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Idea of Information Extraction (IE)

• Going from unstructured text...

• ... to structured data
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Detour: Natural Language Processing (NLP)

• Part-of-speech (POS) tagging: annotate each word with its
grammatical nature
The/DET text/NN is/V annotated/ADJ.

• Word-sense disambiguation (WSD): choose the right meaning:
bass/1: a type of fish
bass/2: a music instrument

• Coreference resolution:
Trump told Macron that \rd{he} was not a spying target.
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Detour: Natural Language Processing (NLP), cont’d

• Parsing: �guring out the structure of the sentence:

• Preprocessing, e.g.:
• Stop-word removal: “the”, “is”, “at”
• Stemming: “su�xed”→ “su�x”

→ All these tasks are related to information extraction
→ But we will often try to do IE without solving these problems
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Named Entity Recognition (NER)

• Identifying named entities in a document
The �rst MPRI class for 2019 takes place at Sophie Germain.

• Possibly classify names in a simple type hierarchy: person,
address, date, organization, etc.

• Di�culties:
• Nested entities: “Bank of America”, “Carnegie Hall”
• Boundaries: “All England Lawn Tennis and Croquet Club”
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Approaches for NER

• If the set is �nite, use a dictionary
• For e�cient implementation, represent the dictionary as a trie
and run the Aho-Corasick algorithm

• For �xed format identi�ers (e.g., ISBNs, DOIs, emails, GTINs),
write a regexp with captures and run an automaton

• Otherwise, statistical approaches
• May use various features: context, morphology, case, punctuation,
part-of-speech tags, previously extracted named entities...

• Use a pre-trained model or train it on your data

• Implemented, e.g., in Spacy, NLTK, OpenNLP, or Stanford NER
http://nlp.stanford.edu:8080/ner/process
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Evaluating NER systems

• We must often evaluate systems to compare their performance
• We do so against a gold standard of correct results

• Performance is measured along two independent dimensions:
• Precision, the percentage of extracted matches that are correct
• Recall, the percentage of correct matches that are extracted

→ Extract everything gives 100% recall (and very bad precision)
→ Extract nothing gives unde�ned precision and 0% recall

• Combining these two scores: F1 measure, which is the harmonic
mean of precision and recall

• Or precision-recall curve to show the tradeo�
• To avoid over�tting, evaluate the system on a validation dataset
di�erent from the one on which the system was designed/trained
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Entity Disambiguation

• Disambiguate which entity is being used
→ The place and function of Venus in Ovid
→ Computed backscattering function of Venus and the moon

• Usually means choosing one of several entities with that name

• Several signals:
• Prior:

• How well-known the entity is
• How well the name �ts the entity

→ She went to Paris.

• Similarity between the context of the word in the text
and that of the entity in the knowledge base

• Consistency with other disambiguated entities

https://gate.d5.mpi-inf.mpg.de/webaida/
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Instance extraction

• Extracting a taxonomy with is-A relations
• “Pluto is a dog”
• “a dog is an animal”

• Hearst patterns:
• “Many scientists, including Einstein, believed...”
• “France, Germany and other countries have been plagued with...”
• “Other forms of government such as constitutional monarchy...”

• Set expansion:
• Start with a set of entities of the same type (e.g., countries),
• Find a list or table column containing several such entities
• Add the other entities (assume that they have the same type)

• Problems
• False positives: “the classi�cation of such cities as urban”
• Boundaries: “some scientists, such as computer scientists”
• Disambiguation, and semantic drift

• Taxonomy induction: cleaning up the resulting taxonomy
Example: NELL http://rtw.ml.cmu.edu/rtw/kbbrowser/pred:bird
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Fact extraction

• Generalization of Hearst patterns, e.g.: “X was born in Y”

• DIPRE: Dual Iterative Pattern Relation Expansion:
• Apply the patterns to generate more facts
• Use the new facts to learn more patterns

→ Problems: semantic drift; sometimes multiple relations match...

• Learning from structured Web content, e.g., lists and tables (cf
Web Data Commons), Wikipedia infoboxes...

• General technique: Wrapper induction (see next slide)
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Wrapper induction
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Slide credits

• Course structure inspired by the class by Fabian Suchanek https:
//suchanek.name/work/teaching/inf344-2018/index.html

• Slide 4: https://www.nltk.org/_images/tree.gif
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