
Uncertain Data Management
Boolean c-tables

Antoine Amarilli1, Silviu Maniu2

November 28th, 2016
1Télécom ParisTech

2LRI

1/21



c-tables

Remember c-tables:

Member ./ Booking

id date teacher class room

2 2016-11-28 NULL1 UDM NULL2
3 2016-12-05 NULL1 UDM NULL2
4 2016-12-12 NULL1 UDM NULL2 if NULL0 is “UDM”

→ Variant: Only allow NULLs in the conditions

2/21



c-tables

Remember c-tables:

Member ./ Booking

id date teacher class room

2 2016-11-28 NULL1 UDM NULL2
3 2016-12-05 NULL1 UDM NULL2
4 2016-12-12 NULL1 UDM NULL2 if NULL0 is “UDM”

→ Variant: Only allow NULLs in the conditions

2/21



NULLs in conditions

• The possible tuples are exactly the rows

• Each row may either be kept or deleted
→ Depends on the condition

→ Finite number of possible worlds
→ at most 2N if we have N rows

3/21



NULLs in conditions

• The possible tuples are exactly the rows

• Each row may either be kept or deleted
→ Depends on the condition

→ Finite number of possible worlds

→ at most 2N if we have N rows

3/21



NULLs in conditions

• The possible tuples are exactly the rows

• Each row may either be kept or deleted
→ Depends on the condition

→ Finite number of possible worlds
→ at most 2N if we have N rows

3/21



Example

Member ./ Booking

id date teacher class room

2 2016-11-28 Antoine UDM C42 if NULL1 is “Antoine”
3 2016-12-05 Antoine UDM C42 if NULL1 is “Antoine”
4 2016-12-12 Antoine UDM C42 if NULL1 is “Antoine”
2 2016-11-28 Silviu UDM C42 if NULL1 is “Silviu”
3 2016-12-05 Silviu UDM C42 if NULL1 is “Silviu”
4 2016-12-12 Silviu UDM C42 if NULL1 is “Silviu”

4/21



Table of contents

Definitions

Boolean c-tables

Expressiveness

5/21



Boolean c-tables

With Boolean c-tables, we impose:

• the possible values of each NULLi are True and False

We can simplify notation

→ We write the NULLs as Boolean variables xi
→ We replace xi = True by just xi
→ We replace xi = False by ¬xi
→ We can rewrite:

• xi = xj to (xi ∧ xj) ∨ (¬xi ∧ ¬xj)
• xi 6= xj to (xi ∧ ¬xj) ∨ (¬xi ∧ xj)

→ The conditions become Boolean expressions

6/21



Boolean c-tables

With Boolean c-tables, we impose:

• the possible values of each NULLi are True and False

We can simplify notation

→ We write the NULLs as Boolean variables xi
→ We replace xi = True by just xi
→ We replace xi = False by ¬xi

→ We can rewrite:
• xi = xj to (xi ∧ xj) ∨ (¬xi ∧ ¬xj)
• xi 6= xj to (xi ∧ ¬xj) ∨ (¬xi ∧ xj)

→ The conditions become Boolean expressions

6/21



Boolean c-tables

With Boolean c-tables, we impose:

• the possible values of each NULLi are True and False

We can simplify notation

→ We write the NULLs as Boolean variables xi
→ We replace xi = True by just xi
→ We replace xi = False by ¬xi
→ We can rewrite:

• xi = xj to (xi ∧ xj) ∨ (¬xi ∧ ¬xj)
• xi 6= xj to (xi ∧ ¬xj) ∨ (¬xi ∧ xj)

→ The conditions become Boolean expressions

6/21



Boolean c-tables

With Boolean c-tables, we impose:

• the possible values of each NULLi are True and False

We can simplify notation

→ We write the NULLs as Boolean variables xi
→ We replace xi = True by just xi
→ We replace xi = False by ¬xi
→ We can rewrite:

• xi = xj to (xi ∧ xj) ∨ (¬xi ∧ ¬xj)
• xi 6= xj to (xi ∧ ¬xj) ∨ (¬xi ∧ xj)

→ The conditions become Boolean expressions
6/21



Expressiveness

Theorem
We can always rewrite a c-table having NULLs only in conditions
to a Boolean c-table.

Two steps:

1. We can pick the NULLs in a finite domain
2. We can rewrite any finite domain to True and False

7/21



Expressiveness

Theorem
We can always rewrite a c-table having NULLs only in conditions
to a Boolean c-table.

Two steps:

1. We can pick the NULLs in a finite domain
2. We can rewrite any finite domain to True and False

7/21



Reducing to a finite domain

• We can choose among infinitely many values for the NULLs
• However, the values only appear in the conditions:

• NULLi = NULLj
• NULLi = “c”
• Boolean combinations

• We call two assignments of values to NULLs equivalent
if all conditions evaluate to the same

8/21



Reducing to a finite domain

• We can choose among infinitely many values for the NULLs
• However, the values only appear in the conditions:

• NULLi = NULLj
• NULLi = “c”
• Boolean combinations

• We call two assignments of values to NULLs equivalent
if all conditions evaluate to the same

8/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)

→ What are the possible assignments?
• (c, c)

→ true, true
• (x, c) with x 6= c

→ false, true
• (x, x) with x 6= c

→ true, false
• (y, x) with x 6= c and y 6= x

→ false, false

9/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)
→ What are the possible assignments?

• (c, c)
→ true, true

• (x, c) with x 6= c
→ false, true

• (x, x) with x 6= c
→ true, false

• (y, x) with x 6= c and y 6= x
→ false, false

9/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)
→ What are the possible assignments?

• (c, c)
→ true, true

• (x, c) with x 6= c
→ false, true

• (x, x) with x 6= c
→ true, false

• (y, x) with x 6= c and y 6= x
→ false, false

9/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)
→ What are the possible assignments?

• (c, c)
→ true, true

• (x, c) with x 6= c
→ false, true

• (x, x) with x 6= c
→ true, false

• (y, x) with x 6= c and y 6= x
→ false, false

9/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)
→ What are the possible assignments?

• (c, c)
→ true, true

• (x, c) with x 6= c
→ false, true

• (x, x) with x 6= c
→ true, false

• (y, x) with x 6= c and y 6= x
→ false, false

9/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)
→ What are the possible assignments?

• (c, c)
→ true, true

• (x, c) with x 6= c
→ false, true

• (x, x) with x 6= c
→ true, false

• (y, x) with x 6= c and y 6= x
→ false, false 9/21



Reducing to a finite domain (concluding)

• Consider all constants that appear: C
• Consider N different values V ,
where N is the number of NULLs

→ Gives our domain D ··= C t V

Lemma
For any c-table with NULLs only in conditions,
its set of possible worlds is the same:

• under the standard semantics
• when NULLs range over the finite D.

→ For simplicity, let’s pad D
to have exactly 2k values for some k

10/21



Reducing to a finite domain (concluding)

• Consider all constants that appear: C
• Consider N different values V ,
where N is the number of NULLs

→ Gives our domain D ··= C t V

Lemma
For any c-table with NULLs only in conditions,
its set of possible worlds is the same:

• under the standard semantics
• when NULLs range over the finite D.

→ For simplicity, let’s pad D
to have exactly 2k values for some k

10/21



Reducing to a finite domain (concluding)

• Consider all constants that appear: C
• Consider N different values V ,
where N is the number of NULLs

→ Gives our domain D ··= C t V

Lemma
For any c-table with NULLs only in conditions,
its set of possible worlds is the same:

• under the standard semantics
• when NULLs range over the finite D.

→ For simplicity, let’s pad D
to have exactly 2k values for some k

10/21



Reducing to a finite domain (concluding)

• Consider all constants that appear: C
• Consider N different values V ,
where N is the number of NULLs

→ Gives our domain D ··= C t V

Lemma
For any c-table with NULLs only in conditions,
its set of possible worlds is the same:

• under the standard semantics
• when NULLs range over the finite D.

→ For simplicity, let’s pad D
to have exactly 2k values for some k

10/21



Rewriting to Boolean variables

• The domain has size 2k.

• Write its values in binary
• Encode each NULLi to variables x1i , . . . , x

k
i

→ Can we translate the conditions?

11/21



Rewriting to Boolean variables

• The domain has size 2k.
• Write its values in binary
• Encode each NULLi to variables x1i , . . . , x

k
i

→ Can we translate the conditions?

11/21



Rewriting to Boolean variables

• The domain has size 2k.
• Write its values in binary
• Encode each NULLi to variables x1i , . . . , x

k
i

→ Can we translate the conditions?

11/21



Rewriting to Boolean variables (example)

• NULL7 = 001

→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1

→ ¬x17 ∧ ¬x27 ∧ x37
• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001

→ negate the above
• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8

→ x17 = x18 and x27 = x28 and x37 = x38
• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8

→ negate the above

12/21



Rewriting to Boolean variables (example)

• NULL7 = 001
→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above

12/21



Concluding

→ We have moved to a finite domain
(without changing the table)

→ We have rewritten to Boolean variables
(we changed the table)

→ It suffices to study Boolean c-tables

13/21



Concluding

→ We have moved to a finite domain
(without changing the table)

→ We have rewritten to Boolean variables
(we changed the table)

→ It suffices to study Boolean c-tables

13/21



Concluding

→ We have moved to a finite domain
(without changing the table)

→ We have rewritten to Boolean variables
(we changed the table)

→ It suffices to study Boolean c-tables

13/21



Table of contents

Definitions

Boolean c-tables

Expressiveness

14/21



Strong representation system

• Are Boolean c-tables a strong representation system
for relational algebra? ...

→ Yes!
→ c-tables are
→ NULLs will never appear by themselves outside of conditions

15/21



Strong representation system

• Are Boolean c-tables a strong representation system
for relational algebra? ...
→ Yes!

→ c-tables are
→ NULLs will never appear by themselves outside of conditions

15/21



Strong representation system

• Are Boolean c-tables a strong representation system
for relational algebra? ...
→ Yes!

→ c-tables are
→ NULLs will never appear by themselves outside of conditions

15/21



Capturing all uncertain relations

• Fix a set of possible tuples
• A possible world: a subset of the possible tuples
• An uncertain relation: set of possible worlds

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

→ Can we capture all uncertain relations?

16/21



Capturing all uncertain relations

• Fix a set of possible tuples
• A possible world: a subset of the possible tuples
• An uncertain relation: set of possible worlds

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

→ Can we capture all uncertain relations?

16/21



Capturing all uncertain relations

• Fix a set of possible tuples
• A possible world: a subset of the possible tuples
• An uncertain relation: set of possible worlds

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

→ Can we capture all uncertain relations?
16/21



Capturing uncertain relations

• Make multiple copies of possible worlds
so there are 2k possible worlds

• Write each possible world in binary

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

17/21



Capturing uncertain relations

• Make multiple copies of possible worlds
so there are 2k possible worlds

• Write each possible world in binary

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

17/21



Capturing uncertain relations

• Make multiple copies of possible worlds
so there are 2k possible worlds

• Write each possible world in binary

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

17/21



Numbering tuples

For each tuple, write the possible worlds where it appears

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

v w

a d 00 01 10 11
b e 01
c f 01 10 11

18/21



Numbering tuples

For each tuple, write the possible worlds where it appears

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

v w

a d 00 01 10 11
b e 01
c f 01 10 11

18/21



Numbering tuples

For each tuple, write the possible worlds where it appears

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f

v w

a d 00 01 10 11
b e 01
c f 01 10 11

18/21



Making a condition

• Create one non-Boolean variable
→ chooses the world

• Obtain a non-Boolean c-table

v w

a d 00 01 10 11
b e 01
c f 01 10 11

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

19/21



Making a condition

• Create one non-Boolean variable
→ chooses the world

• Obtain a non-Boolean c-table

v w

a d 00 01 10 11
b e 01
c f 01 10 11

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

19/21



Making a condition

• Create one non-Boolean variable
→ chooses the world

• Obtain a non-Boolean c-table

v w

a d 00 01 10 11
b e 01
c f 01 10 11

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

19/21



Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

v w

a d ¬x1 ∧ ¬x2 ∨ ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2
b e ¬x1 ∧ x2
c f ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2

20/21



Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

v w

a d ¬x1 ∧ ¬x2 ∨ ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2
b e ¬x1 ∧ x2
c f ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2

20/21



Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

v w

a d ¬x1 ∧ ¬x2 ∨ ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2
b e ¬x1 ∧ x2
c f ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2

20/21



Conclusion

We have studied:

• First:
• Codd tables with NULLs
• v-tables with named NULLs
• c-tables with named NULLs and conditions

• Then:
• c-tables with NULLs only in conditions
• Boolean c-tables: Boolean variables

We have shown:

→ Any c-table with NULLs only in conditions
rewrites to a Boolean c-table

→ Boolean c-tables capture all finite uncertain tables
→ Boolean c-tables are a strong representation system
→ c-tables are a strong representation system

21/21



Conclusion

We have studied:

• First:
• Codd tables with NULLs
• v-tables with named NULLs
• c-tables with named NULLs and conditions

• Then:
• c-tables with NULLs only in conditions
• Boolean c-tables: Boolean variables

We have shown:

→ Any c-table with NULLs only in conditions
rewrites to a Boolean c-table

→ Boolean c-tables capture all finite uncertain tables
→ Boolean c-tables are a strong representation system
→ c-tables are a strong representation system

21/21



Conclusion

We have studied:

• First:
• Codd tables with NULLs
• v-tables with named NULLs
• c-tables with named NULLs and conditions

• Then:
• c-tables with NULLs only in conditions
• Boolean c-tables: Boolean variables

We have shown:

→ Any c-table with NULLs only in conditions
rewrites to a Boolean c-table

→ Boolean c-tables capture all finite uncertain tables
→ Boolean c-tables are a strong representation system
→ c-tables are a strong representation system

21/21



References I

Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley.
http://webdam.inria.fr/Alice/pdfs/all.pdf.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).
Probabilistic Databases.
Morgan & Claypool.
Unavailable online.

http://webdam.inria.fr/Alice/pdfs/all.pdf

	Definitions
	Boolean c-tables
	Expressiveness

