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General motivation (for database people)

• Intensional query evaluation: given a query Q and a database D

• Compile Q on D to a circuit C in a tractable class (d-SDNNF, uOBDD, ...)
• Other names: grounding Q on D, computing the provenance of Q on D...

• Use the circuit C to retrieve the answer of Q on D

• Monday: intensional query evaluation for counting and probability computation

• Today: can we use the intensional approach to enumerate query answers?

Structure of the talk:

• Preliminaries and problem statement

• Efficient enumeration for d-DNNF set circuits

• Applications: Using enumeration on circuits for query evaluation
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Preliminaries



Enumeration algorithms (see Nofar’s talks, September workshop)

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State
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Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

6/24



Knowledge compilation (see Guy and YooJung’s talks, Boot camp)

WITHOUT knowledge compilation:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH knowledge compilation:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results
6/24



Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

Factorized database fans may find these eerily familiar
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Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Arithmetic circuit aficionados may see a connection
Semiring supporters may have recognized Why[X]

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}
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Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
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Main results

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

But where do set circuits come from?

• Directly when doing intensional query evaluation (see later)
• From Boolean circuits: you can obtain a d-DNNF set circuit:

• From a d-DNNF, in quadratic time (smoothing)
• From a d-SDNNF, in linear time when allowing special gates (implicit smoothing)
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Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x :

enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/24



Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates
12/24



Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate
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Normalization: handling empty assignments

×

×

×

x

⊤

⊤

⊤

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set
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Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
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Applications



Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
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Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]
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Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)
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Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width nOBDDs
→ Generalizes to trees with polynomial dependency in the tree automaton
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Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on an earlier quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)
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Other applications

• Using enumerable compact sets, a fully-persistent version of enumerable d-DNNFs:
• For visibly pushdown transducers on nested documents in a streaming setting

[Muñoz and Riveros, 2022]
• For annotated automata on SLP-compressed documents, with updates

[Muñoz and Riveros, 2023]

• Query evaluation beyond MSO and variants on words and trees:
• For first-order queries on bounded expansion databases [Toruńczyk, 2020]
• For ranked direct access for some CQs with negation, see Florent’s talk this afternoon

• Can also be used to enumerate homomorphisms between structures
[Berkholz and Vinall-Smeeth, 2023]
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What about ranked enumeration?

Enumeration algorithms typically give results in an arbitrary (non-controllable) order!

• For MSO queries, ranked enumeration is possible with logarithmic delay:
• First shown for queries on words [Bourhis et al., 2021]
• Recent preprint (A., Bourhis, Capelli, Monet) for queries on trees under

subset-monotone ranking functions
• (Very) high-level idea: use one priority queue for each gate

• For CQs, results for ranked access: [Tziavelis et al., 2022], [Deep et al., 2022],
[Carmeli et al., 2023]

• Also: see Florent’s talk
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Conclusion



Summary and conclusion

• We can enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant Hamming weight

→ Applies to MSO enumeration on words and trees

→ Applies to enumerate of the matches of annotated context-free grammars (with
more expensive preprocessing)

→ Can be used for other applications

→ In particular: incremental maintenance under updates, ranked enumeration, etc.
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Questions for future work

• What about negation gates?

• What can we do without determinism? (enumeration for DNNF?)

• Connect results on updates to finer bounds on incremental maintenance
(A., Jachiet, Paperman, ICALP’21)

• Enumerate satisfying assignments via edits on previous results (A., Monet, STACS’23)
to achieve constant delay even on linear-sized assignments

• For MSO queries: understand better the connection between automata classes and
circuit classes (e.g., alternating automata, two-way automata...)

• More broadly, following the intensional approach for enumeration: classify
enumeration tasks depending on the circuit class to which they can be compiled?

Thanks for your attention!
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Set circuits vs factorized representations

A B C

a b c
a1 b′ c′

a2 b′ c′

∪

× ×

× ⟨C : c⟩

⟨A : a⟩ ⟨B : b⟩

∪

⟨A : a1⟩ ⟨A : a2⟩

×

⟨B : b′⟩ ⟨C : c′⟩

• Set circuits can be seen as factorized representations
→ Not necessarily well-typed, height and/or assignment size may be non-constant

• Determinism: unions are disjoint
• Decomposability: no duplicate attribute names in products
• Structuredness: always the same decomposition of the attributes



Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):
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Tree automata

Tree alphabet:
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Uncertain trees

Now: Boolean query on a tree where the color of nodes is uncertain
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A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”
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Set circuit
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Set circuit:

• Tree automaton A, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then A accepts ν(T)
iff the set S(g0) of the output gate g0 contains
{g ∈ C | ν(g) = 1}.

Query: Is there both a pink and a blue node?
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Building provenance circuits on trees

Theorem
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
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Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

Semi-open question: what about memory usage?



Circuits as factorized representations of query results

→ The set circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query:
Q(X1, X2) : P (x) ∧ P (y)

Data:
1

2 3

Results:
X1 X2
1 2
1 3

Provenance circuit:

×

X1(1) ∪

X2(2) X2(3)

{X2(2), X2(3)}

{(X1(1), X2(2)), (X1(1), X2(3))}

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.
Semi-open question: what about memory usage?


	Preliminaries
	Proof techniques
	Applications
	Conclusion
	Appendix

