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This is the re-take of the final exam for the Uncertain Data Management class. The grade in
this exam will replace your grade of the first session of the final exam, and will become your final
grade for the class.

The exam consists of 4 independent exercises: exercises 1 and 2 are about uncertain data man-
agement (Antoine’s part), and exercises 3 and 4 are about social data management (Silviu’s part).
You must write your answer to exercises 3 and 4 on a separate sheet of paper.

No additional explanations will be given during the exam, and no questions will be answered.
If you think you have found an error in the problem statement, you should report on your answer
sheet what you believe to be the error, and how you chose to interpret the intent of the question
to recover from the alleged error.

You are allowed up to two A4 sheets of personal notes (i.e., four page sides), printed or written
by hand, with font size of 10 points at most. If you use such personal notes, you must hand them
in along with your answers. You may not use any other written material.

The exam is strictly personal: any communication or influence between students, or use of
outside help, is prohibited. No electronic devices such as calculators, computers, or mobile phones,
are permitted. Any violation of the rules may result in a grade of 0 and/or disciplinary action.

Exercise 1: Knights of the Round Table (4 points)

Consider the following BID table representing the uncertain location of knights of the round table.
The key attribute of the BID table is knight.

T

knight location

Lancelot Camelot 0.4
Lancelot Brocéliande 0.4

Galahad Camelot 0.6

Question 1 (0.5 point). Which of the following two tables is a possible world of T? (No justifi-
cation is expected.)

T1

knight location

Lancelot Camelot
Galahad Camelot

T2

knight location

Lancelot Camelot
Lancelot Brocéliande
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Answer. Only T1 is a possible world; T2 violates the semantics of BID tables because
it contains two tuples from the first block.

Question 2 (0.5 point). Consider the query Q1 πlocation(σknight=“Galahad”(T )) asking for the
location of Galahad. Give a TID instance representing the result of evaluating Q1 on the table T.

Answer.

location

Camelot 0.6

Question 3 (1 point). Consider the query Q2 asking for the knights located at Camelot. The
query Q2 should return a table with only one attribute, named knight. Write down the query Q2

in the relational algebra.

Answer. The query Q2 is defined by:

πknight(σlocation=“Camelot”(T ))

Question 4 (1 point). Consider the evaluation of Q2 on the table T . Can the result be represented
as a TID instance? If yes, give a suitable TID instance and justify; if not, prove that no TID instance
can represent it.

Answer. The query result can be correctly represented as a TID instance as follows:

knight

Lancelot 0.4
Galahad 0.6

The reason why this is correct is because the two tuples that match the selection of Q2

are in different blocks, so they are independent.

Question 5 (1 point). Is there a query Q3 such that the result of evaluating Q3 on the table T
cannot be represented as a pc-instance? If yes, give such a query Q3 and justify; if not, prove that
no such query Q3 exists.

Answer. No such query Q3 exists. Indeed, for any query Q3, the probabilistic instance
obtained by evaluating Q3 on T can be represented as a pc-instance, because we have
seen in class that any probabilistic instance can be represented as a pc-instance.
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Exercise 2: Numbers of Possible Worlds (6+ points)

In this exercise, recall that a row of a table is simply a line of the table, e.g., the BID instance T
given in Exercise 1 has 3 rows.

Question 1 (1 point). Give an example of a TID instance that has at least 42 possible worlds.

Answer.

x

a 0.5
b 0.5
c 0.5
d 0.5
e 0.5
f 0.5

Question 2 (1 point). If a TID instance has n rows, how many possible worlds can it have at
most? Give the best possible bound, and justify why it is correct.

Answer. For each row, we know that either the row is present or it is absent, so we
have at most 2n possible worlds, and this bound can be achieved with a table like the
one used in Question 1.

Question 3 (1 point). If a BID instance has n rows, how many possible worlds can it have at
most? Give the best possible bound, and justify why it is correct.

Answer. For each row, we know that either the row is present or it is absent, so
we have at most 2n possible worlds. This bound can indeed be achieved with a TID
instance (which is a special case of a BID instance) where we ensure that each tuple
is in its own block. (In other words, having blocks with more than one tuple is never
helpful to achieve a large number of possible worlds.)

Question 4 (1 point). Is there a TID instance having exactly 42 possible worlds? If yes, give an
example; if not, explain why.

Answer. The number of possible worlds of a TID instance is always a power of two,
and 42 is not a power of two, so there is no such TID instance.
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Question 5 (2 points). Is there a BID instance having exactly 42 possible worlds? If yes, give an
example; if not, explain why.

Answer.

x y

u a 1/2
u b 1/2

v a 1/3
v b 1/3
v c 1/3

w a 1/7
w b 1/7
w c 1/7
w d 1/7
w e 1/7
w f 1/7
w g 1/7

The number of possible worlds is 2× 3× 7 = 42.

Question 6 (bonus). We consider a positive integer n, and search for a BID instance having
exactly n possible worlds (if one exists) and whose number of rows is as small as possible. We
call r(n) the minimal number of rows of a BID instance having n possible worlds. Explain how to
compute r(n) as a function of n.

Answer. The number of possible worlds of a BID instance is the product of the number
of possible worlds for each block, and the number of possible worlds of a block containing
d rows is at most d+ 1, as can be obtained by setting the probabilities so that we keep
either one of the tuples of the block or no tuple for this block. Hence, if we decompose
n into prime factors n = p1 × · · · × pk, then we can construct a BID instance having
exactly n possible worlds and having a number of rows equal to

∑
i(pi − 1).

We argue that the bound is the best possible, so that r(n) is equal to this value. The
reason is that any BID instance having exactly n possible worlds implies a decomposition
of n into factors, as given by the blocks. Hence, any BID instance with n possible worlds
can be seen as obtained from the BID instance that we described, by merging blocks.
Now it is obvious that merging blocks can never reduce the number of rows, because
for any integers p > 0 and q > 0 it is clear that (p − 1) + (q − 1) is no greater than
pq − 1. This concludes the proof.
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Exercise 3: Graph Measures (6 points)

In this exercise, we will work with some graph analysis measures, as defined in the course. Consider
the following undirected graph G:

Question 1 (0.5 point). Write down the degree distribution of the graph G.

Answer. To compute the degree distribution, we have to compute, for each degree d,
its probability P (d) as the fraction between the number of nodes having degree d and
the total nodes in the graph.

In this case:

P (1) =
1

5
= 0.2,

P (2) =
2

5
= 0.4,

P (3) =
1

5
= 0.2,

P (4) =
1

5
= 0.2.

Notice that is is indeed a distribution, that is
∑

d P (d) = 1.

Question 2 (1 point). What is the average degree 〈k〉 in the graph G? Explain how it can be
computed from the degree distribution.

Answer. The average degree is equal to the expectation of the degree distribution,
computed as:

〈k〉 =
∑
d

d× P (d),

where P (d) is the probability of a node having degree d in the graph, computed above.

In our case:
〈k〉 = 1× 0.2 + 2× 0.4 + 3× 0.2 + 4× 0.2 = 2.4

Question 3 (0.5 point). How many triangles are there in the graph G? Reminder : a triangle is
a subgraph of size 3 that is complete.

Answer. There are only 2 triangles in this graph, easily visible in the figure.
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Question 4 (1 point). We work now with the Erdős-Rényi random graph model, and we wish to
get random graphs having the same average degree as G. What is the resulting parameter p – the
probability of an edge existing – in such a graph?

Answer. From the course, we know that in a random graph 〈k〉 = p× (|V | − 1).

Then, in our case:

p =
〈k〉
|V | − 1

=
2.4

4
= 0.6.

Question 5 (3 points). Compute the expected number of triangles in the random graph model,
as a function of the number of nodes |V | = n and of the parameter p. Now compute this value
using the value of p obtained in Question 4, and using the same number of vertices as G, i.e., 5.
How does it compare to the number of triangles in the example graph above?
Hint : you will need to use the formula for the binomial coefficient:(

n

k

)
=

n!

k!(n− k)!
.

Answer. For computing the expected number of triangles in a random graph of n
nodes and parameter p, we need two ingredients:

1. the number of possible triangles in the graph:
(
n
3

)
, and

2. the probability of a given triangle existing: this is p× p× p.
This results in:

〈∆〉 =

(
n

3

)
× p3.

Notice this works because of the linearity of expectation and the fact that the triangles
in the graph are identically distributed.

In our case:

〈∆〉 =

(
5

3

)
× p3 = 10× 0.63 = 2.16.

This is comparable to what we counted in Question 3: 2 triangles.

Exercise 4: Random Graphs Modeled as Uncertain Graphs (4 points)

In this exercise, we will work with the Erdős-Rényi random graph model again. A random graph
with parameter p can also be thought of as an uncertain graph G = (V,E, p), where the underlying
graph is complete, i.e., there exists an edge between every node in both directions, and each edge
has the same probability of existing, equal to p.
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Question 1 (2 points). Take the random graph having |V | = 3 and p = 0.2, and take two distinct
nodes s and t of this graph. Compute the reachability probability between s and t. Hint : the
probability is the same no matter our choice for s and t.

Answer. There are two cases:

1. either the direct edge exists between s and t, with probability p = 0.2; or

2. the edge does not exist with probability 1−p = 0.8 and the other two edges in the
graph exist with probability p× p = 0.04.

Then the final probability is P = p+ (1− p)× p× p = 0.2 + 0.8× 0.04 = 0.232.

Question 2 (2 points). Now consider the general case, where we write n := |V | and write p the
probability parameter. We assume that n > 1, and choose two distinct nodes s and t. Compute
the probability that s and t are at distance exactly 2: that is, to reach t from s, the shortest path
passes through one intermediary node x (different from s and t).

Answer. Here, we have a conjunction of two events. First, the direct edge between
s and t must not exist (because then the distance would be 1) – this occurs with
probability 1 − p. Second, at least one of the other n − 2 nodes x must act as the
intermediary node on the path s → x → t; this occurs, for each possible node x, with
probability p× p.
Then the final probability P (dst = 2) that s and t are at distance 2 of each other is:

P (dst = 2) = (1− p)(1−
∏
n−2

(1− p2)) = (1− p)(1− (1− p2)n−2).
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