
Provenance
MPRI 2.26.2: Web Data Management

Antoine Amarilli, Pierre Senellart
Friday, January 18th

Provenance definition

Provenance management

• Data management is all about query evaluation
• What if we want something more than the query result?

• Where does the result come from?
• Why was this result obtained?
• How was the result produced?
• What is the probability of the result?
• How many times was the result obtained?
• How would the result change if part of the input data was missing?
• What is the minimal security clearance I need to see the result?
• What is the most economical way of obtaining the result?
• How can a result be explained to the user?

• Provenance management: along with query evaluation, record
additional bookkeeping information allowing to answer the
questions above

1/62

Data model

• Relational data model: data decomposed into relations, with
labeled attributes…

• … with an extra provenance annotation for each tuple (think of it
first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

2/62

Data model

• Relational data model: data decomposed into relations, with
labeled attributes…

• … with an extra provenance annotation for each tuple (think of it
first as a tuple id)

name position city classification

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

2/62

Data model

• Relational data model: data decomposed into relations, with
labeled attributes…

• … with an extra provenance annotation for each tuple (think of it
first as a tuple id)

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

2/62

Relations and databases

Formally:

• A relational schema R is a finite sequence of distinct attribute
names; the arity of R is |R|

• A database schema is a finite set of relation names, each having
a relational schema

• A tuple over relational schema R is a mapping from R to data
values; each tuple comes with a provenance annotation

• A relation instance (or relation) over R is a finite set of tuples
over R

• A database instance (or database) over database schema D is a
mapping from the support of D mapping each relation name R
to a relation instance over D(R)

3/62

Queries

• A query is an arbitrary function that maps databases over a fixed
database schema D to relations over some relational schema R

• The query does not look at the provenance annotations; we will
give semantics for the provenance annotations of the output,
based on that of the input

• Example of query languages:
• First-Order logic (FO) or the relational algebra
• Monadic-Second Order logic (MSO)
• SQL with aggregate functions
• etc.

4/62

Outline

Provenance definition

Preliminaries

Boolean provenance

Relational algebra reminder

Semiring provenance

And beyond…

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

5/62

Boolean provenance [Imieliński and Lipski, 1984]

• X = {x1, x2, . . . , xn} finite set of Boolean events
• Provenance annotation: Boolean function over X , i.e., a function
of the form: (X → {⊥,>}) → {⊥,>}

• Interpretation: possible-world semantics
• every valuation ν : X → {⊥,>} denotes a possible world of the
database

• the provenance of a tuple on ν evaluates to ⊥ or > depending
whether this tuple exists in that possible world

• for example, if every tuple of a database is annotated with a
different Boolean event, the set of possible worlds is the set of all
subdatabases

• This is very similar to c-tables seen in the previous class

6/62

Example of possible worlds

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

ν : t1 t2 t3 t4 t5 t6 t7
> > > > > > >

7/62

Example of possible worlds

name position city classification prov

John Director New York unclassified t1

Paul Janitor New York restricted t2

Dave Analyst Paris confidential t3

Ellen Field agent Berlin secret t4

Magdalen Double agent Paris top secret t5

Nancy HR director Paris restricted t6

Susan Analyst Berlin secret t7

ν : t1 t2 t3 t4 t5 t6 t7
> ⊥ > ⊥ > ⊥ >

7/62

Boolean provenance of query results

• ν(D): the subdatabase of D where all tuples whose provenance
annotation evaluates to ⊥ by ν is removed

• The Boolean provenance provq,D(t) of tuple t ∈ q(D) is the
function:

ν 7→

> if t ∈ q(ν(D))

⊥ otherwise

Example (What cities are in the table?)
name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

city prov

Berlin t4 ∨ t7
New York t1 ∨ t2
Paris t3 ∨ t5 ∨ t6

8/62

Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

• Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

• Probability of a possible world D′ ⊆ D:

Pr(D′) =
∏

t∈D′ Pr(t)×
∏

t∈D′\D(1− Pr(t′))

• Probability of a tuple for a query q over D:

Pr(t ∈ q(D)) =
∑

D′⊆D
t∈q(D′)

Pr(D′)

• If Pr(xi) := Pr(ti) where xi is the provenance annotation of tuple
ti then Pr(t ∈ q(D)) = Pr(provq,D(t))

• Computing the probability of an answer tuple databases thus
amounts to computing its Boolean provenance, and then
computing the probability of that Boolean function

• Also works for more complex probabilistic models

9/62

Application: Probabilistic databases
[Green and Tannen, 2006, Suciu et al., 2011]

• Tuple-independent database: each tuple t in a database is
annotated with independent probability Pr(t) of existing

• Probability of a possible world D′ ⊆ D:

Pr(D′) =
∏

t∈D′ Pr(t)×
∏

t∈D′\D(1− Pr(t′))

• Probability of a tuple for a query q over D:

Pr(t ∈ q(D)) =
∑

D′⊆D
t∈q(D′)

Pr(D′)

• If Pr(xi) := Pr(ti) where xi is the provenance annotation of tuple
ti then Pr(t ∈ q(D)) = Pr(provq,D(t))

• Computing the probability of an answer tuple databases thus
amounts to computing its Boolean provenance, and then
computing the probability of that Boolean function

• Also works for more complex probabilistic models 9/62

Example of probability computation

name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov

Berlin t4 ∨ t7
New York t1 ∨ t2
Paris t3 ∨ t5 ∨ t6

10/62

Example of probability computation

name position city classification prov prob

John Director New York unclassified t1 0.5
Paul Janitor New York restricted t2 0.7
Dave Analyst Paris confidential t3 0.3
Ellen Field agent Berlin secret t4 0.2
Magdalen Double agent Paris top secret t5 1.0
Nancy HR director Paris restricted t6 0.8
Susan Analyst Berlin secret t7 0.2

city prov prob

Berlin t4 ∨ t7 1− (1− 0.2)× (1− 0.2) = 0.36

New York t1 ∨ t2 1− (1− 0.5)× (1− 0.7) = 0.85

Paris t3 ∨ t5 ∨ t6 1.00

10/62

What now?

• How to compute Boolean provenance for practical query
languages? What complexity?

• Can we do more with provenance?
• How should we represent provenance annotations?
• How can we implement support for provenance management in
a relational database management system?

11/62

Outline

Provenance definition

Preliminaries

Boolean provenance

Relational algebra reminder

Semiring provenance

And beyond…

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

12/62

Relational algebra

• Basic relations:
• the relation names in the signature
• constant relations, e.g., the empty relation

• Projection Π

• Selection σ

• Renaming ρ
• Union ∪
• Product × and join ▷◁

• Difference −

13/62

Projection: keep a subsequence of the attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

Πteacher,resp(Class)

teacher resp

Antoine Olivier
Pierre Olivier

→ Duplicates are removed

14/62

Projection: keep a subsequence of the attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

Πteacher,resp(Class)

teacher resp

Antoine Olivier
Pierre Olivier

→ Duplicates are removed

14/62

Projection: keep a subsequence of the attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

Πteacher,resp(Class)

teacher resp

Antoine Olivier
Pierre Olivier

→ Duplicates are removed

14/62

Projection: keep a subsequence of the attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

Πteacher,resp(Class)

teacher resp

Antoine Olivier
Pierre Olivier

→ Duplicates are removed
14/62

Selection: keep a subset of the tuples

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

σteacher=“Antoine”(Class)

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4

15/62

Selection: keep a subset of the tuples

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

σteacher=“Antoine”(Class)

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4

15/62

Selection: keep a subset of the tuples

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

σteacher=“Antoine”(Class)

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4

15/62

Rename: change the name of attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

ρresp→boss(Class)

date teacher boss name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

16/62

Rename: change the name of attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

ρresp→boss(Class)

date teacher boss name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

16/62

Rename: change the name of attributes

Class

date teacher resp name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

ρresp→boss(Class)

date teacher boss name num

2019-01-11 Antoine Olivier Web Data Mgmt 4
2019-01-18 Pierre Olivier Web Data Mgmt 5
2019-02-01 Pierre Olivier Web Data Mgmt 6
2019-02-08 Pierre Olivier Web Data Mgmt 7

16/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪

S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Union

• Take tuples occurring in one of the input tables
• Applies to two tables with the same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

∪
S2

id name

42 Zaphod B.

=

Students1 ∪ S2

id name

1 Arthur Dent
2 Ford Prefect
42 Zaphod B.

→ Duplicates are removed here as well

17/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×
Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×
Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×

Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×
Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×
Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Product

• Take all combinations of the input tables

Students

id name

1 Arthur Dent
2 Ford Prefect

×
Rooms

room

E200
E242

=

Students × Rooms

id name room

1 Arthur Dent E200
1 Arthur Dent E242
2 Ford Prefect E200
2 Ford Prefect E242

18/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(

Member

)

× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(

ρclass→class2(Member)× Class

))

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(

σclass=class2
(

ρclass→class2(Member)× Class
)

)

19/62

Join

→ Product is useful to express joins:

Member

id class

1 WDM
2 WDM

▷◁

Class

class date

WDM Nov 21
ABC Nov 24
WDM Nov 28

=

Member ▷◁ Class

id class date

1 WDM Nov 21
1 WDM Nov 28
2 WDM Nov 21
2 WDM Nov 28

Express Member ▷◁ Class with the previous operators:

Πid,class,date

(
σclass=class2

(
ρclass→class2(Member)× Class

))

19/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−
S3

id name

1 Arthur Dent
42 Zaphod B.

=
Students1 − S3

id name

2 Ford Prefect

20/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−
S3

id name

1 Arthur Dent
42 Zaphod B.

=
Students1 − S3

id name

2 Ford Prefect

20/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−

S3

id name

1 Arthur Dent
42 Zaphod B.

=
Students1 − S3

id name

2 Ford Prefect

20/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−
S3

id name

1 Arthur Dent
42 Zaphod B.

=
Students1 − S3

id name

2 Ford Prefect

20/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−
S3

id name

1 Arthur Dent
42 Zaphod B.

=

Students1 − S3

id name

2 Ford Prefect

20/62

Difference

• Take tuples that are in one table but not in the other
• Applies to two tables with same attributes

Students1

id name

1 Arthur Dent
2 Ford Prefect

−
S3

id name

1 Arthur Dent
42 Zaphod B.

=
Students1 − S3

id name

2 Ford Prefect

20/62

Outline

Provenance definition

Preliminaries

Boolean provenance

Relational algebra reminder

Semiring provenance

And beyond…

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

21/62

Commutative semiring (K, 0, 1,⊕,⊗)

• Set K with distinguished elements 0, 1
• ⊕ associative, commutative operator, with identity 0K:

• a ⊕ (b ⊕ c) = (a ⊕ b)⊕ c
• a ⊕ b = b ⊕ a
• a ⊕ 0 = 0 ⊕ a = a

• ⊗ associative, commutative operator, with identity 1K:
• a ⊗ (b ⊗ c) = (a ⊗ b)⊗ c
• a ⊗ b = b ⊗ a
• a ⊗ 1 = 1 ⊗ a = a

• ⊗ distributes over ⊕:

a ⊗ (b ⊕ c) = (a ⊗ b)⊕ (a ⊗ c)

• 0 is annihilating for ⊗:

a ⊗ 0 = 0 ⊗ a = 0
22/62

Example semirings

• (N, 0, 1,+,×): counting semiring
• ({⊥,>},⊥,>,∨,∧): Boolean semiring
• ({unclassified, restricted, confidential, secret, top secret},
top secret,unclassified,min,max): security semiring

• (N ∪ {∞},∞, 0,min,+): tropical semiring
• ({Boolean functions over X},⊥,>,∨,∧): semiring of Boolean
functions over X

• (N[X], 0, 1,+,×): semiring of integer-valued polynomials with
variables in X (also called How-semiring or universal semiring,
see further)

• (P(P(X)), ∅, {∅},∪,⋓): Why-semiring over X
(A ⋓ B := {a ∪ b | a ∈ A, b ∈ B})

23/62

Semiring provenance [Green et al., 2007]

• We fix a semiring (K, 0, 1,⊕,⊗)

• We assume provenance annotations are in K
• We consider a query q from the positive relational algebra
(selection, projection, renaming, cross product, union; joins can
be simulated with renaming, cross product, selection, projection)

• We define a semantics for the provenance of a tuple t ∈ q(D)

inductively on the structure of q

24/62

Selection, renaming

Provenance annotations of selected tuples are unchanged

Example (ρname→n(σcity=“New York”(R)))

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

n position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2

25/62

Projection

Provenance annotations of identical, merged, tuples are ⊕-ed

Example (πcity(R))

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

city prov

Berlin t4 ⊕ t7
New York t1 ⊕ t2
Paris t3 ⊕ t5 ⊕ t6

26/62

Union

Provenance annotations of identical, merged, tuples are ⊕-ed

Example
πcity(σends-with(position,“agent”)(R)) ∪ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

city prov

Berlin t4 ⊕ t7
Paris t3 ⊕ t5

27/62

Cross product

Provenance annotations of combined tuples are ⊗-ed

Example
πcity(σends-with(position,“agent”)(R)) ⋊⋉ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

city prov

Berlin t4 ⊗ t7
Paris t3 ⊗ t5

28/62

What can we do with it?

counting semiring: count the number of times a tuple can be
derived (multiset semantics)

Boolean semiring: indicates in which possible worlds the tuple
appears

security semiring: determines the minimum clearance level
required to get a tuple as a result

tropical semiring: minimum-weight way of deriving a tuple (think
shortest path in a graph)

Boolean functions: Boolean provenance, as previously defined
integer polynomials: universal provenance, see further
Why-semiring: Why-provenance [Buneman et al., 2001], set of

combinations of tuples needed for a tuple to exist

29/62

Example of security provenance

πcity(σname<name2(πname,city(R) ⋊⋉ ρname→name2(πname,city(R))))

name position city prov

John Director New York unclassified
Paul Janitor New York restricted
Dave Analyst Paris confidential
Ellen Field agent Berlin secret
Magdalen Double agent Paris top secret
Nancy HR director Paris restricted
Susan Analyst Berlin secret

city prov

Berlin secret
New York restricted
Paris confidential

30/62

Notes [Green et al., 2007]

• Computing provenance has a PTIME data complexity overhead
• Semiring homomorphisms commute with provenance
computation: if there is a homomorphism from K to K′, then one
can compute the provenance in K, apply the homomorphism,
and obtain the same result as when computing provenance in K′

• The integer polynomial semiring is universal: there is a unique
homomorphism to any other commutative semiring that respects
a given valuation of the variables

• This means all computations can be performed in the universal
semiring, and homomorphisms applied next

• Two equivalent queries can have two different provenance
annotations on the same database, in some semirings

31/62

Outline

Provenance definition

Preliminaries

Boolean provenance

Relational algebra reminder

Semiring provenance

And beyond…

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

32/62

Semirings with monus [Amer, 1984, Geerts and Poggi, 2010]

• Some semirings can be equipped with a 	 verifying:
• a ⊕ (b 	 a) = b ⊕ (a 	 b)
• (a 	 b)	 c = a 	 (b + c)
• a 	 a = 0 	 a = 0

• Boolean function semiring with ∧¬, Why-semiring with \,
counting semiring with truncated difference…

• Most natural semirings (but not all semirings [Amarilli and Monet,
2016]!) can be extended into semirings with monus

• Sometimes strange things happen [Amsterdamer et al., 2011]: e.g, ⊗
does not always distribute over 	

• Allows supporting full relational algebra with the \ operator, still
PTIME

• Semantics for Boolean function semiring coincides with that of
Boolean provenance

33/62

Difference

Provenance annotations of diff-ed tuples are 	-ed

Example
πcity(σends-with(position,“agent”)(R)) \ πcity(σposition=“Analyst”(R))

name position city classification prov

John Director New York unclassified t1
Paul Janitor New York restricted t2
Dave Analyst Paris confidential t3
Ellen Field agent Berlin secret t4
Magdalen Double agent Paris top secret t5
Nancy HR director Paris restricted t6
Susan Analyst Berlin secret t7

city prov

Berlin t4 	 t7
Paris t5 	 t3

34/62

Provenance for aggregates
[Amsterdamer et al., 2011, Fink et al., 2012]

• Trickier to define provenance for queries with aggregation, even
in the Boolean case

• One can construct a K-semimodule K ∗ M for each monoid
aggregate M over a provenance database with a semiring in K

• Data values become elements of the semimodule

Example (count(πname(σcity=“Paris”(R)))

t3 ∗ 1 + t5 ∗ 1 + t6 ∗ 1

35/62

Where-provenance [Buneman et al., 2001]

• Different form of provenance: captures from which database
values come which output values

• Bipartite graph of provenance: two attribute values are
connected if one can be produced from the other

• Axiomatized in [Buneman et al., 2001, Cheney et al., 2009]
• Cannot be captured by provenance semirings [Cheney et al., 2009],
because of renaming (does not keep track of relation attributes),
projection (does not remember which attribute values still exist),
join (in a join, an output value comes from two different input
values)

36/62

Outline

Provenance definition

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

37/62

Representation systems

• In the Boolean semiring, the counting semiring, the security
semiring: provenance annotations are elementary

• In the Boolean function semiring, the universal semiring, etc.,
provenance annotations can become quite complex

• Needs for compact representation of provenance annotations
• Lower the provenance computation complexity as much as
possible

38/62

Provenance formulas

• Quite straightforward
• Formalism used in most of the provenance literature
• PTIME data complexity
• Expanding formulas (e.g., computing the monomials of a N[X]

provenance annotation) can result in an exponential blowup

Example
Is there a city with two different agents?

(t1 ⊗ t2)⊕ (t3 ⊗ t6)⊕ (t3 ⊗ t5)⊕ (t4 ⊗ t7)⊕ (t5 ⊗ t6)

39/62

Provenance circuits [Deutch et al., 2014, Amarilli et al., 2015a]

• Use arithmetic circuits (Boolean circuits for Boolean provenance)
to represent provenance

• Every time an operation reuses a previously computed result, link
to the previously created circuit gate

• Never larger than provenance formulas
• Sometimes more concise: provenance circuits can be...

• Super-polynomially more concise than monotone provenance
formula for linear Datalog programs [Deutch et al., 2014]

• Quadratically more concise than provenance formulas for
monadic second-order (MSO) formulas

• More concise by a log factor than monotone provenance formulas
for positive relational algebra queries, and by a log log factor for
non-monotone formulas [Wegener, 1987, Amarilli et al., 2016]

40/62

Example provenance circuit

41/62

OBDD and d-DNNF

• Various subclasses of Boolean circuits commonly used:
OBDD: Ordered Binary Decision Diagrams

d-DNNF: deterministic Decomposable Negation Normal Form
• OBDDs can be obtained in PTIME data complexity on
bounded-treewidth databases [Amarilli et al., 2016]

• d-DNNFs can be obtained in linear-time data complexity on
bounded-treewidth databases

• Applications to probabilistic query evaluation (see next)

42/62

Provenance cycluits [Amarilli et al., 2017b]

• Cycluit (cyclic circuit): arithmetic circuit with cycles
• Well-defined semantics on the Boolean semiring and some
semirings where infinite loops do not matter

• Allows computing provenance in linear-time combined
complexity for recursive queries of a certain form (ICG-Datalog of
bounded body size [Amarilli et al., 2017b], capturing α-acyclic
conjunctive queries, 2RPQs, etc.), on bounded tree-width
databases

• Related to provenance equation systems and formal series
introduced in [Green et al., 2007]

43/62

Outline

Provenance definition

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

44/62

Definition

• The previous definitions of provenance work on relational data
• What if the data is a tree, e.g., an XML document, or a word?
• Problem: we can now have recursive queries, e.g., descendant
queries

• A naive representation of provenance may no longer be
polynomial in the database

45/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

46/62

Example: uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

46/62

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) iff A accepts ν(T)

47/62

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) iff A accepts ν(T)

47/62

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) iff A accepts ν(T)

47/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧

∧
¬

48/62

Building provenance circuits on trees [Amarilli et al., 2015b]

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}

• Transitions:
>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

48/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′

P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

49/62

d-DNNFs

Lemma
If the tree automaton is unambiguous then the circuit is a d-DNNF

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

49/62

Extensions of provenance circuits on trees

• Can be extended to more general provenance than Boolean
provenance, for some query languages [Amarilli et al., 2015b]

• Results extend to databases of bounded treewidth (extension of
Courcelle’s theorem), and essentially only to such databases
[Amarilli et al., 2016]

• Has connections with probability computation methods on
bounded-treewidth graphical models [Amarilli et al., 2019c]

• Provenance representation also useful for efficient enumeration
of the answers to non-Boolean queries (ongoing work!) [Amarilli
et al., 2017a, 2019a,b]

50/62

Queries with free variables

• We have talked about Boolean provenance for Boolean queries:

“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• For enumeration, we consider queries with free variables:

“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

51/62

Queries with free variables

• We have talked about Boolean provenance for Boolean queries:

“Is there both a pink and a blue node?”

Q() : ∃x y P (x) ∧ P (y)

• For enumeration, we consider queries with free variables:

“Find all pairs of a pink and a blue node?”

Q(x, y) : P (x) ∧ P (y)

51/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn

• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds

→ Add special facts to materialize all possible assignments
• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)

Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Circuits as factorized representations of query results

• Query: Q(X1, . . . ,Xn) with free variables X1, . . . ,Xn
• Goal: find all tuples a1, . . . , an such that Q(a1, . . . , an) holds
→ Add special facts to materialize all possible assignments

• e.g., Xi(aj) means element ai is mapped to variable Xj

→ The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1,X2) : P (x) ∧ P (y)
Database:
1 2 3 4 5

Results:
X1 X2

1 3
1 5

Provenance circuit:

×

X1(1)
∪

X2(3) X2(5)

{X2(3),X2(5)}

{(X1(1),X2(3)), (X1(1),X2(5))}

52/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]

• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results

• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Application of factorized representations

This factorized representation of the results of the query
can be computed in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017a]

• Extensions to support updates on the database
[Amarilli et al., 2019b]

53/62

Outline

Provenance definition

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

54/62

Desiderata for a provenance-aware DBMS

• Extends a widely used database management system
• Easy to deploy
• Easy to use, transparent for the user
• Provenance automatically maintained as the user interacts with
the database management system

• Provenance computation benefits from query optimization within
the DBMS

• Allow probability computation based on provenance
• Any form of provenance can be computed: Boolean provenance,
semiring provenance in any semiring (possibly, with monus),
aggregate provenance, where-provenance, on demand

55/62

ProvSQL: Provenance within PostgreSQL (1/2)
[Senellart et al., 2018]

• Lightweight extension/plugin for PostgreSQL ≥ 9.5

• Provenance annotations stored as UUIDs, in an extra attribute of
each provenance-aware relation

• A provenance circuit relating UUIDs of elementary provenance
annotations and arithmetic gates stored as table

• All computations done in the universal semiring (more precisely,
with monus, in the free semiring with monus; for
where-provenance, in a free term algebra)

56/62

ProvSQL: Provenance within PostgreSQL (2/2)
[Senellart et al., 2018]

• Query rewriting to automatically compute output provenance
attributes in terms of the query and input provenance attributes:

• Duplicate elimination (DISTINCT, set union) results in aggregation
of provenance values with ⊕

• Cross products, joins results in combination of provenance values
with ⊗

• Difference results in combination of provenance values with 	

• Additional circuit gates on projection, join for support of
where-provenance

• Probability computation from the provenance circuits, via various
methods (naive, sampling, compilation to d-DNNFs)

57/62

Challenges

• Low-level access to PostgreSQL data structures in extensions
• No simple query rewriting mechanism
• SQL is much less clean than the relational algebra
• Multiset semantics by default in SQL
• SQL is a very rich language, with many different ways of
expressing the same thing

• Inherent limitations: e.g., no aggregation within recursive queries
• Implementing provenance computation should not slow down
the computation

• User-defined functions, updates, etc.: unclear how provenance
should work

58/62

ProvSQL: Current status

• Supported SQL language features:
• Regular SELECT-FROM-WHERE queries (aka conjunctive queries
with multiset semantics)

• JOIN queries (regular joins and outer joins; semijoins and antijoins
are not currently supported)

• SELECT queries with nested SELECT subqueries in the FROM clause
• GROUP BY queries (without aggregation)
• SELECT DISTINCT queries (i.e., set semantics)
• UNION’s or UNION ALL’s of SELECT queries
• EXCEPT queries

• Longer term project: aggregate computation
• Try it (and see a demo) from

https://github.com/PierreSenellart/provsql

59/62

https://github.com/PierreSenellart/provsql

Outline

Provenance definition

Representation Systems for Provenance

Provenance for Trees

Implementing Provenance Support

Conclusion

60/62

Relational Data Provenance [Senellart, 2017]

• Quite rich foundations of provenance management:
• Different types of provenance
• Semiring formalism to unify most provenance forms
• (Partial) extensions for difference, recursive queries, aggregation
• Compact provenance representation formalisms

• Some theory still missing:
• Provenance and updates
• Going beyond the relational algebra for full semiring provenance

• Now is the time to work on concrete implementation
• Need good implementation to convince users they should track
provenance!

• How to combine provenance computation and efficient query
evaluation, e.g., through tree decompositions?

61/62

Merci.
https://github.com/PierreSenellart/provsql

https://youtu.be/iqzSNfGHbEE?vq=hd1080

https://github.com/PierreSenellart/provsql
https://youtu.be/iqzSNfGHbEE?vq=hd1080

Bibliography i

Antoine Amarilli and Mikaël Monet. Example of a naturally ordered
semiring which is not an m-semiring.
https://math.stackexchange.com/questions/1966858,
2016.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance
circuits for trees and treelike instances. In Proc. ICALP, pages 56–68,
Kyoto, Japan, July 2015a.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Provenance
circuits for trees and treelike instances (extended version),
November 2015b. CoRR abs/1511.08723.

Antoine Amarilli, Pierre Bourhis, and Pierre Senellart. Tractable
lineages on treelike instances: Limits and extensions. In Proc.
PODS, pages 355–370, San Francisco, USA, June 2016.

https://math.stackexchange.com/questions/1966858

Bibliography ii

Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A
Circuit-Based Approach to Efficient Enumeration. In ICALP, 2017a.

Antoine Amarilli, Pierre Bourhis, Mikaël Monet, and Pierre Senellart.
Combined tractability of query evaluation via tree automata and
cycluits. In ICDT, 2017b.

Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias
Niewerth. Constant-Delay Enumeration for Nondeterministic
Document Spanners. In ICDT, 2019a.

Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias
Niewerth. Enumeration on Trees with Tractable Combined
Complexity and Efficient Updates. Under review, 2019b.

https://arxiv.org/abs/1702.05589
https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1807.09320
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://arxiv.org/abs/1812.09519

Bibliography iii

Antoine Amarilli, Florent Capelli, Mikaël Monet, and Pierre Senellart.
Connecting Knowledge Compilation Classes and Width Parameters.
Under review, 2019c.

K. Amer. Algebra Universalis, 18, 1984.
Yael Amsterdamer, Daniel Deutch, and Val Tannen. On the limitations
of provenance for queries with difference. In TaPP, 2011.

Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for
tree-decomposable graphs. J. Algorithms, 12(2):308–340, 1991.

Guillaume Bagan. MSO queries on tree decomposable structures are
computable with linear delay. In CSL, 2006.

https://arxiv.org/abs/1811.02944

Bibliography iv

Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and
where: A characterization of data provenance. In Database Theory -
ICDT 2001, 8th International Conference, London, UK, January 4-6,
2001, Proceedings., 2001.

James Cheney, Laura Chiticariu, and Wang Chiew Tan. Provenance in
databases: Why, how, and where. Foundations and Trends in
Databases, 1(4), 2009.

Daniel Deutch, Tova Milo, Sudeepa Roy, and Val Tannen. Circuits for
Datalog provenance. In ICDT, 2014.

Robert Fink, Larisa Han, and Dan Olteanu. Aggregation in probabilistic
databases via knowledge compilation. Proceedings of the VLDB
Endowment, 5(5):490–501, 2012.

Bibliography v

Floris Geerts and Antonella Poggi. On database query languages for
k-relations. J. Applied Logic, 8(2), 2010.

Todd J. Green and Val Tannen. Models for incomplete and
probabilistic information. IEEE Data Eng. Bull., 29(1), 2006.

Todd J Green, Grigoris Karvounarakis, and Val Tannen. Provenance
semirings. In PODS, 2007.

Tomasz Imieliński and Jr. Lipski, Witold. Incomplete information in
relational databases. J. ACM, 31(4), 1984.

Wojciech Kazana and Luc Segoufin. Enumeration of monadic
second-order queries on trees. TOCL, 14(4), 2013.

Pierre Senellart. Provenance and probabilities in relational databases:
From theory to practice. SIGMOD Record, 46(4), December 2017.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

Bibliography vi

Pierre Senellart, Louis Jachiet, Silviu Maniu, and Yann Ramusat.
ProvSQL: provenance and probability management in postgresql.
2018. Demonstration.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch.
Probabilistic Databases. Morgan & Claypool, 2011.

Ingo Wegener. The Complexity of Boolean Functions. Wiley, 1987.

	Provenance definition
	Preliminaries
	Boolean provenance
	Relational algebra reminder
	Semiring provenance
	And beyond…

	Representation Systems for Provenance
	

	Provenance for Trees
	Implementing Provenance Support
	

	Conclusion
	

	Appendix
	
	References

