
Exam
Uncertain Data Management

Université Paris-Saclay, M2 Data&Knowledge

January 30th, 2017

This is the final exam for the Uncertain Data Management class, which will determine your grade for
this class. The duration of the exam is 2.5 hours. The exam consists of 4 independent exercises.

No additional explanations will be given during the exam, and no questions will be answered. If you
think you have found an error in the problem statement, you should report on your answer sheet what
you believe to be the error, and how you chose to interpret the intent of the question to recover from
the alleged error.

You are allowed up to two A4 sheets of personal notes (i.e., four page sides), printed or written by
hand, with font size of 10 points at most. If you use such personal notes, you must hand them in along
with your answers. You may not use any other written material.

Write your name clearly on the top right of every sheet used for your exam answers. Number every
page. Please use one sheet when answering Exercises 1 and 2, and a different sheet when answering
Exercises 3 and 4.

The exam is strictly personal: any communication or influence between students, or use of outside help,
is prohibited. No electronic devices such as calculators, computers, or mobile phones, are permitted.
Any violation of the rules may result in a grade of 0 and/or disciplinary action.

Exercise 1: Number of Possible Worlds of c-tables (6 points)

Recall that a c-table is a relational table where tuples carry an annotation. The annotation is a Boolean
formula on equalities and inequalities that involve constant values and variables (called named nulls).
In this exercise, we consider c-tables where nulls may only occur in annotations, i.e., they do not occur
elsewhere in the table.

Recall that a valuation of a c-table T is a function that maps each named null of the table to a value.
Given a valuation ν of the c-table, we can apply it to the c-table by replacing each named null with
its value in ν, evaluating the equalities and inequalities, evaluating the Boolean formulae, and keeping
the tuples whose annotation evaluates to true. The result of this process is a relational table, called a
possible world of T , and we say that it is obtained from ν. Remember that a given possible world may
be obtained by several different valuations.

A Boolean c-table is a c-table whose nulls can only be replaced by two values, True and False; in other
words, we only consider valuations whose domain is {True,False}. By contrast, a general c-table is a
c-table where nulls can be replaced by arbitrary values. This exercise studies the number of possible
worlds of c-tables.

We first consider Boolean c-tables. We give an example of a Boolean c-table T1 below, which has two
named nulls NULL1 and NULL2, and where two constant values (True and False) occur in the annotations:

1



T1

att1 att2

a b NULL1 = True
a a NULL2 = True ∨ NULL1 = True
b b NULL1 = False

One example of a valuation is the function mapping NULL1 to True and NULL2 to False. The possible
world obtained by this valuation is the relational table consisting of the first two rows of T1 (without
their annotation).

Question 1 (0.5 point). Give the possible worlds of T1. For each possible world, give all the valuations
that can be used to obtain that possible world. (No justification is required. There should be three
possible worlds, and four valuations in total.)

Answer. The following possible world can be obtained by mapping NULL1 to True and NULL2
to True, or NULL1 to True and NULL2 to False:

att1 att2

a b
a a

The following possible world can be obtained by mapping NULL1 to False and NULL2 to True:

att1 att2

a a
b b

The following possible world can be obtained by mapping NULL1 to False and NULL2 to False:

att1 att2

b b

Question 2 (0.5 point). Give an example of a Boolean c-table T2 that contains 4 different named
nulls and 4 tuples, and that has exactly 16 possible worlds. (There are multiple possible solutions. No
justification is required. You do not need to write the 16 possible worlds explicitly.)

Answer. We can use the following c-table T2 (many different answers are possible):

att1 att2

a b NULL1 = True
a c NULL2 = True
a d NULL3 = True
a e NULL4 = True

2



Question 3 (0.5 point). Give an example of a Boolean c-table T3 that contains 4 different named
nulls and 4 tuples, and that has exactly 1 possible world. (There are multiple possible solutions. No
justification is required.)

Answer. We can use the following c-table T3 (many different answers are possible):

att1 att2

a b NULL1 = True ∨ NULL1 = False
a c NULL2 = True ∨ NULL2 = False
a d NULL3 = True ∨ NULL3 = False
a e NULL4 = True ∨ NULL4 = False

Question 4 (0.5 point). Consider an arbitrary Boolean c-table T4, and let p ∈ N be the number of
tuples of T4. Prove that the number of possible worlds of T4 is at most 2p. (We call this an upper bound
on the number of possible worlds of T4 as a function of p.)

Answer. Each possible world of T4 is a subset of the tuples of T4 (without annotations),
so the set of possible worlds of T4 is a subset of the powerset of the tuples of T4 (without
annotations). As there are p tuples, the powerset has size 2p, so the set of possible worlds
has size at most 2p, proving the result.

Question 5 (1 point). Consider an arbitrary Boolean c-table T5, and let q ∈ N be the number of
different named nulls that occur in T5. Express, as a function of q, the number of different valuations
of T5. Deduce an upper bound on the number of possible worlds of T5 as a function of q.

Answer. There are 2q possible valuations for T5. Consider the mapping φ from the set of
valuations of T5 to its set of possible worlds, where φ maps each valuation to the possible
world that it generates. The mapping φ is surjective, because each possible world must have
been produced by some valuation. Hence, the cardinality of the image of φ is at most that
of its domain. As the domain of φ has size 2q, its image has size at most 2q, so there are at
most 2q possible worlds, proving the result.

We now move to general c-tables, i.e., c-tables where valuations can map named nulls to arbitrary values
(but these nulls are still only allowed to occur in annotations). Given a general c-table T , we will write
q ∈ N for the number of different named nulls that occur in the annotations of T , we will write r ∈ N
for the number of different constant values that occur in the annotations of T , and we will write w ∈ N
for the number of possible worlds of T .

Question 6 (1 point). Give an example of a general c-table T6 with two named nulls (q = 2), one
constant value (r = 1), and which has exactly 5 possible worlds (w = 5). (There are multiple possible
solutions. No justification is required.)

Answer. We can use the following c-table T6 (many different answers are possible):

3



att1 att2

a b NULL1 = 42 ∧ NULL2 = 42
a c NULL1 = 42 ∧ NULL2 6= 42
a d NULL1 6= 42 ∧ NULL2 = 42
a e NULL1 6= 42 ∧ NULL2 6= 42 ∧ NULL1 = NULL2
a f NULL1 6= 42 ∧ NULL2 6= 42 ∧ NULL1 6= NULL2

Question 7 (1 point). Consider an arbitrary general c-table T7 with only one named null (q = 1).
Show that w ≤ r + 1.

Answer. We show that, for any two valuations ν and ν ′, if ν and ν ′ each map the named null
to a value that do not occur in the table annotations, then ν and ν ′ give the same possible
world. To do this, we show that all equalities and inequalities evaluate in the same way under
ν and ν ′.

Indeed, all equalities and inequalities that do not involve the named null, or that only involve
the named null, are constant Boolean expressions, so they evaluate in the same way under
ν and ν ′. Now, the equalities that involve the named null and one of the constant values
that occur in the annotations evaluate to false under both ν and ν ′, because the named null
is assigned a value which is different from all constant values that occur in the annotations.
Likewise, the inequalities of this form evaluate to true under both ν and ν ′.

Hence, the equalities and inequalities in the annotations of T7 evaluate in the same way under
ν and ν ′, hence, so do the entire annotations, so ν and ν ′ yield the same possible world.

As there are exactly c valuations that map the named null to a value that does occur in the
table annotations, we deduce that there are at most c + 1 possible worlds, namely, these c
possible worlds, plus the one common possible world obtained from all other valuations.

Question 8 (1 point). Consider an arbitrary general c-table T8 where no constant values occur in
annotations (r = 0). Show that w ≤ 2q

2
.

Answer. Given a valuation ν of T8, its trace is the function τ from pairs of named nulls
to {0, 1} defined by τ(NULLi, NULLj) being 1 or 0 depending on whether ν(NULLi) = ν(NULLj)
or ν(NULLi) 6= ν(NULLj). It is clear that two valuations with the same trace give the same
possible world, because all equalities and inequalities between nulls evaluate in the same way
(it is entirely determined by the trace). Now, the number of possible traces is clearly bounded
from above by 2q

2
, which concludes.

Bonus question (optional). Explain why the bound of question 8 is not tight. Can you find a better
bound (still assuming r = 0)?

Answer. The bound of question 9 is not tight because not every possible trace (i.e., function
from pairs of named nulls to {0, 1}) is actually a trace of a valuation. For instance, for any
named null NULLi, we must have τ(NULLi, NULLi) = 1. Further, for any three named nulls
NULLi, NULLj , NULLk, if τ(NULLi, NULLj) = 1 and τ(NULLj , NULLk) = 1 then we must have
τ(NULLi, NULLk) = 1 by transitivity of equality, and if τ(NULLi, NULLj) = 1 then we must have
τ(NULLi, NULLk) = τ(NULLj , NULLk).

4



To obtain a better bound, we can use the Bell numbers, where the n-th Bell number B(n)
is the number of partitions of the set {1, . . . , n} of the first n integers, and where a partition
of {1, . . . , n} is a set of disjoint subsets of {1, . . . , n} whose union is {1, . . . , n}. In the absence
of constant values (i.e., r = 0), the number of possible traces is exactly B(q), because all we
have to choose is which nulls are equal to each other, with each choice defining a partition of
the set of nulls. So we have w ≤ B(q), and this bound is tight as we can construct a c-table
where each tuple tests a specific choice of trace.

Exercise 2: Games and Prizes (4 points)

We consider two relational tables given below: one table Game, indicating which games of chance you
have won, and one table Prize, indicating the prizes at stake for each game. We further consider the
query Q asking what are the prizes at stake for the games that you won: its result Q(Game,Prize) on
Game and Prize is also given below.

Game

game

Loto
Bingo

Prize

game prize

Loto Money
Bingo Car
Bingo Castle

Q(Game,Prize)

prize

Money
Car
Castle

Question 1 (1 point). Express the query Q in the relational algebra, and in the relational calculus.

Answer. In the relational algebra:

Q : πprize(Game ./ Prize)

In the relational calculus:

Q(p) : ∃g Game(g) ∧ Prize(g, p)

Consider now the probabilistic version of the Game table given by the following tuple-independent
database (TID), indicating the probability that you win each game:

Game2

game

Loto 0.1
Bingo 0.3

Consider the probabilistic relation T defined by evaluating the query Q on the TID relation Game2
and the non-probabilistic relation Prize above, i.e., T := Q(Game2,Prize). This relation describes the
possible prizes that you will win, assuming the distribution of Game2 on the games that you win.

5



Question 2 (1 point). Give the four possible worlds of T and the probability of each possible world.

Answer. These are the possible worlds and their probabilities:

0.03

prize

Money
Car
Castle

0.27

prize

Car
Castle

0.07

prize

Money

0.63

prize

Question 3 (1 point). Show that T cannot be expressed as a TID table.

Answer. Assume that there is a TID T ′ that represents T . From the possible world of T with
three tuples, we deduce that T ′ contains each of these three tuples, and that the probability
of each of them is greater than 0. From the possible world of T with no tuples, we deduce
that the probability of each of them is less than 1. Now, this implies that T ′ has a possible
world containing only the third tuple, but this is not a possible world of T , so we have reached
a contradiction.

Question 4 (1 point). Remember that a pc-table is a Boolean c-table where named nulls occurs only
in annotations (see Exercise 1), and each named null has a given probability of being true: we call
the named nulls variables. Give a pc-table that expresses T , i.e., which represents the probabilistic
instance T . (There are multiple possible solutions. No justification is required.)

Answer. We can use the following pc-table, which has one named null NULL1 with proba-
bility 0.1 of being true, and one named null NULL2 with probability 0.3 of being true:

game

Money NULL1 = True
Car NULL2 = True
Castle NULL2 = True

Exercise 3: Lineages, Queries, and Probabilities (4 points)

Consider the following Boolean formula, where the variables x1, x2, y1, y2, y3, y4 represent independent
probabilistic events:

Φ = x1y3 ∨ x2y4 ∨ x1y1 ∨ x2y2.

Question 1 (1 point). Remember that a read-once formula is a Boolean formula where each variable
occurs at most once. Rewrite Φ to an equivalent read-once formula, Use this to compute the probability
P(Φ), as a function of the probabilities P(x1),P(x2),P(y1),P(y2),P(y3),P(y4) of each variable.

6



Answer. First, we rewrite Φ in a read-once form:

Φ = x1(y1 ∨ y3) ∨ x2(y2 ∨ y4).

This rewriting allows us to only use independent intensional rules, in this case independent-
AND and independent-OR:

P(Φ) = 1− (1− P(x1)P(y1 ∨ y3)) (1− P(x2)P(y2 ∨ y4))
= 1− (1− P(x1) (1− (1− P(y1)) (1− P(y3)))) (1− P(x2) (1− (1− P(y2)) (1− P(y4)))) .

In the rest of this exercise, we will work on pc-tables (see Exercise 2 for a reminder of what this is),
whose variables are chosen among x1, x2, y1, y2, y3, y4. An atomic pc-table on variables x1, . . . , xm is a
pc-table where each fact is annotated with a condition of the form xi = True for some i ∈ {1, . . . ,m},
and where each condition is used at most once (so in particular there are at most m tuples). An atomic
pc-table on variables y1, . . . , ym is defined analogously. Remember that the lineage of a Boolean query on
some pc-tables is a Boolean formula expressed on the variables of the pc-tables that precisely describes
the conditions for which the query evaluates to true.

Question 2 (1 point). Consider the query Q() := ∃x, y A(x)∧B(x, y), expressed in the relational cal-
culus. Write an atomic pc-table A on variables x1, x2 and an atomic pc-table B on variables y1, y2, y3, y4
such that the lineage of Q on A and B is Φ.

Answer.

A possible database is composed of the following tables:

A

x

a x1 = True
b x2 = True

B

x y

a c y1 = True
b e y2 = True
a d y3 = True
b f y4 = True

Question 3 (2 points). Write Q in the relational algebra. Detail the steps of a safe extensional plan
for the query Q and for the tables A and B from Question 2. What is the final probability formula and
how does it compare to the one obtained in Question 1?

Answer.

First, let us write Q in relational algebra:

Q() := π∅(A ./ B)

:= π∅(πxA ./ πxB)

There are two ways to proceed about making an extensional plan for Q. Either we start with
a join, but then we would have a plan that is not safe, because the results of the join step
are not independent.

7



The only approach to a safe query is by first projecting each relation on x:

πxA

x

a P(x1)
b P(x2)

πxB

x

a 1− (1− P(y1))(1− P(y3))
b 1− (1− P(y2))(1− P(y4))

Then, we perform the join:

πxA ./ πxB

x

a P(x1)(1− (1− P(y1))(1− P(y3)))
b P(x2)(1− (1− P(y2))(1− P(y4)))

The final result is:

π∅(πxA ./ πxB)

1− (1− P(x1) (1− (1− P(y1)) (1− P(y3)))) (1− P(x2) (1− (1− P(y2)) (1− P(y4))))

The probability formula is the same as the one obtained in Question 1, due to the fact that
the plan is safe.

Exercise 4: Probabilistic Queries Continued (6 points)

For this exercise, we will consider variants of the H0 query:

H0() := ∃x, y R(x) ∧ S(x, y) ∧ T (y)

a query that is known to be hard to evaluate on TID instances. Moreover, we will consider databases
that conform to the structure S, which means the following:

• R is an atomic pc-table on x1, . . . , xm (see the definition in Exercise 3), containing m tuples, with
one attribute x.

• T is an atomic pc-table on y1, . . . , yn, containing n tuples, with one attribute y.

• S is a deterministic instance that has two attributes x and y, and which contains all tuples of the
form (a, b) such that a appears in a tuple of R and b appears in a tuple of T . Hence S always
contains exactly m× n tuples.

An example of a database D that conforms to the structure S is given below, where m = n = 2:

R

x

a x1 = True
b x2 = True

S

x y

a c
a d
b c
b d

T

y

c y1 = True
d y2 = True

8



Question 1 (1.5 points). First, we consider a non-Boolean form of H0:

H ′
0(x) := ∃y R(x) ∧ S(x, y) ∧ T (y)

and the database instance D above. Show the lineage formula for the Boolean query H ′
0(a), derive its

probability formula and draw the resulting read-once circuit.

Answer. The lineage of the query is:

Φ = x1y1 ∨ x1y2 = x1 ∧ (y1 ∨ y2).

Using independent-AND and independent-OR, the probability formula is:

P(Φ) = P(x1)(1− (1− P(y1))(1− P(y2)).

The read-once circuit is hence:

⌵

⌵

x y1 y2

Question 2 (1.5 points). Show that, for any database D′ that conforms to the structure S, and for any
element b that occurs in a tuple of R, the lineage for H ′

0(b) is always read-once. Write down a general
formula for its probability, and draw the general form of its read-once circuit.

Answer. For H ′
0(a) we only need to consider the lines in S(x, y) which have x = a. Then

the final results will be tuples of the form (a, b) where b are all values that occur in T , written
ADom(T ). Then the lineage has the following form:

Φ = xy1 ∨ · · · ∨ xyn = x ∧ (y1 ∨ · · · ∨ yn),

where x is the corresponding probabilistic event of a in R, and y1, . . . , yn are all the proba-
bilistic events in T .

Similarly to Question 1, the probability formula is of the form:

P(Φ) = P(x)

(
1−

∏
yi

(1− P(yi))

)
.

The read-once circuit is:

9



⌵

⌵

x y1 y2 . . . ym

Question 3 (2 points). Moving back to the Boolean form of H0(), explain why, in general, its lineage
on database instances that conform to the structure S is not read-once.

Answer. We can write the lineage of H0() as a combination of the lineages of H0(a),
a ∈ ADom(R):

Φ(H0()) =
∨

a∈ADom(R)

Φ(H0(a))

=
∨
xi

(xi ∧ (y1 ∨ · · · ∨ yn))

=
∨
yj

(yj ∧ (x1 ∨ · · · ∨ xm)) .

As can be seen above, we cannot reduce the formula Φ(H0()), when we have more than 1
tuple in R or more than 1 tuples in T : even if we use an xj as a common factor or a yi,
the y1, . . . , yn and, respectively, the x1, . . . , xm terms appear in multiple places. Hence, the
resulting formula is not read-once in general.

Question 4 (1 point). Consider a database D′′ that conforms to the structure S, with m ≥ 1 and
n ≥ 1. Give a condition for D′′ for which H0() can be read-once. No justification needed.

Answer. A possible database is one in which R only contains one tuple, say a, and T
contains at least one tuple: in this case, the lineage of H0() is the same as the one of H0(a).
We proved in the answer to Question 2 that this query leads to a read-once lineage formula.

10


