

Uncertain Data Management

NULLS

Antoine Amarilli¹, Silviu Maniu²

November 28th, 2016

¹Télécom ParisTech

²LRI

NULLS

Represent missing information in a relation.

Represent missing information in a relation.

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

Represent missing information in a relation.

Booking

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

Other name: Codd tables.

Each NULL can be replaced independently by any domain value

Each NULL can be replaced independently by any domain value

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

Each NULL can be replaced independently by any domain value

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	C42
2016-12-12	Silviu	UDM	C42

Each NULL can be replaced independently by any domain value

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	xbecz
2016-12-12	gruiiik	UDM	buuuk

How can we evaluate **queries** on Codd tables?

How can we evaluate queries on Codd tables?

Booking

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

SELECT * FROM Booking WHERE teacher='Silviu';

How can we evaluate queries on Codd tables?

Booking

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

SELECT * FROM Booking WHERE teacher='Silviu';

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir

How can we evaluate **queries** on Codd tables?

Booking

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL
2016-12-12	NULL	UDM	NULL

SELECT * FROM Booking WHERE teacher='Silviu';

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir

Three-valued logic

- · Usually, we evaluate operations as **Boolean**:
 - · WHERE a='42' OR (b=c AND NOT (c=d))
 - ightarrow WHERE False OR (True AND NOT (True))
 - \rightarrow False

Three-valued logic

- · Usually, we evaluate operations as **Boolean**:
 - · WHERE a='42' OR (b=c AND NOT (c=d))
 - ightarrow WHERE False OR (True AND NOT (True))
 - \rightarrow False
- In SQL, values can be True, False, or Unknown (NULL)

Three-valued logic

- · Usually, we evaluate operations as **Boolean**:
 - · WHERE a='42' OR (b=c AND NOT (c=d))
 - ightarrow WHERE False OR (True AND NOT (True))
 - \rightarrow False
- In SQL, values can be True, False, or Unknown (NULL)
- Essentially anything that involves NULL is NULL

WHERE 42=43 OR (42=NULL OR 42=43)

```
WHERE 42=43 OR (42=NULL OR 42=43)
```

ightarrow False OR (Unknown OR False)

```
WHERE 42=43 OR (42=NULL OR 42=43)
```

- → False OR (Unknown OR False)
- ightarrow False OR Unknown

```
WHERE 42=43 OR (42=NULL OR 42=43)
```

- → False OR (Unknown OR False)
- \rightarrow False OR Unknown
- \rightarrow Unknown

```
WHERE 42=43 OR (42=NULL OR 42=43)
```

- → False OR (Unknown OR False)
- \rightarrow False OR Unknown
- \rightarrow Unknown

WHERE 42=45 OR (42=NULL OR 42=42)

- → False OR (Unknown OR False)
- \rightarrow False OR Unknown
- \rightarrow Unknown

ightarrow False OR (Unknown OR True)

- \rightarrow False OR (Unknown OR False)
- \rightarrow False OR Unknown
- \rightarrow Unknown

- → False OR (Unknown OR True)
- ightarrow False OR True

```
WHERE 42=43 OR (42=NULL OR 42=43)
```

- \rightarrow False OR (Unknown OR False)
- ightarrow False OR Unknown
- \rightarrow Unknown

```
WHERE 42=45 OR (42=NULL OR 42=42)
```

- ightarrow False OR (Unknown OR True)
- ightarrow False OR True
- ightarrow True

AND	True	False
	True False	

AND	True	False	NULL
True	True	False	
False	False	False	
NULL			

AND	True	False	NULL
True	True	False	
False	False	False	False
NULL		False	

AND	True	False	NULL
True	True	False	NULL
False	False	False	False
NULL	NULL	False	NULL

OR	True	False
True	True	True
False	True	False

OR	True	False	NULL
True	True	True	
False	True	False	
NULL			

OR	True	False	NULL
True	True	True	True
False	True	False	
NULL	True		

OR	True	False	NULL
True	True	True	True
False	True	False	NULL
NULL	True	NULL	NULL

What is NULL * 42?

- What is NULL * 42?
 - \rightarrow NULL

- · What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - ightarrow Implementation-dependent: NULL or error

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - \rightarrow Implementation-dependent: NULL or error
- What is NULL = NULL?

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - ightarrow Implementation-dependent: NULL or error
- What is NULL = NULL?
 - \rightarrow NULL

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - → Implementation-dependent: NULL or error
- What is NULL = NULL?
 - ightarrow NULL
- What does the following do?

SELECT * FROM Booking WHERE room=NULL

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - \rightarrow Implementation-dependent: NULL or error
- What is NULL = NULL?
 - \rightarrow NULL
- · What does the following do?
 - SELECT * FROM Booking WHERE room=NULL
 - → Returns an empty result

- What is NULL * 42?
- What is NULL / 0?
 - \rightarrow Implementation-dependent: NULL or error
- What is NULL = NULL?
 - \rightarrow NULL

 \rightarrow NULL

· What does the following do?

```
SELECT * FROM Booking WHERE room=NULL
```

- → Returns an **empty result**
- What does the following do?

```
SELECT * FROM Booking WHERE room='C42' OR room<>'C42'
```

- What is NULL * 42?
 - \rightarrow NULL
- What is NULL / 0?
 - \rightarrow Implementation-dependent: NULL or error
- What is NULL = NULL?
 - \rightarrow NULL
- · What does the following do?

```
SELECT * FROM Booking WHERE room=NULL
```

- → Returns an **empty result**
- What does the following do?

```
SELECT * FROM Booking WHERE room='C42' OR room<>'C42'
```

→ Return everything where room is **not NULL**

Three-valued logic (fixes)

- · IS NULL
 - → test if an expression is **NULL**
- · Law of excluded fourth:

[COND] IS TRUE OR [COND] IS FALSE OR [COND] IS NULL

Three-valued logic (more complaints)

This is **silly** in terms of semantics!

Booking

date	teacher	class	room	
2016-12-05	Antoine	UDM	NULL	

SELECT * FROM Booking WHERE room='C42' OR room<>'C42'

Three-valued logic (more complaints)

This is **silly** in terms of semantics!

Booking	

date	teacher	class	room	
2016-12-05	Antoine	UDM	NULL	

SELECT * FROM Booking WHERE room='C42' OR room<>'C42'

Possible worlds:

- · Either the NULL is 'C42'
- · ... or the NULL is something else

Three-valued logic (more complaints)

This is **silly** in terms of semantics!

Booking						
date	teacher	class	room			
2016-12-05	Antoine	UDM	NULL			

SELECT * FROM Booking WHERE room='C42' OR room<>'C42'

Possible worlds:

- · Either the NULL is 'C42'
- · ... or the NULL is something else
- \rightarrow ... so the tuple should match in either case!

Booking

date	teacher	class	room
2016-11-21	Silviu	UDM	Saphir
2016-11-28	Antoine	UDM	Saphir
2016-12-05	Antoine	UDM	NULL

	Booking	Repairs			
date teacher class r		room	room	cause	
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak
2016-11-28	Antoine	UDM	Saphir	NULL	leopard
2016-12-05	Antoine	UDM	NULL		

Booking				Repairs		
date teacher class room		room	room	cause		
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak	
2016-11-28	Antoine	UDM	Saphir	NULL	leopard	
2016-12-05	Antoine	UDM	NULL			

SELECT * FROM Booking WHERE room NOT IN (SELECT room FROM Repairs)

Booking				Repairs		
date teacher class room		room	room	cause		
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak	
2016-11-28	Antoine	UDM	Saphir	NULL	leopard	
2016-12-05	Antoine	UDM	NULL			

SELECT * FROM Booking WHERE room NOT IN (SELECT room FROM Repairs)

 \rightarrow Empty result!

	Booking	Repairs			
date teacher class i		room	room	cause	
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak
2016-11-28	Antoine	UDM	Saphir	NULL	leopard
2016-12-05	Antoine	UDM	NULL		

SELECT * FROM Booking WHERE room NOT IN (SELECT room FROM Repairs)

 $\rightarrow \ \text{Empty result!}$

SELECT * FROM Booking WHERE room NOT IN

(SELECT room FROM Repairs WHERE room IS NOT NULL)

	Booking	Repairs			
date teacher class room		room	room	cause	
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak
2016-11-28	Antoine	UDM	Saphir	NULL	leopard
2016-12-05	Antoine	UDM	NULL		

SELECT * FROM Booking WHERE room NOT IN (SELECT room FROM Repairs)

 \rightarrow Empty result!

SELECT * FROM Booking WHERE room NOT IN $(\mbox{SELECT room FROM Repairs WHERE room IS NOT NULL})$

→ Does **not** contain the **NULL** for 2016-12-05

Booking				Repairs		
date teacher class room		room	room	cause		
2016-11-21	Silviu	UDM	Saphir	C42	lavatory leak	
2016-11-28	Antoine	UDM	Saphir	NULL	leopard	
2016-12-05	Antoine	UDM	NULL			

SELECT * FROM Booking WHERE room NOT IN

(SELECT room FROM Repairs)

→ Empty result!

SELECT * FROM Booking WHERE room NOT IN

(SELECT room FROM Repairs WHERE room IS NOT NULL)

→ Does **not** contain the **NULL** for 2016-12-05

SELECT * FROM Booking WHERE

(room IN (SELECT room FROM Repairs) IS NOT TRUE)

SELECT * FROM R NATURAL JOIN S

SELECT * FROM R NATURAL JOIN S

 \rightarrow NULLs will never join

SELECT * FROM R NATURAL JOIN S

→ NULLs will never join

SELECT a FROM R UNION SELECT a FROM S

SELECT * FROM R NATURAL JOIN S

→ NULLs will never join

SELECT a FROM R UNION SELECT a FROM S

 \rightarrow multiple NULLs will **not** be kept

SELECT * FROM R NATURAL JOIN S

→ NULLs will never join

SELECT a FROM R UNION SELECT a FROM S

 \rightarrow multiple NULLs will **not** be kept

SELECT DISTINCT a FROM R

SELECT * FROM R NATURAL JOIN S

→ NULLs will never join

SELECT a FROM R UNION SELECT a FROM S

→ multiple NULLs will not be kept

SELECT DISTINCT a FROM R

ightarrow multiple NULLs will **not** be kept

SELECT COUNT(*) FROM R

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

 \rightarrow NULLs will be ignored!

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

→ NULLs will be ignored!

SELECT SUM(a) FROM R

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

→ NULLs will be ignored!

SELECT SUM(a) FROM R

ightarrow NULLs will be **ignored**

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

→ NULLs will be ignored!

SELECT SUM(a) FROM R

ightarrow NULLs will be **ignored**

SELECT AVG(a), SUM(a)/COUNT(*) FROM R

SELECT COUNT(*) FROM R

→ NULLs will be counted

SELECT COUNT(a) FROM R

→ NULLs will be ignored!

SELECT SUM(a) FROM R

ightarrow NULLs will be **ignored**

SELECT AVG(a), SUM(a)/COUNT(*) FROM R

 \rightarrow values may differ

Table of contents

SOL

Semantics

V-tables

c-tables

Semantics

- We fix a **signature** σ :
 - → relation names
 - → associated arity
- We define uncertain interpretations for each relation

Uncertain relation

• An uncertain relation: set of possible worlds

Uncertain relation

• An uncertain relation: set of possible worlds

Booking		Booking			Booking				
date	tch	room	date	tch	room	date	tch	room	
21	S.	a	21	S.	b	21	S.	С	_

Relational algebra

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - apply the operation and get a possible output

Relational algebra

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - apply the operation and get a possible output

Booking 21 S. a Booking 21 S. b Booking 21 S. c

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - · apply the operation and get a possible output

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - · apply the operation and get a possible output

Вс	okir	ng			Boo	king
21	S.	a		28	a	Saphir
Вс	Booking				Воо	king
21	S.	b	\bigcup	28	b	Saphir
Вс	okir	ng			Воо	king
21	S.	С		28	С	Saphir
	:				:	

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - · apply the operation and get a possible output

Bookin	ıg			Boc	king	
21 S.	a		28	a	Saphir	
Bookin	ıg			Boo	king	
21 S.	b	\bigcup	28	b	Saphir =	_
Bookin	ıg			Воо	king	
21 S.	С		28	С	Saphir	
:				:		

- Extend relational algebra operators to uncertain relations
- The possible worlds of the result should be...
 - take all **possible worlds** of the inputs
 - · apply the operation and get a possible output

Booking		Вос	oking		Воо	king
21 S. a		28 a	Saphir	21		 a
Booking		Вос	oking	28	b	Saphir
21 S. b	\bigcup	28 b	Saphir =		Воо	king
Booking		Вос	oking	21	S.	b
21 S. C		28 C	Saphir	28	a	Saphir
:			<u> </u>			:

Tables with NULL are a representation of uncertain tables

Tables with NULL are a representation of uncertain tables

Booking

21 S. NULL

Tables with NULL are a representation of uncertain tables

Booking
21 S. NULL stands for

Tables with NULL are a representation of uncertain tables

Booking

					, O IXII	'5
				21	S.	a
	1			Вс	okir	ng
t	Booking		ctands for	21	S.	b
21	S.	NULL	stands for		J.	
		Вс	okir	ng		
				21	S.	С
					:	

Back to the silly example

Booking

date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2017-01-09	Silviu	UDM	Sap.

```
SELECT * FROM Booking WHERE teacher='Antoine' AND
  (room='C42' OR room<>'C42')
```

Back to the silly example

Booking

date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2017-01-09	Silviu	UDM	Sap.

```
SELECT * FROM Booking WHERE teacher='Antoine' AND
  (room='C42' OR room<>'C42')
```

→ How to represent the result?

05 A. UDM NULL
12 A. UDM Sap.

O5 A. UDM NULL12 A. UDM Sap.

represents

05 A. UDM NULL
12 A. UDM Sap.

represents

12 A. UDM a 12 A. UDM b 12 A. UDM C42 ... 09 S. UDM Sap. 09 S. UDM Sap. ...

05 A. UDM NULL
12 A. UDM Sap.

represents

```
12 A. UDM a 12 A. UDM b 12 A. UDM C42 ...
O9 S. UDM Sap. O9 S. UDM Sap. O9 S. UDM Sap.
```

```
SELECT * FROM Booking WHERE teacher='A.' AND
  (room='C42' OR room<>'C42')
```

05 A. UDM NULL
12 A. UDM Sap.

represents

SELECT * FROM Booking WHERE teacher='A.' AND
 (room='C42' OR room<>'C42')

12 A. UDM a 12 A. UDM b 12 A. UDM C42

```
05 A. UDM NULL
12 A. UDM Sap.
```

represents

```
12 A. UDM a 12 A. UDM b 12 A. UDM C42 ...
09 S. UDM Sap. 09 S. UDM Sap. 09 S. UDM Sap.
```

```
SELECT * FROM Booking WHERE teacher='A.' AND (room='C42' OR room<>'C42')
```

12 A. UDM a 12 A. UDM b 12 A. UDM C42 ·

represented as

05 A. UDM NULL
12 A. UDM Sap.

represents

12 A. UDM a 12 A. UDM b 12 A. UDM C42 . 09 S. UDM Sap. 09 S. UDM Sap. o9 S. UDM Sap.

SELECT * FROM Booking WHERE teacher='A.' AND
 (room='C42' OR room<>'C42')

12 A. UDM a 12 A. UDM b 12 A. UDM C42 · ·

represented as

12 A. UDM NULL

Uncertain instance: set of possible worlds

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language,

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language,

on uncertain instances represented in the framework,

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query can also be represented in the framework.

Uncertain instance: set of possible worlds

Uncertainty framework: short way to represent uncertain instances

Here, Codd tables

Query language: here, relational algebra

Definition (Strong representation system)

For any query in the language, on uncertain instances represented in the framework, the uncertain instance obtained by evaluating the query can also be represented in the framework.

→ Are Codd tables a strong representation system?

Member

id	class
1	UDM
2	UDM
3	ΙE

Booking				
date	teacher	class	room	
2016-12-05	Antoine	UDM	NULL	

Member				
id	class			
1	UDM			
2	UDM			
3	ΙE			

	Booking		
date	teacher	class	room
2016-12-05	Antoine	UDM	NULL

Can we represent $Member \bowtie Booking$?

Mei	mber
:	-1

id	class
1	UDM
2	UDM
3	ΙE

Rooking

	Dooking	1	
date	teacher	class	room
2016-12-05	Antoine	UDM	NULL

Can we represent Member ⋈ Booking?

Member ⋈ Booking

id	date	teacher	class	room
1	2016-12-05	Antoine	UDM	NULL
2	2016-12-05	Antoine	UDM	NULL

Member		
id	class	
1	UDM	
2	UDM	
3	ΙE	

	Booking		
date	teacher	class	room
2016-12-05	Antoine	UDM	NULL

Can we represent Member ⋈ Booking?

Member ⋈ Booking

id	date	teacher	class	room
1	2016-12-05	Antoine	UDM	NULL
2	2016-12-05	Antoine	UDM	NULL

→ Can you spot the **problem?**

Multiple values

- When querying Codd tables, we may duplicate NULLs
- ightarrow We cannot represent that two NULLs are the same
 - This may cause problems!

Booking			
date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2016-01-09	Silviu	UDM	Saphir

 $\Pi_{\textbf{room}}(\textbf{Booking}) - \Pi_{\textbf{room}}(\sigma_{\textbf{teacher}=\text{``Antoine''}}(\textbf{Booking}))$

	BOOKINE	3
late	teacher	class

date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2016-01-09	Silviu	UDM	Saphir

Dooling

$$\Pi_{\mathbf{room}}(\mathsf{Booking}) - \Pi_{\mathbf{room}}(\sigma_{\mathbf{teacher} = \text{``Antoine''}}(\mathsf{Booking}))$$

According to **SQL** According to semantics Saphir

BOOKING			
date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2016-01-09	Silviu	UDM	Saphir

Pooking

 $\Pi_{\text{room}}(\text{Booking}) - \Pi_{\text{room}}(\sigma_{\text{teacher}=\text{"Antoine"}}(\text{Booking}))$

According to SQL	According to semantics
	Saphir

But if we try to represent intermediate expressions?

BOOKING			
date	teacher	class	room
2016-12-12	Antoine	UDM	NULL
2016-01-09	Silviu	UDM	Saphir

Dooling

 $\Pi_{\mathbf{room}}(\mathsf{Booking}) - \Pi_{\mathbf{room}}(\sigma_{\mathbf{teacher} = \text{``Antoine''}}(\mathsf{Booking}))$

According to SQL	According to semantics
	Saphir

But if we try to represent intermediate expressions?

Π _{room} (Booking)	$\Pi_{room}(\sigma_{teacher=\text{``Antoine''}}(Booking))$
NULL	NULL
Saphir	

Table of contents

SQL

Semantics

V-tables

c-tables

v-tables

- · Idea: give each NULL its own name, i.e., named NULLs
- Initially, all NULLs are distinct
- Propagate their identities

v-tables

- Idea: give each NULL its own name, i.e., named NULLs
- Initially, all NULLs are distinct
- Propagate their identities

Member

id	class	
1	UDM	
2	UDM	
3	ΙE	

Booking

date	teacher	class	room
2016-12-05	NULL ₁	UDM	NULL ₂

v-tables

- Idea: give each NULL its own name, i.e., named NULLs
- Initially, all NULLs are distinct
- Propagate their identities

N	۱e	m	h	er

id	class
1	UDM
2	UDM
3	ΙE

Booking

date	teacher	class	room
2016-12-05	NULL ₁	UDM	NULL ₂

Member ⋈ Booking

id	date	teacher	class	room
1	2016-12-05	NULL ₁	UDM	NULL ₂
2	2016-12-05	NULL ₁	UDM	$NULL_2$

1	2016-12-05	NULL ₁	UDM	$NULL_2$
2	2016-12-05	NULL ₁	UDM	$NULL_2$

1 2			UDM UDM	NULL ₂
1	2016-12-05	aa	UDM	bb
2	2016-12-05	aa	UDM	bb

1	2016-12-05	NULL ₁	UDM	NULL ₂
2	2016-12-05	NULL ₁	UDM	$NULL_2$
1	2016-12-05	aa	UDM	bb
2	2016-12-05	aa	UDM	bb
1	2016-12-05	CCC	UDM	ddd
2	2016-12-05	CCC	UDM	ddd

1	2016-12-05	NULL ₁	UDM	NULL ₂
2	2016-12-05	NULL ₁	UDM	$NULL_2$
1	2016-12-05	aa	UDM	bb
2	2016-12-05	aa	UDM	bb
1	2016-12-05	CCC	UDM	ddd
2	2016-12-05	CCC	UDM	ddd
1	2016-12-05	е	UDM	е
2	2016-12-05	е	UDM	е

Are v-tables a representation system?

Member

id	class
1	UDM
2	UDM
3	$NULL_O$

Booking

date	teacher	class	room
2016-12-05	NULL ₁	UDM	NULL ₂

Are v-tables a representation system?

Member	Mei	'nŁ	er
--------	-----	-----	----

id	class
1	UDM
2	UDM
3	$NULL_O$

Booking

		•	
date	teacher	class	room
2016-12-05	NULL ₁	UDM	NULL ₂

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

Problem

- v-tables cannot represent optional rows
 - → the number of rows is **certain**

Problem

- v-tables cannot represent optional rows
 - → the number of rows is certain
- When selection, join applies to a NULL:
 - we do not know how to evaluate
 - we are uncertain about whether the tuple matches

Problem

- v-tables cannot represent optional rows
 - → the number of rows is certain
- When **selection**, **join** applies to a **NULL**:
 - we do not know how to evaluate
 - we are uncertain about whether the tuple matches
- → Add **conditions** to rows!

R :=	$R := \Pi_{id,room}(Member \bowtie Booking)$		
id	room	condition	
1	NULL ₂		
2	$NULL_2$		
3	NULL ₂	if NULL o is "UDM"	

Rooms		
room	seats	
C42	20	
NULL ₃	25	

R :=	$R := \Pi_{id,room}(Member \bowtie Booking)$		
id	room	condition	
1	NULL ₂		
2	$NULL_2$		
3	$NULL_2$	if NULLo is "UDM"	

Rooms		
room	seats	
C42	20	
$NULL_3$	25	

R ⋈ Rooms

id room seats condition

R :=	$R := \Pi_{id,room}(Member \bowtie Booking)$		
id	room	condition	
1	NULL ₂		
2	$NULL_2$		
3	NULL ₂	if NULLo is "UDM"	

Rooms		
room	seats	
C42	20	
NULL ₃	25	

$R \bowtie Rooms$

id	room	seats	condition
1	NULL ₂	20	if NULL ₂ is "C42"
1	$NULL_2$	25	if NULL ₂ is NULL ₃

R :=	$R := \Pi_{id,room}(Member \bowtie Booking)$		
id	room	condition	
1	NULL ₂		
2	$NULL_2$		
3	NULL ₂	if NULL o is "UDM"	

Rooms			
room	seats		
C42	20		
$NULL_3$	25		

R ⋈ Rooms

id	room	seats	condition
1	NULL ₂	20	if NULL ₂ is "C42"
1	$NULL_2$	25	if NULL ₂ is NULL ₃
2	$NULL_2$	20	if NULL ₂ is "C42"
2	$NULL_2$	25	if NULL ₂ is NULL ₃

$R := \Pi_{id,room}(Member \bowtie Booking)$			
id room condition			
1	NULL ₂		
2	$NULL_2$		
3	NULL ₂	if NULL o is "UDM"	

Rooms			
room	seats		
C42	20		
NULL ₃	25		

R ⋈ Rooms

id	room	seats	condition
1	NULL ₂	20	if NULL ₂ is "C42"
1	$NULL_2$	25	if NULL ₂ is NULL ₃
2	$NULL_2$	20	if NULL ₂ is "C42"
2	$NULL_2$	25	if NULL ₂ is NULL ₃
3	$NULL_2$	20	if NULL ₂ is "C42" and NULL ₀ is "UDM"
3	$NULL_2$	25	if NULL_2 is NULL_3 and NULL_0 is "UDM"

Table of contents

SQL

Semantics

V-tables

- · Named NULLs, plus conditions on tuples
- · Conditions can use:

- Named NULLs, plus conditions on tuples
- · Conditions can use:
 - true
 - · false

- Named NULLs, plus conditions on tuples
- · Conditions can use:
 - true
 - · false
 - $NULL_i = NULL_j$

- · Named NULLs, plus conditions on tuples
- · Conditions can use:
 - true
 - · false
 - NULL_i = NULL_i
 - NULL_i = "value"

- · Named NULLs, plus conditions on tuples
- · Conditions can use:
 - true
 - · false
 - NULL_i = NULL_i
 - NULL; = "value"
 - · Boolean operators

- · Named NULLs, plus conditions on tuples
- · Conditions can use:
 - true
 - · false
 - NULL_i = NULL_i
 - NULL; = "value"
 - Boolean operators
- → Are c-tables a strong representation system?

S				
S	condition			
S ₁	C ₁			
S ₂	C ₂			

	S		T
S	condition	t	condition
S ₁	C ₁	t ₁	D_1
S ₂	C ₂	_t ₂	D_2

	S		T
S	condition	t	condition
S ₁	C ₁	t ₁	D_1
S_2	C_2	t_2	D_2

	S		T
S	condition	t	condition
S ₁	C ₁	t ₁	D_1
S ₂	C_2	t_2	D_2

$S \times T$				
S	t	condition		
S ₁	t ₁	C ₁ and D ₁		
S ₁	t_2	C_1 and D_2		
S_2	t_1	C_2 and D_1		
S ₂	t ₂	C ₂ and D ₂		

S				
S	condition			
S ₀	C ₀ C ₁			

S			S ₂		
S	condition	S	cond	dition	
So	Co	S	, D _o		
S ₁	C ₁	S	D_2		

S			S2	
S	condition	S	condition	
S _O	Co	S _O	Do	
S ₁	C ₁	S ₂	D ₂	

S ∪ S2 s condition

	S		S2	
S	condition	S	condition	
S ₀	C ₀	S ₀	D ₀	
J1	<u></u>		D2	

S ∪ S2		
s condition		
)	Co or Do	
	C_1	
!	D_2	
	_	

S			
S	t	condition	
S _O	to	Co	
S_0	t_1	C_1	
S ₂	t ₂	C_2	

S				
S	t	condition		
S _O	to	Co		
So	t_1	C_1		
S ₂	t_2	C_2		

S				
S	t	condition		
S ₀	to	Co		
s_0	t_1	C_1		
S ₂	t_2	C_2		

Π _s (S)			
S	condition		
S ₀	Co or C1		
S ₂	C ₂		

Relational algebra operators: select (1)

S				
S	t	condition		
42	to	Co		
43	t_1	C_1		
NULLi	t ₂	C_2		

Relational algebra operators: select (1)

S			
S	t	condition	
42	to	Co	
43	t_1	C_1	
NULLi	t ₂	C ₂	

$\sigma_{\mathbf{s}=\text{``42''}}(S)$					
S	t	condition			

S		
S	t	condition
42	to	Co
43	t_1	C_1
NULLi	t ₂	C ₂

		$\sigma_{\mathbf{s}=\text{``42''}}(S)$
S	t	condition
42	to	Co

S		
S	t	condition
42	to	Co
43	t_1	C_1
NULLi	t ₂	C ₂

$\sigma_{s=\text{``42''}}(S)$			
S	t	condition	
42	to	Co	
$NULL_i$	t_2		

S		
S	t	condition
42	to	Co
43	t_1	C_1
NULLi	t ₂	C ₂

$\sigma_{\mathbf{s}=\text{``42''}}(S)$			
S	t	condition	
42	to	Co	
$NULL_i$	t_2	C_2 and $NULL_i = "42"$	

S			
S	t	condition	
42	42	Co	
43	42	C_1	
$NULL_i$	42	C_2	
42	NULL_{j}	C_3	
NULLp	$NULL_q$	C_4	

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	$NULL_j$	C_3
NULLp	$NULL_q$	C ₄

		$\sigma_{\mathbf{s}=\mathbf{t}}(S)$	
S	t	condition	

S			
S	t	condition	
42	42	Co	
43	42	C_1	
$NULL_i$	42	C_2	
42	\mathtt{NULL}_j	C_3	
NULLp	$NULL_q$	C ₄	

$\sigma_{S=t}(S)$			
S	t	condition	
42	42		

S			
S	t	condition	
42	42	Co	
43	42	C_1	
$NULL_i$	42	C_2	
42	NULL_{j}	C_3	
NULLp	NULLq	C ₄	

$\sigma_{s=t}(S)$			
S	t	condition	
42	42	Co	

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	\mathtt{NULL}_j	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{s=t}(S)$			
S	t	condition	
42	42	Co	
$NULL_i$	42		

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	\mathtt{NULL}_j	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{\mathbf{s}=\mathbf{t}}(S)$			
S	t	condition	
42	42	Co	
$NULL_i$	42	C ₂ and NULL _i = "42"	

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	\mathtt{NULL}_j	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{s=t}(S)$			
S	t	condition	
42	42	Co	
$NULL_i$	42	C_2 and $NULL_i = "42"$	
42	\mathtt{NULL}_j		

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	\mathtt{NULL}_j	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{s=t}(S)$			
S	t	condition	
42	42	Co	
$NULL_i$	42	C ₂ and NULL _i = "42"	
42	\mathtt{NULL}_j	C_3 and "42" = $NULL_j$	

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	$NULL_j$	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{s=t}(S)$			
S	t condition		
42	42	Co	
$NULL_i$	42	C ₂ and NULL _i = "42"	
42	NULL_{j}	C_3 and "42" = $NULL_j$	
\mathtt{NULL}_p	$NULL_q$		

	S	
S	t	condition
42	42	Co
43	42	C_1
$NULL_i$	42	C_2
42	\mathtt{NULL}_j	C_3
NULLp	$NULL_q$	C ₄

$\sigma_{s=t}(S)$						
S	t	condition				
42	42	Co				
$NULL_i$	42	C_2 and $NULL_i = "42"$				
42	NULL_{j}	C ₃ and "42" = NULL _j				
$NULL_p$	$NULL_q$	C_4 and $NULL_p = NULL_q$				

- Annotations can become large
 - It may be possible to simplify

- Annotations can become large
 - It may be possible to simplify
 - \rightarrow In general, this is complicated

- Annotations can become large
 - It may be possible to simplify
 - \rightarrow In general, this is complicated
- It is **intractable** to reason about the result!

- · Annotations can become large
 - · It may be possible to simplify
 - → In general, this is **complicated**
- It is **intractable** to reason about the result!

```
42 \qquad (\textit{NULL}_i = \textit{``42"} \text{ and } \textit{NULL}_j = \textit{``42"}) \text{ or } ((\textit{NULL}_k = \textit{NULL}_j \text{ or } \textit{NULL}_j = \textit{``43"}) \text{ and } (\textit{NULL}_i = \textit{NULL}_j))
```

We can represent the **output** of a query as a c-table

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

We can represent the **output** of a query as a c-table

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

We can represent the **output** of a query as a c-table

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

- At the instance level
 - Is an input instance a possible world?
 - Is an input instance the only possible world?

We can represent the **output** of a query as a c-table

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

- At the instance level
 - Is an input instance a possible world?
 - Is an input instance the only possible world?
- At the tuple level
 - Is it **possible** for an input tuple to be an answer?
 - Is it certain that an input tuple is an answer?

We can represent the **output** of a query as a c-table

Member ⋈ Booking

id	date	teacher	class	room	
1	2016-12-05	NULL ₁	UDM	NULL ₂	
2	2016-12-05	NULL ₁	UDM	$NULL_2$	
3	2016-12-05	NULL ₁	UDM	$NULL_2$	if NULL o is "UDM"

- · At the instance level
 - Is an input instance a possible world?
 - Is an input instance the only possible world?
- At the tuple level
 - Is it **possible** for an input tuple to be an answer?
 - · Is it certain that an input tuple is an answer?
- → All **intractable** in general

Thanks to Pierre Senellart for useful feedback.

References I

Abiteboul, S., Hull, R., and Vianu, V. (1995).

Foundations of Databases.

Addison-Wesley.

http://webdam.inria.fr/Alice/pdfs/all.pdf.

🔋 Green, T. J. and Tannen, V. (2006).

Models for incomplete and probabilistic information.

IEEE Data Eng. Bull.

http://sites.computer.org/debull/A06mar/green.ps.

imieliński, T. and Lipski, Jr., W. (1984).

Incomplete information in relational databases.

J. ACM, 31(4).

http://doi.acm.org/10.1145/1634.1886.