

Uncertain Data Management Boolean c-tables

Antoine Amarilli¹, Silviu Maniu²

November 28th, 2016

¹Télécom ParisTech

²LRI

Remember c-tables:

Member ⋈ Booking

id	date	teacher	class	room	
2	2016-11-28	NULL ₁	UDM	NULL ₂	
3	2016-12-05	NULL ₁	UDM	NULL ₂	
4	2016-12-12	NULL ₁	UDM	NULL ₂	if NULL_o is "UDM"

Remember c-tables:

Member ⋈ Booking

id	date	teacher	class	room	
2	2016-11-28	NULL ₁	UDM	NULL ₂	
3	2016-12-05	NULL ₁	UDM	NULL ₂	
4	2016-12-12	NULL ₁	UDM	NULL ₂	if NULL_O is "UDM "

 \rightarrow Variant: Only allow NULLs in the conditions

- The **possible tuples** are exactly the **rows**
- Each row may either be **kept** or **deleted**
 - $\rightarrow~$ Depends on the condition

- The **possible tuples** are exactly the **rows**
- Each row may either be kept or deleted
 - $\rightarrow\,$ Depends on the condition
- \rightarrow Finite number of possible worlds

- The **possible tuples** are exactly the **rows**
- Each row may either be **kept** or **deleted**
 - $\rightarrow\,$ Depends on the condition
- → Finite number of possible worlds → at most 2^N if we have N rows

Member ⋈ Booking

id	date	teacher	class	room	
2	2016-11-28	Antoine	UDM	C42	if NULL 1 is "Antoine"
3	2016-12-05	Antoine	UDM	C42	if NULL 1 is "Antoine"
4	2016-12-12	Antoine	UDM	C42	if NULL_1 is "Antoine"
2	2016-11-28	Silviu	UDM	C42	if NULL 1 is "Silviu"
3	2016-12-05	Silviu	UDM	C42	if NULL 1 is "Silviu"
4	2016-12-12	Silviu	UDM	C42	if NULL 1 is "Silviu"

Definitions

Boolean c-tables

Expressiveness

• the possible values of each NULL; are True and False

 \cdot the possible values of each ${\tt NULL}_i$ are ${\tt True}$ and ${\tt False}$

We can simplify notation

- \rightarrow We write the NULLs as **Boolean variables** x_i
- \rightarrow We replace $x_i = \text{True}$ by just x_i
- \rightarrow We replace $x_i = \text{False}$ by $\neg x_i$

• the possible values of each NULL; are True and False

We can simplify notation

- \rightarrow We write the NULLs as **Boolean variables** x_i
- \rightarrow We replace $x_i = \text{True}$ by just x_i
- \rightarrow We replace $x_i = \text{False}$ by $\neg x_i$
- \rightarrow We can **rewrite**:

•
$$x_i = x_j$$
 to $(x_i \land x_j) \lor (\neg x_i \land \neg x_j)$
• $x_i \neq x_j$ to $(x_i \land \neg x_j) \lor (\neg x_i \land x_j)$

 \cdot the possible values of each ${\tt NULL}_i$ are ${\tt True}$ and ${\tt False}$

We can simplify notation

- \rightarrow We write the NULLs as **Boolean variables** x_i
- \rightarrow We replace $x_i = \text{True}$ by just x_i
- \rightarrow We replace $x_i = \text{False}$ by $\neg x_i$
- \rightarrow We can **rewrite**:
 - $\mathbf{x}_i = \mathbf{x}_j$ to $(\mathbf{x}_i \wedge \mathbf{x}_j) \vee (\neg \mathbf{x}_i \wedge \neg \mathbf{x}_j)$
 - $\mathbf{x}_i \neq \mathbf{x}_j$ to $(\mathbf{x}_i \land \neg \mathbf{x}_j) \lor (\neg \mathbf{x}_i \land \mathbf{x}_j)$

 $\rightarrow\,$ The conditions become Boolean expressions

Theorem

We can always rewrite a c-table having **NULL**s only in conditions to a Boolean c-table.

Theorem

We can always rewrite a c-table having **NULL**s only in conditions to a Boolean c-table.

Two steps:

- 1. We can pick the NULLs in a finite domain
- 2. We can rewrite any finite domain to True and False

- We can choose among **infinitely many** values for the **NULL**s
- However, the values only appear in the **conditions**:
 - NULL_i = NULL_j
 - NULL_i = "C"
 - Boolean combinations

- We can choose among infinitely many values for the NULLS
- However, the values only appear in the **conditions**:
 - NULL_i = NULL_j
 - NULL_i = "C"
 - Boolean combinations
- We call two assignments of values to NULLS equivalent if all conditions evaluate to the same

 \rightarrow Call two assignments of values to NULLS equivalent if all conditions evaluate to the same.

- $NULL_1 = NULL_2$
- NULL₂ = "C"
- \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)

- → Call two assignments of values to NULLS equivalent if all conditions evaluate to the same.
- Consider the following:
 - $NULL_1 = NULL_2$
 - NULL₂ = "C"
 - \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
 - $\rightarrow\,$ What are the possible assignments?

→ Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

- $NULL_1 = NULL_2$
- NULL₂ = "C"
- \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
- $\rightarrow\,$ What are the possible <code>assignments?</code>
 - (c, c)
 - $\rightarrow \,$ true, true

→ Call two assignments of values to NULLs equivalent if all conditions evaluate to the same.

- $NULL_1 = NULL_2$
- NULL₂ = "C"
- \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
- $\rightarrow\,$ What are the possible <code>assignments?</code>
 - \cdot (c, c)
 - $\rightarrow~$ true, true
 - (x, c) with $x \neq c$
 - $\rightarrow \,$ false, true

→ Call two assignments of values to NULLS equivalent if all conditions evaluate to the same.

- $NULL_1 = NULL_2$
- NULL₂ = "C"
- \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
- $\rightarrow\,$ What are the possible <code>assignments?</code>
 - (c, c)
 - $\rightarrow~$ true, true
 - (x, c) with $x \neq c$
 - \rightarrow false, true
 - (x, x) with $x \neq c$
 - \rightarrow true, false

→ Call two assignments of values to NULLS equivalent if all conditions evaluate to the same.

- $NULL_1 = NULL_2$
- NULL₂ = "C"
- \rightarrow E.g.: The assignment (a, d) is equivalent to (b, d)
- \rightarrow What are the possible **assignments**?
 - (c, c)
 - $\rightarrow~$ true, true
 - (x, c) with $x \neq c$
 - \rightarrow false, true
 - (x, x) with $x \neq c$
 - \rightarrow **true**, false
 - (y, x) with $x \neq c$ and $y \neq x$ \rightarrow false, false

- $\cdot\,$ Consider all constants that appear: $\mathcal C$
- Consider *N* different values *V*, where *N* is the number of NULLS

- + Consider all constants that appear: ${\cal C}$
- Consider N different values V, where N is the number of NULLs
- \rightarrow Gives our **domain** $\mathcal{D} := \mathcal{C} \sqcup \mathcal{V}$

- Consider all $\ensuremath{\mathsf{constants}}$ that appear: $\ensuremath{\mathcal{C}}$
- Consider *N* different values *V*, where *N* is the number of NULLS
- \rightarrow Gives our **domain** $\mathcal{D} := \mathcal{C} \sqcup \mathcal{V}$

Lemma

For any c-table with **NULL**s only in conditions, its set of possible worlds is the same:

- under the standard semantics
- \cdot when *NULL*s range over the finite \mathcal{D} .

- Consider all $\ensuremath{\mathsf{constants}}$ that appear: $\ensuremath{\mathcal{C}}$
- Consider *N* different values *V*, where *N* is the number of NULLS
- \rightarrow Gives our **domain** $\mathcal{D} := \mathcal{C} \sqcup \mathcal{V}$

Lemma

For any c-table with **NULL**s only in conditions, its set of possible worlds is the same:

- under the standard semantics
- \cdot when **NULL**s range over the finite \mathcal{D} .
- → For simplicity, let's pad \mathcal{D} to have exactly 2^k values for some k

• The **domain** has size 2^k .

- The **domain** has size 2^k .
- Write its values in binary
- Encode each NULL_i to variables x_i^1, \ldots, x_i^k

- The **domain** has size 2^k .
- Write its values in binary
- Encode each NULL_i to variables x_i^1, \ldots, x_i^k
- \rightarrow Can we **translate** the conditions?

• $\text{NULL}_7 = \text{OO1}$

• NULL₇ = 001

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

• NULL₇ = 001

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

• NULL₇ = OO1

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

• $\text{NULL}_7 \neq \text{OO1}$

• NULL₇ = 001

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

- $\text{NULL}_7 \neq \text{OO1}$
 - \rightarrow **negate** the above

• NULL₇ = OO1

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

- $\text{NULL}_7 \neq \text{OO1}$
 - \rightarrow **negate** the above
- $\cdot \text{ NULL}_7 = \text{NULL}_8$

• NULL₇ = 001

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

- $\text{NULL}_7 \neq \text{OO1}$
 - \rightarrow **negate** the above
- $\text{NULL}_7 = \text{NULL}_8$

$$ightarrow x_7^1 = x_8^1$$
 and $x_7^2 = x_8^2$ and $x_7^3 = x_8^3$

• NULL₇ = OO1

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

- $\text{NULL}_7 \neq \text{OO1}$
 - \rightarrow negate the above
- $\text{NULL}_7 = \text{NULL}_8$

$$\rightarrow x_7^1 = x_8^1$$
 and $x_7^2 = x_8^2$ and $x_7^3 = x_8^3$

 $\textbf{\cdot} \text{ NULL}_7 \neq \text{NULL}_8$

• NULL₇ = OO1

$$\rightarrow x_7^1 = 0 \text{ and } x_7^2 = 0 \text{ and } x_7^3 = 1$$

 $\rightarrow \neg x_7^1 \land \neg x_7^2 \land x_7^3$

- $\text{NULL}_7 \neq \text{OO1}$
 - \rightarrow negate the above
- $\text{NULL}_7 = \text{NULL}_8$

$$\rightarrow x_7^1 = x_8^1$$
 and $x_7^2 = x_8^2$ and $x_7^3 = x_8^3$

- $\textbf{\cdot} \text{ NULL}_7 \neq \text{NULL}_8$
 - \rightarrow negate the above

 $\rightarrow\,$ We have moved to a finite domain (without changing the table)

- $\rightarrow\,$ We have moved to a finite domain (without changing the table)
- → We have rewritten to Boolean variables (we changed the table)

- → We have moved to a finite domain (without changing the table)
- → We have rewritten to Boolean variables (we changed the table)
- ightarrow It suffices to study Boolean c-tables

Definitions

Boolean c-tables

Expressiveness

• Are Boolean c-tables a **strong representation system** for relational algebra? ...

- Are Boolean c-tables a **strong representation system** for relational algebra? ...
 - \rightarrow Yes!

- Are Boolean c-tables a **strong representation system** for relational algebra? ...
 - \rightarrow Yes!
 - $\rightarrow \text{ c-tables}$ are
 - \rightarrow NULLs will never appear by themselves outside of conditions

Capturing all uncertain relations

- Fix a set of **possible tuples**
- A possible world: a subset of the possible tuples
- · An uncertain relation: set of possible worlds

Capturing all uncertain relations

- Fix a set of **possible tuples**
- A possible world: a subset of the possible tuples
- An uncertain relation: set of possible worlds

	Booking			Booking				
date	teacher	room	date	teacher	room			
21	Antoine	Saphir	21	Antoine	Saphir			
21	Silviu	Saphir	21	Silviu	Saphir			
21	Silviu	C47	21	Silviu	C47			
28	Antoine	Saphir	28	Antoine	Saphir			
28	Antoine	C47	28	Antoine	C47			
28	Silviu	Saphir	28	Silviu	Saphir			

Capturing all uncertain relations

- Fix a set of **possible tuples**
- A possible world: a subset of the possible tuples
- An uncertain relation: set of possible worlds

	Booking		Booking				
date	teacher	room	date	teacher	room		
21	Antoine	Saphir	21	Antoine	Saphir		
21	Silviu	Saphir	21	Silviu	Saphir		
21	Silviu	C47	21	Silviu	C47		
28	Antoine	Saphir	28	Antoine	Saphir		
28	Antoine	C47	28	Antoine	C47		
28	Silviu	Saphir	28	Silviu	Saphir		

 \rightarrow Can we capture all **uncertain relations?**

- Make multiple copies of possible worlds so there are 2^k possible worlds
- Write each **possible world** in binary

- Make multiple copies of possible worlds so there are 2^k possible worlds
- Write each **possible world** in binary

C	0		01		10		
v	w	v	w		v	w	
а	d	а	d		а	d	
b	е	b	е		b	е	
С	f	С	f	_	С	f	

- Make multiple copies of possible worlds so there are 2^k possible worlds
- Write each **possible world** in binary

00		C	01		10			11	
v	w	v	w		v	w		v	w
а	d	а	d		а	d		а	d
b	е	b	е		b	е		b	е
С	f	С	f		С	f		С	f

Numbering tuples

For each tuple, write the possible worlds where it appears

Numbering tuples

For each tuple, write the possible worlds where it appears

00		(01		10			11	
v	w	v	w	_	v	w	_	v	w
а	d	а	d	-	а	d	-	а	d
b	е	b	е		b	е		b	е
С	f	С	f		С	f		С	f

Numbering tuples

For each tuple, write the possible worlds where it appears

00			01		-	10	_	11		
v	W	1	v	w		v	w	_	v	w
а	d		а	d		а	d	-	а	d
b	е		b	е		b	е		b	е
С	f		С	f		С	f		С	f
								-		
		v	w							
		а	d	00	С)1	10	1:	1	
		b	е		С)1				
		С	f		С)1	10	11	1	

Making a condition

- Create one **non-Boolean variable**
 - ightarrow chooses the world
- Obtain a non-Boolean c-table

Making a condition

- Create one non-Boolean variable
 - ightarrow chooses the world
- Obtain a non-Boolean c-table

v	W				
а	d	00	01	10	11
b	е		01		
С	f		01	10	11

Making a condition

- Create one non-Boolean variable
 - ightarrow chooses the world
- Obtain a non-Boolean c-table

		v	w					
		а	d	00	01	10	11	
		b	е		01			
		С	f		01	10	11	
v	w							
а	d	<i>x</i> =	= 00	∨ <i>X</i> =	= 01	∨ <i>x</i> =	= 10 \	/ X = 11
b	е			X =	= 01			
С	f	$X = 01 \lor X = 10 \lor X = 11$						

Making a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

Use the previous trick to rewrite to a Boolean c-table

v	w	
а	d	$x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
b	е	<i>X</i> = 01
С	f	$X = 01 \lor X = 10 \lor X = 11$

Use the previous trick to rewrite to a Boolean c-table

	v	w
	а	d $x = 00 \lor x = 01 \lor x = 10 \lor x = 11$
	b	e
	С	f $x = 01 \lor x = 10 \lor x = 11$
v	w	
a	d	$\neg x_1 \land \neg x_2 \lor \neg x_1 \land x_2 \lor x_1 \land \neg x_2 \lor x_1 \land x_2$
b	е	$\neg X_1 \land X_2$
С	f	$\neg X_1 \land X_2 \lor X_1 \land \neg X_2 \lor X_1 \land X_2$

Conclusion

We have studied:

- First:
 - Codd tables with NULLS
 - v-tables with named NULLs
 - c-tables with named NULLs and conditions

Conclusion

We have studied:

- First:
 - Codd tables with NULLS
 - v-tables with named NULLS
 - c-tables with named NULLs and conditions
- · Then:
 - c-tables with NULLs only in conditions
 - Boolean c-tables: Boolean variables

Conclusion

We have studied:

- First:
 - Codd tables with NULLS
 - v-tables with named NULLs
 - c-tables with named NULLs and conditions
- · Then:
 - c-tables with NULLs only in conditions
 - Boolean c-tables: Boolean variables

We have shown:

- → Any c-table with NULLs only in conditions rewrites to a Boolean c-table
- ightarrow Boolean c-tables capture all finite uncertain tables
- $\rightarrow\,$ Boolean c-tables are a strong representation system
- \rightarrow c-tables are a strong representation system

Abiteboul, S., Hull, R., and Vianu, V. (1995). *Foundations of Databases.*

Addison-Wesley.

http://webdam.inria.fr/Alice/pdfs/all.pdf.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).

Probabilistic Databases.

Morgan & Claypool. Unavailable online.