Uncertain Data Management Boolean c-tables

Antoine Amarilli' ${ }^{1}$, Silviu Maniu ${ }^{2}$
November 28th, 2016
${ }^{1}$ Télécom ParisTech
${ }^{2}$ LRI

c-tables

Remember c-tables:

Member \bowtie Booking

id	date	teacher	class	room	
2	$2016-11-28$	NULL $_{1}$	UDM	NULL $_{2}$	
3	$2016-12-05$	NULL $_{1}$	UDM	NULL $_{2}$	
4	$2016-12-12$	NULL $_{1}$	UDM	NULL $_{2}$	if $N U L L_{0}$ is "UDM"

c-tables

Remember c-tables:

Member \bowtie Booking

id	date	teacher	class	room	
2	$2016-11-28$	NULL $_{1}$	UDM	NULL $_{2}$	
3	$2016-12-05$	NULL $_{1}$	UDM	NULL $_{2}$	
4	$2016-12-12$	NULL $_{1}$	UDM	NULL $_{2}$	if $N U L L_{0}$ is "UDM"

\rightarrow Variant: Only allow nuLLs in the conditions

NULIs in conditions

- The possible tuples are exactly the rows
- Each row may either be kept or deleted
\rightarrow Depends on the condition

NULLs in conditions

- The possible tuples are exactly the rows
- Each row may either be kept or deleted
\rightarrow Depends on the condition
\rightarrow Finite number of possible worlds

NUL s in conditions

- The possible tuples are exactly the rows
- Each row may either be kept or deleted
\rightarrow Depends on the condition
\rightarrow Finite number of possible worlds
\rightarrow at most 2^{N} if we have N rows

Example

Member \bowtie Booking

id	date	teacher	class	room	
2	$2016-11-28$	Antoine	UDM	$C 42$	if $N U L L_{1}$ is "Antoine"
3	$2016-12-05$	Antoine	UDM	$C 42$	if $N U L L_{1}$ is "Antoine"
4	$2016-12-12$	Antoine	UDM	$C 42$	if $N U L L_{1}$ is "Antoine"
2	$2016-11-28$	Silviu	UDM	$C 42$	if $N U L L_{1}$ is "Silviu"
3	$2016-12-05$	Silviu	UDM	$C 42$	if $N U L L_{1}$ is "Silviu"
4	$2016-12-12$	Silviu	UDM	$C 42$	if $N U L L_{1}$ is "Silviu"

Table of contents

Definitions

Boolean c-tables

Expressiveness

Boolean c-tables

With Boolean c-tables, we impose:

- the possible values of each NULLi are True and False

Boolean c-tables

With Boolean c-tables, we impose:

- the possible values of each NULL ${ }_{i}$ are True and False

We can simplify notation
\rightarrow We write the NULLs as Boolean variables x_{i}
\rightarrow We replace $x_{i}=$ True by just x_{i}
\rightarrow We replace $x_{i}=$ False by $\neg x_{i}$

Boolean c-tables

With Boolean c-tables, we impose:

- the possible values of each NULLi are True and False

We can simplify notation
\rightarrow We write the NULLs as Boolean variables x_{i}
\rightarrow We replace $x_{i}=$ True by just x_{i}
\rightarrow We replace $x_{i}=$ False by $\neg x_{i}$
\rightarrow We can rewrite:

- $x_{i}=x_{j}$ to $\left(x_{i} \wedge x_{j}\right) \vee\left(\neg x_{i} \wedge \neg x_{j}\right)$
- $x_{i} \neq x_{j}$ to $\left(x_{i} \wedge \neg x_{j}\right) \vee\left(\neg x_{i} \wedge x_{j}\right)$

Boolean c-tables

With Boolean c-tables, we impose:

- the possible values of each NULLi are True and False

We can simplify notation
\rightarrow We write the NULLs as Boolean variables x_{i}
\rightarrow We replace $x_{i}=$ True by just x_{i}
\rightarrow We replace $x_{i}=$ False by $\neg x_{i}$
\rightarrow We can rewrite:

- $x_{i}=x_{j}$ to $\left(x_{i} \wedge x_{j}\right) \vee\left(\neg x_{i} \wedge \neg x_{j}\right)$
- $x_{i} \neq x_{j}$ to $\left(x_{i} \wedge \neg x_{j}\right) \vee\left(\neg x_{i} \wedge x_{j}\right)$
\rightarrow The conditions become Boolean expressions

Expressiveness

Theorem

We can always rewrite a c-table having NULLs only in conditions to a Boolean c-table.

Expressiveness

Theorem

We can always rewrite a c-table having NULLS only in conditions to a Boolean c-table.

Two steps:

1. We can pick the nuLLs in a finite domain
2. We can rewrite any finite domain to True and False

Reducing to a finite domain

- We can choose among infinitely many values for the NULLs
- However, the values only appear in the conditions:
- NULL $_{i}=$ NULL $_{j}$
- NULL $_{i}=$ " c "
- Boolean combinations

Reducing to a finite domain

- We can choose among infinitely many values for the NULLs
- However, the values only appear in the conditions:
- $\operatorname{NULL}_{i}=\operatorname{NULL}_{j}$
- $\operatorname{NULL}_{i}=$ " c "
- Boolean combinations
- We call two assignments of values to NULLs equivalent if all conditions evaluate to the same

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\mathrm{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\operatorname{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
\rightarrow What are the possible assignments?

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\operatorname{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
\rightarrow What are the possible assignments?
- (c, c)
\rightarrow true, true

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\operatorname{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
\rightarrow What are the possible assignments?
- (c, c)
\rightarrow true, true
- (x, c) with $x \neq c$
\rightarrow false, true

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\operatorname{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
\rightarrow What are the possible assignments?
- (c, c)
\rightarrow true, true
- (x, c) with $x \neq c$
\rightarrow false, true
- (x, x) with $x \neq c$
\rightarrow true, false

Reducing to a finite domain (example)

\rightarrow Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

Consider the following:

- NULL $_{1}=$ NULL $_{2}$
- $\mathrm{NULL}_{2}=$ " C "
\rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
\rightarrow What are the possible assignments?
- (c, c)
\rightarrow true, true
- (x, c) with $x \neq c$
\rightarrow false, true
- (x, x) with $x \neq c$
\rightarrow true, false
- (y, x) with $x \neq c$ and $y \neq x$

$$
\rightarrow \text { false, false }
$$

Reducing to a finite domain (concluding)

- Consider all constants that appear: \mathcal{C}
- Consider N different values \mathcal{V}, where N is the number of nuLLs

Reducing to a finite domain (concluding)

- Consider all constants that appear: \mathcal{C}
- Consider N different values \mathcal{V}, where N is the number of nuLLs
\rightarrow Gives our domain $\mathcal{D}:=\mathcal{C} \sqcup \mathcal{V}$

Reducing to a finite domain (concluding)

- Consider all constants that appear: \mathcal{C}
- Consider N different values \mathcal{V}, where N is the number of NULLs
\rightarrow Gives our domain $\mathcal{D}:=\mathcal{C} \sqcup \mathcal{V}$

Lemma

For any c-table with NULLs only in conditions, its set of possible worlds is the same:

- under the standard semantics
- when NULLs range over the finite \mathcal{D}.

Reducing to a finite domain (concluding)

- Consider all constants that appear: \mathcal{C}
- Consider N different values \mathcal{V}, where N is the number of nuLLs
\rightarrow Gives our domain $\mathcal{D}:=\mathcal{C} \sqcup \mathcal{V}$

Lemma

For any c-table with NULLs only in conditions, its set of possible worlds is the same:

- under the standard semantics
- when NULLs range over the finite \mathcal{D}.
\rightarrow For simplicity, let's pad \mathcal{D} to have exactly 2^{k} values for some k

Rewriting to Boolean variables

- The domain has size 2^{k}.

Rewriting to Boolean variables

- The domain has size 2^{k}.
- Write its values in binary
- Encode each NULL ${ }_{i}$ to variables $x_{i}^{1}, \ldots, x_{i}^{k}$

Rewriting to Boolean variables

- The domain has size 2^{k}.
- Write its values in binary
- Encode each NULL ${ }_{i}$ to variables $x_{i}^{1}, \ldots, x_{i}^{k}$
\rightarrow Can we translate the conditions?

Rewriting to Boolean variables (example)

- $\mathrm{NULL}_{7}=001$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$
$\rightarrow x_{7}^{1}=0$ and $x_{7}^{2}=0$ and $x_{7}^{3}=1$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$

$$
\begin{aligned}
& \rightarrow x_{7}^{1}=0 \text { and } x_{7}^{2}=0 \text { and } x_{7}^{3}=1 \\
& \rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}
\end{aligned}
$$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$
$\rightarrow x_{7}^{1}=0$ and $x_{7}^{2}=0$ and $x_{7}^{3}=1$
$\rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}$
- $\mathrm{NULL}_{7} \neq 001$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$
$\rightarrow x_{7}^{1}=0$ and $x_{7}^{2}=0$ and $x_{7}^{3}=1$
$\rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}$
- $\mathrm{NULL}_{7} \neq 001$
\rightarrow negate the above

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$
$\rightarrow x_{7}^{1}=0$ and $x_{7}^{2}=0$ and $x_{7}^{3}=1$
$\rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}$
- $\mathrm{NULL}_{7} \neq 001$
\rightarrow negate the above
- $\mathrm{NULL}_{7}=$ NULL $_{8}$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$

$$
\begin{aligned}
& \rightarrow x_{7}^{1}=0 \text { and } x_{7}^{2}=0 \text { and } x_{7}^{3}=1 \\
& \rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}
\end{aligned}
$$

- $\mathrm{NULL}_{7} \neq 001$
\rightarrow negate the above
- $\mathrm{NULL}_{7}=$ NULL $_{8}$

$$
\rightarrow x_{7}^{1}=x_{8}^{1} \text { and } x_{7}^{2}=x_{8}^{2} \text { and } x_{7}^{3}=x_{8}^{3}
$$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$

$$
\begin{aligned}
& \rightarrow x_{7}^{1}=0 \text { and } x_{7}^{2}=0 \text { and } x_{7}^{3}=1 \\
& \rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}
\end{aligned}
$$

- $\mathrm{NULL}_{7} \neq 001$
\rightarrow negate the above
- $\mathrm{NULL}_{7}=$ NULL8 $_{8}$

$$
\rightarrow x_{7}^{1}=x_{8}^{1} \text { and } x_{7}^{2}=x_{8}^{2} \text { and } x_{7}^{3}=x_{8}^{3}
$$

- $\operatorname{NULL}_{7} \neq$ NULL $_{8}$

Rewriting to Boolean variables (example)

- $\operatorname{NULL}_{7}=001$
$\rightarrow x_{7}^{1}=0$ and $x_{7}^{2}=0$ and $x_{7}^{3}=1$
$\rightarrow \neg x_{7}^{1} \wedge \neg x_{7}^{2} \wedge x_{7}^{3}$
- $\mathrm{NULL}_{7} \neq 001$
\rightarrow negate the above
- $\mathrm{NULL}_{7}=\mathrm{NULL}_{8}$
$\rightarrow x_{7}^{1}=x_{8}^{1}$ and $x_{7}^{2}=x_{8}^{2}$ and $x_{7}^{3}=x_{8}^{3}$
- $\operatorname{NULL}_{7} \neq$ NULL $_{8}$
\rightarrow negate the above

Concluding

\rightarrow We have moved to a finite domain (without changing the table)

Concluding

\rightarrow We have moved to a finite domain (without changing the table)
\rightarrow We have rewritten to Boolean variables (we changed the table)

Concluding

\rightarrow We have moved to a finite domain (without changing the table)
\rightarrow We have rewritten to Boolean variables
(we changed the table)
\rightarrow It suffices to study Boolean c-tables

Table of contents

Definitions

Boolean c-tables

Expressiveness

Strong representation system

- Are Boolean c-tables a strong representation system for relational algebra? ...

Strong representation system

- Are Boolean c-tables a strong representation system for relational algebra? ...
\rightarrow Yes!

Strong representation system

- Are Boolean c-tables a strong representation system for relational algebra? ...
\rightarrow Yes!
\rightarrow c-tables are
\rightarrow NULLs will never appear by themselves outside of conditions

Capturing all uncertain relations

- Fix a set of possible tuples
- A possible world: a subset of the possible tuples
- An uncertain relation: set of possible worlds

Capturing all uncertain relations

- Fix a set of possible tuples
- A possible world: a subset of the possible tuples
- An uncertain relation: set of possible worlds

Booking			Booking		
date	teacher	room	date	teacher	room
21	Antoine	Saphir	21	Antoine	Saphir
21	Silviu	Saphir	21	Silviu	Saphir
21	Silviu	C47	21	Silviu	C47
28	Antoine	Saphir	28	Antoine	Saphir
28	Antoine	C47	28	Antoine	C47
28	Silviu	Saphir	28	Silviu	Saphir

Capturing all uncertain relations

- Fix a set of possible tuples
- A possible world: a subset of the possible tuples
- An uncertain relation: set of possible worlds

Booking		
date	teacher	room
21	Antoine	Saphir
21	Silviu	Saphir
21	Silviu	C47
28	Antoine	Saphir
28	Antoine	C47
28	Silviu	Saphir

Booking		
date	teacher	room
21	Antoine	Saphir
21	Silviu	Saphir
21	Silviu	C47
28	Antoine	Saphir
28	Antoine	C47
28	Silviu	Saphir

\rightarrow Can we capture all uncertain relations?

Capturing uncertain relations

- Make multiple copies of possible worlds so there are 2^{k} possible worlds
- Write each possible world in binary

Capturing uncertain relations

- Make multiple copies of possible worlds so there are 2^{k} possible worlds
- Write each possible world in binary

Capturing uncertain relations

- Make multiple copies of possible worlds so there are 2^{k} possible worlds
- Write each possible world in binary

Numbering tuples

For each tuple, write the possible worlds where it appears

Numbering tuples

For each tuple, write the possible worlds where it appears

00		01		10		11	
v	w	v	w	v	w	v	w
a	d	a	d	a	d	a	d
b	e	b	e	b	e	b	e
c	f	c	f	c	f	c	f

Numbering tuples

For each tuple, write the possible worlds where it appears

\mathbf{v}	\mathbf{w}				
a	d	00	01	10	11
b	e		01		
c	f		01	10	11

Making a condition

- Create one non-Boolean variable
\rightarrow chooses the world
- Obtain a non-Boolean c-table

Making a condition

- Create one non-Boolean variable
\rightarrow chooses the world
- Obtain a non-Boolean c-table

\mathbf{v}	\mathbf{w}				
a	d	00	01	10	11
b	e		01		
c	f		01	10	11

Making a condition

- Create one non-Boolean variable
\rightarrow chooses the world
- Obtain a non-Boolean c-table

Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

\mathbf{v}	\mathbf{w}	
a	d	$x=00 \vee x=01 \vee x=10 \vee x=11$
b	e	$x=01$
c	f	$x=01 \vee x=10 \vee x=11$

Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

\mathbf{v}	\mathbf{w}	
a	d	$x=00 \vee x=01 \vee x=10 \vee x=11$
b	e	$x=01$
c	f	$x=01 \vee x=10 \vee x=11$
\mathbf{v}	\mathbf{w}	
a	d	$\neg x_{1} \wedge \neg x_{2} \vee \neg x_{1} \wedge x_{2} \vee x_{1} \wedge \neg x_{2} \vee x_{1} \wedge x_{2}$
b	e	$\neg x_{1} \wedge x_{2}$
c	f	$\neg x_{1} \wedge x_{2} \vee x_{1} \wedge \neg x_{2} \vee x_{1} \wedge x_{2}$

Conclusion

We have studied:

- First:
- Codd tables with nulls
- v-tables with named NULLS
- c-tables with named NULLs and conditions

Conclusion

We have studied:

- First:
- Codd tables with nulls
- v-tables with named NULLS
- c-tables with named NULLs and conditions
- Then:
- c-tables with nuLLs only in conditions
- Boolean c-tables: Boolean variables

Conclusion

We have studied:

- First:
- Codd tables with nulls
- v-tables with named nuLLs
- c-tables with named NULLS and conditions
- Then:
- c-tables with NULLs only in conditions
- Boolean c-tables: Boolean variables

We have shown:
\rightarrow Any c-table with nuLLs only in conditions
rewrites to a Boolean c-table
\rightarrow Boolean c-tables capture all finite uncertain tables
\rightarrow Boolean c-tables are a strong representation system
\rightarrow c-tables are a strong representation system

References I

R Abiteboul, S., Hull, R., and Vianu, V. (1995).
Foundations of Databases.
Addison-Wesley.
http://webdam.inria.fr/Alice/pdfs/all.pdf.
囯 Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).
Probabilistic Databases.
Morgan \& Claypool.
Unavailable online.

