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c-tables

Remember c-tables:

Member ./ Booking

id date teacher class room

2 2016-11-28 NULL1 UDM NULL2
3 2016-12-05 NULL1 UDM NULL2
4 2016-12-12 NULL1 UDM NULL2 if NULL0 is “UDM”

→ Variant: Only allow NULLs in the conditions
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NULLs in conditions

• The possible tuples are exactly the rows

• Each row may either be kept or deleted
→ Depends on the condition

→ Finite number of possible worlds
→ at most 2N if we have N rows
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Example

Member ./ Booking

id date teacher class room

2 2016-11-28 Antoine UDM C42 if NULL1 is “Antoine”
3 2016-12-05 Antoine UDM C42 if NULL1 is “Antoine”
4 2016-12-12 Antoine UDM C42 if NULL1 is “Antoine”
2 2016-11-28 Silviu UDM C42 if NULL1 is “Silviu”
3 2016-12-05 Silviu UDM C42 if NULL1 is “Silviu”
4 2016-12-12 Silviu UDM C42 if NULL1 is “Silviu”
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Boolean c-tables

With Boolean c-tables, we impose:

• the possible values of each NULLi are True and False

We can simplify notation

→ We write the NULLs as Boolean variables xi
→ We replace xi = True by just xi
→ We replace xi = False by ¬xi
→ We can rewrite:

• xi = xj to (xi ∧ xj) ∨ (¬xi ∧ ¬xj)
• xi 6= xj to (xi ∧ ¬xj) ∨ (¬xi ∧ xj)

→ The conditions become Boolean expressions
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Expressiveness

Theorem
We can always rewrite a c-table having NULLs only in conditions
to a Boolean c-table.

Two steps:

1. We can pick the NULLs in a finite domain
2. We can rewrite any finite domain to True and False
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Reducing to a finite domain

• We can choose among infinitely many values for the NULLs
• However, the values only appear in the conditions:

• NULLi = NULLj
• NULLi = “c”
• Boolean combinations

• We call two assignments of values to NULLs equivalent
if all conditions evaluate to the same

8/21



Reducing to a finite domain

• We can choose among infinitely many values for the NULLs
• However, the values only appear in the conditions:

• NULLi = NULLj
• NULLi = “c”
• Boolean combinations

• We call two assignments of values to NULLs equivalent
if all conditions evaluate to the same

8/21



Reducing to a finite domain (example)

→ Call two assignments of values to NULLs equivalent
if all conditions evaluate to the same.

Consider the following:

• NULL1 = NULL2
• NULL2 = “c”

→ E.g.: The assignment (a,d) is equivalent to (b,d)

→ What are the possible assignments?
• (c, c)

→ true, true
• (x, c) with x 6= c

→ false, true
• (x, x) with x 6= c

→ true, false
• (y, x) with x 6= c and y 6= x

→ false, false
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Reducing to a finite domain (concluding)

• Consider all constants that appear: C
• Consider N different values V ,
where N is the number of NULLs

→ Gives our domain D ··= C t V

Lemma
For any c-table with NULLs only in conditions,
its set of possible worlds is the same:

• under the standard semantics
• when NULLs range over the finite D.

→ For simplicity, let’s pad D
to have exactly 2k values for some k
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Rewriting to Boolean variables

• The domain has size 2k.

• Write its values in binary
• Encode each NULLi to variables x1i , . . . , x

k
i

→ Can we translate the conditions?
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Rewriting to Boolean variables (example)

• NULL7 = 001

→ x17 = 0 and x27 = 0 and x37 = 1
→ ¬x17 ∧ ¬x27 ∧ x37

• NULL7 6= 001
→ negate the above

• NULL7 = NULL8
→ x17 = x18 and x27 = x28 and x37 = x38

• NULL7 6= NULL8
→ negate the above
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Concluding

→ We have moved to a finite domain
(without changing the table)

→ We have rewritten to Boolean variables
(we changed the table)

→ It suffices to study Boolean c-tables
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Strong representation system

• Are Boolean c-tables a strong representation system
for relational algebra? ...

→ Yes!
→ c-tables are
→ NULLs will never appear by themselves outside of conditions
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Capturing all uncertain relations

• Fix a set of possible tuples
• A possible world: a subset of the possible tuples
• An uncertain relation: set of possible worlds

Booking

date teacher room

21 Antoine Saphir
21 Silviu Saphir
21 Silviu C47
28 Antoine Saphir
28 Antoine C47
28 Silviu Saphir

Booking

date teacher room
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→ Can we capture all uncertain relations?
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Capturing uncertain relations

• Make multiple copies of possible worlds
so there are 2k possible worlds

• Write each possible world in binary

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11

v w

a d
b e
c f
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Numbering tuples

For each tuple, write the possible worlds where it appears

00

v w

a d
b e
c f

01

v w

a d
b e
c f

10

v w

a d
b e
c f

11
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b e
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v w

a d 00 01 10 11
b e 01
c f 01 10 11
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Making a condition

• Create one non-Boolean variable
→ chooses the world

• Obtain a non-Boolean c-table

v w

a d 00 01 10 11
b e 01
c f 01 10 11

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11
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Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

v w

a d x = 00 ∨ x = 01 ∨ x = 10 ∨ x = 11
b e x = 01
c f x = 01 ∨ x = 10 ∨ x = 11

v w

a d ¬x1 ∧ ¬x2 ∨ ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2
b e ¬x1 ∧ x2
c f ¬x1 ∧ x2 ∨ x1 ∧ ¬x2 ∨ x1 ∧ x2
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Conclusion

We have studied:

• First:
• Codd tables with NULLs
• v-tables with named NULLs
• c-tables with named NULLs and conditions

• Then:
• c-tables with NULLs only in conditions
• Boolean c-tables: Boolean variables

We have shown:

→ Any c-table with NULLs only in conditions
rewrites to a Boolean c-table

→ Boolean c-tables capture all finite uncertain tables
→ Boolean c-tables are a strong representation system
→ c-tables are a strong representation system
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