrolled tuples that refer to it to a special value null,
denoting unknown’ or inapplicable’.

- Similar if primary key of Students tuple is updated.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Referential Integrity in SQL/92

- SQL/92 supports all 4 options CREATE TABLE Enrolled

on deletes and updates. (sid CHAR(20),

- Default is NO ACTION cid CHAR(20),
(delete/update is grade CHAR(2),
rejected) PRIMARY KEY (sid,cid),

- CASCADE (also delete all FOREIGN KEY (sid)
tuples that refer to deleted REFERENCES Students
tuple) ON DELETE CASCADE

- SET NULL/ SET DEFAULT (sets ON UPDATE SET DEFAULT)

foreign key value of
referencing tuple)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Algebra

Relational Query Languages

- Query languages: Allow manipulation and
retrieval of data from a database.

- Relational model supports simple, powerful QLs:
- Strong formal foundation based on logic.
— Allows for much optimization.

- Query Languages = programming languages!
- QLs not expected to be “Turing complete”.
- QLs not intended to be used for complex
calculations.
- QLs support easy, efficient access to large data
sets.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Formal Relational Query Languages

-Two mathematical Query Languages form the
basis for “real” languages (e.g. SQL), and for
implementation:

- Relational Algebra: More operational, very
useful for representing execution plans.

- Relational Calculus: Lets users describe what
they want, rather than how to compute it. (Non-
operational, declarative.)

Understanding Algebra & Calculus is key to
understanding SQL, query processing!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Preliminaries

- A query is applied to relation instances, and

the result of a query is also a relation instance.

- Schemas of input relations for a query are
fixed (but query will run regardless of
instance!)

- The schema for the result of a given query is also
fixed! Determined by definition of query language
constructs.

— Positional vs. named-field notation:
— Positional notation easier for formal definitions,
named-field notation more readable.

- Both used in SQL

Database Management Systems, R. Ramakrishnan and J. Gehrke

Example Instances

Sailors
- “Sailors” and “Reserves” : '
clations for oot oamples, S1 |S1d sname rating |age
- We'll use positional or named 22 |dustin 7 45.0
field notation, assume that
names of _fielc,zls in query results 31 lubber 8 55.5
felds n query input relations, |98 |Tusty | 10 35.0
Reserves Ss2 |sid |sname rating age
R1|sid bid day 28 |yuppy | 9 35.0
22 1101 110/10/96 31 |lubber | 8 55.5
58 103 |11/12/96 44 guppy | 5 35.0
58 |rusty | 10 |35.0

Database Management Systems, R. Ramakrishnan and J. Gehrke

Relational Algebra

— Basic operations:

- Selection (o) Selects a subset of rows from relation.
- Projection (m) Deletes unwanted columns from
relation.

— Cross-product (x) Allows us to combine two relations.
- Set-difference (-) Tuples in reln. 1, but not in reln. 2.
— Union (uv) Tuplesinreln. 1l and in reln. 2.

— Additional operations:

- Intersection, join, division, renaming: Not essential, but
(very!) useful.

— Since each operation returns a relation, operations can
be composed! (Algebra is “closed”.)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Projection

- Deletes attributes that are not in
projection list.

- Schema of result contains
exactly the fields in the
projection list, with the
same names that they had
in the (only) input relation.

- Projection operator has to
eliminate duplicates!

— Note: real systems typically
don’t do duplicate elimination
unless the user explicitly
asks for it.

Database Management Systems, R. Ramakrishnan and J. Gehrke

sname

rating

yuppy
lubber

9

8

5
10

sname,rating

age

35.0
55.5

% age

(52)

(52)

: sid sname rating age
Selection .~ = . 2=
58 |rusty |10 35.0
- Selects rows that satisfy
selection condition. O rating > 8(S2)
- No duplicates in result!
-Schema of result
identical to schema of .
the input relation. sname |rating
- Result relation can be yuppy O
the input for another ¢ 10
relational algebra Tusty
operation! (Operator
s N
composition.) J1:Sname,J'*'cztz'ng(()'mzifi'1g> 8(S)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Union, Intersection, Set-Difference

- All of these operations take two
input relations, which must have
the same fields

- The result has the same
schema

sid |sname rating age

22 |dustin |7 45.0

S1-82

Database Management Systems, R. Ramakrishnan and J. Gehrke

sid |sname rating age
22 |dustin |7 45.0
31 |lubber |8 55.5
58 |rusty |10 35.0
44 |guppy | 35.0
28 |yuppy |9 35.0
S1US2
sid sname rating |age
31 |lubber |8 55.5
58 |rusty |10 35.0
S1MS2

Cross-Product
S1xR1

- Each row of S1 is paired with each row of R1.
- Result schema has the fields of S1 and of R1

(sid) sname rating age (sid) bid day
22 |dustin | 7 450 22 |101 |10/10/96
22 |dustin | 7 450 58 [103 |11/12/96
31 |lubber | 8 555 | 22 |101 10/10/96
31 |[lubber | 8 555 | 58 [103 11/12/96
58 |rusty 10 350 | 22 |101 |10/10/96
58 |rusty 10 350 | 58 |103 |11/12/96

Renaming operator: p (C(1—sidl,5—sid2), S1x Rl)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Condition Join:

Joins
R><1 .§ =0 . (RXS)

- Result schema same as that of cross-product.

(sid) |sname rating age (sid) bid day

22 dustin |7 45.0 |58 103 [11/12/96

31 lubber |8 55.5 |58 103 |11/12/96
Sl < Sl.sid < Rl.sid Rl

- Fewer tuples than cross-product, might be able to compute
more efficiently

- Sometimes called a theta-join.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Joins

Equi-Join: A special case of condition join where

the condition ¢ contains only equalities.

sid sname rating age bid day
22 |dustin |7 45.0 |101 |10/10/96
58 |rusty |10 35.0 |103 |11/12/96
Sl - Rl
sid

- Result schema similar to cross-product, but only
one copy of fields for which equality is specified.

- Natural Join: Equijoin on all common fields.

Database Management Systems, R. Ramakrishnan and J. Gehrke

Exercises

Tables :

- Sailors : sid, shame, rating, age
- Reserves : sid, bid, day

- Boats : bid, color

FiInd names of sailors who have reserved boat #103
FiInd names of sailors who have reserved a red boat

Find sailors who have reserved a red or a green boat

Find names of sailors who have
reserved boat #103

Solution 1: T sngme (O hid <103 Reserves) > Sailors)

Solution 2: T o 100(O bid=103(Reservesl><1 Sailors))

- Which solution I1s the most efficient ?
- Whose job is it to find it ?

Database Management Systems, R. Ramakrishnan and J. Gehrke

Find names of sailors who have
reserved a red boat

Information about boat color only available in
Boats; so need an extra join:

T Boats) ><t Reserves<i Sailors)

O
sname(color=red’

A more efficient solution:

TC Boats) ><t Res)><t Sailors)

sname® Sid((ﬂ: bid Gcolar =red'

A query optimizer can find this given the first solution!

Database Management Systems, R. Ramakrishnan and J. Gehrke

Find sailors who have reserved a red or
a green boat

Can identify all red or green boats, then find
sailors who've reserved one of these boats:

P (Tempboats, (o Boats))

color=red' v color ='green'
T cnamell empboats><t Reserves>< Sailors)

Can also define Tempboats using union! (How?)

What happens if V is replaced by A in this query?

Database Management Systems, R. Ramakrishnan and J. Gehrke

Find sailors who’ve reserved a red and a
green boat

Previous approach won't work! Must identify
sailors who've reserved red boats, sailors
who've reserved green boats, then find the
intersection (note that sid is a key for Sailors):

0 (Tempred, w |

o d((cr color = red' Boats)r><i Reserves))

0 (Tempgreen, i Boats)><i Reserves))

sid (€ color = green'’

T nam(lempred (N Tempgreen)>< Sailors)

Database Management Systems, R. Ramakrishnan and J. Gehrke

Summary

— The relational model has rigorously defined
guery languages that are simple and
powerful.

- Relational algebra is more operational,
useful as internal representation for query
evaluation plans.

- Several ways of expressing a given query; a
guery optimizer should choose the most
efficient version.

Database Management Systems, R. Ramakrishnan and J. Gehrke

	Slide 1
	Albert Bifet
	Albert Bifet
	Course
	Labs: Jupyter
	Resources
	Databases
	Data-driven Society
	Big Data
	All business manage data
	All business manage data
	Data-intensive Applications
	Popular SQL Databases
	Small Data
	Let’s build a database!
	Simplest Database
	Simplest Database
	What is missing?
	Database Indexing
	Database Index
	Database Index
	Motivation
	Motivation
	Definition (Knuth)
	2-3-4 Tree
	B-Tree Operations
	Operation Costs
	Search
	Search
	Insertion
	Insertion (337)
	Insertion (071)
	Deletion
	Deletion (337)
	Deletion (067)
	Deletion
	Deletion (067)
	Deletion (067)
	Applications
	B-Tree Summary
	Slide 41
	DBMS
	DBMS
	Spreadsheet
	Data Models
	Example Instance of Students Relation
	Levels of Abstraction
	Example: University Database
	Data Independence
	Concurrency Control
	Transaction: An Execution of a DB Program
	Scheduling Concurrent Transactions
	Relational Model
	Relational Database: Definitions
	Example Instance of Students Relation
	Relational Query Languages
	The SQL Query Language
	The SQL Query Language
	Querying Multiple Relations
	Creating Relations in SQL
	Destroying and Altering Relations
	Adding and Deleting Tuples
	Integrity Constraints (ICs)
	Primary Key Constraints
	Foreign Keys, Referential Integrity
	Foreign Keys in SQL
	Enforcing Referential Integrity
	Referential Integrity in SQL/92
	Relational Algebra
	Relational Query Languages
	Formal Relational Query Languages
	Preliminaries
	Example Instances
	Relational Algebra
	Projection
	Selection
	Union, Intersection, Set-Difference
	Cross-Product
	Joins
	Joins
	Exercises
	Find names of sailors who’ve reserved boat #103
	Find names of sailors who’ve reserved a red boat
	Find sailors who’ve reserved a red or a green boat
	Find sailors who’ve reserved a red and a green boat
	Summary

