Structurally Tractable Uncertain Data

Antoine Amarilli
Supervisor: Pierre Senellart
Expected graduation: August 2016

Télécom ParisTech, France

May 31st, 2015
Uncertain data management

Is data always complete and certain?
Uncertain data management

Is data always complete and certain?

- Unreliable sources
 - Crowdsourcing
 - Massive collaborations: Wikidata, etc.
Is data always complete and certain?

- **Unreliable sources**
 - Crowdsourcing
 - Massive collaborations: Wikidata, etc.

- **Error-prone processing**
 - Unsupervised information extraction
 - OCR, speech recognition, etc.
Uncertain data management

Is data always complete and certain?

- **Unreliable sources**
 - Crowdsourcing
 - Massive collaborations: Wikidata, etc.

- **Error-prone processing**
 - Unsupervised information extraction
 - OCR, speech recognition, etc.

- **Outdated or stale data**
Uncertain data management

Is data always complete and certain?

- Unreliable sources
 - Crowdsourcing
 - Massive collaborations: Wikidata, etc.

- Error-prone processing
 - Unsupervised information extraction
 - OCR, speech recognition, etc.

- Outdated or stale data

→ We need uncertain data management
Example model: TID

- Consider a **relational instance**

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
</tr>
</tbody>
</table>
Example model: TID

- Consider a relational instance

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
</tr>
</tbody>
</table>

- Add probabilities to facts
Example model: **TID**

- Consider a *relational instance*

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
<td>5%</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
<td>0%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
<td>6%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
<td>2%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
<td>20%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Add *probabilities* to facts
Example model: TID

- Consider a relational instance

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
<td>5%</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
<td>0%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
<td>6%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
<td>2%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
<td>20%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Add probabilities to facts
- Assume independence between facts
Example model: TID

Consider a relational instance

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
<td>5%</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
<td>0%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
<td>6%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
<td>2%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
<td>20%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
<td>15%</td>
</tr>
</tbody>
</table>

• Add probabilities to facts
• Assume independence between facts
 → Semantics: a probability distribution on regular instances
Example model: TID

- Consider a relational instance

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
<td>5%</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
<td>0%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
<td>6%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
<td>2%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
<td>20%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Add probabilities to facts
- Assume independence between facts
 - Semantics: a probability distribution on regular instances
- What about queries? (Boolean CQs)
Example model: TID

- Consider a *relational instance*

<table>
<thead>
<tr>
<th>Date</th>
<th>Animal</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wed 3rd</td>
<td>Kangaroo</td>
<td>5%</td>
</tr>
<tr>
<td>Wed 3rd</td>
<td>Tasmanian devil</td>
<td>0%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Kangaroo</td>
<td>6%</td>
</tr>
<tr>
<td>Thu 4th</td>
<td>Tasmanian devil</td>
<td>2%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Kangaroo</td>
<td>20%</td>
</tr>
<tr>
<td>Fri 5th</td>
<td>Tasmanian devil</td>
<td>15%</td>
</tr>
</tbody>
</table>

- Add *probabilities* to facts
- Assume *independence* between facts
 - Semantics: a *probability distribution* on regular instances
- What about *queries*? (Boolean CQs)
 - Semantics: compute the *probability* that the query holds
Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists xy \ R(x) \ S(x, y) \ T(y)$
- Measure data complexity, i.e., as a function of the instance
Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists xy \ R(x) \ S(x, y) \ T(y)$
- Measure data complexity, i.e., as a function of the instance
 \[\#P\text{-hard} \ [Dalvi \ and \ Suciu, \ 2007] \ (instead \ of \ AC^0) \]
Big problem: Tractability

- Evaluate the fixed Boolean CQ: $\exists xy \ R(x) \ S(x, y) \ T(y)$
- Measure data complexity, i.e., as a function of the instance
 \rightarrow #P-hard [Dalvi and Suciu, 2007] (instead of AC^0)

Existing approaches:

- Avoid hard queries [Dalvi and Suciu, 2012]
- Use sampling to get approximate answers
The general idea

Input instances are not arbitrary!

→ Impose structural restrictions on instances
→ Prove fixed-parameter tractability results
This talk

- Parameter: instance treewidth
- Bound it by a constant

→ MSO queries have linear data complexity [Courcelle, 1990]
This talk

- Parameter: instance treewidth
- Bound it by a constant

→ MSO queries have linear data complexity [Courcelle, 1990]
→ Also holds on TID instances (with unit cost arithmetics)
 (joint work with Pierre Bourhis and Pierre Senellart)
Table of contents

1. Introduction
2. Trees
3. Treelike instances
4. Future work
Uncertain tree example

- A possible PrXML tree, from Wikidata facts:

```
Q298423
  given name
  mux
    0.4
    0.6
    Bradley
    Chelsea

  ind
  surname
    Manning

  ind
  place of birth
  Crescent

  ind
  occupation
  musician
```

→ Probabilities reflect contributor trustworthiness
Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
“Is there both a red and green node?”

Valuation: \{1, 2, 3, 4, 5, 6, 7\}

The query is true
Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
“Is there both a red and green node?”

Valuation: \{1, 2, 5, 6\}

The query is false
Formalizing uncertain trees

A valuation of a tree decides whether to keep or discard node labels.

Example query:
“Is there both a red and green node?”

Valuation: \{2, 7\}

The query is true
Provenance formulae and circuits

Which \textit{valuations} satisfy the query?
Provenance formulae and circuits

Which valuations satisfy the query?

→ Provenance formula of a query q on an uncertain tree T:
 - Boolean formula ϕ
 - on variables $x_1 \ldots x_7$
 → $\nu(T)$ satisfies q iff $\nu(\phi)$ is true
Provenance formulae and circuits

Which **valuations** satisfy the query?

→ Provenance formula of a query q on an uncertain tree T:
 - Boolean formula ϕ
 - on variables $x_1 \ldots x_7$
 → $\nu(T)$ satisfies q iff $\nu(\phi)$ is true

Provenance circuit of q on T [Deutch et al., 2014]
 - Boolean circuit C
 - with input gates $g_1 \ldots g_7$
 → $\nu(T)$ satisfies q iff $\nu(C)$ is true
Example

Is there both a red and a green node?
Is there both a **red** and a **green** node?

- Provenance formula: \((x_2 \lor x_3) \land x_7\)
Is there both a red and a green node?

- **Provenance formula:** \((x_2 \lor x_3) \land x_7\)
- **Provenance circuit:**
Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.

Key ideas:

- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T in C

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.

Relates to

- Message passing [Lauritzen and Spiegelhalter, 1988]
- Already known [Cohen et al., 2009]
Our main result on trees

Theorem

For any fixed MSO query q (first order $+$ quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.

→ Key ideas:
- Compile q to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on T in C
Our main result on trees

Theorem

For any fixed MSO query q (first order + quantify on sets) we can compute a provenance circuit C for any input tree T in linear time in the input T.

→ Key ideas:
 - Compile q to a tree automaton [Thatcher and Wright, 1968]
 - Write the possible transitions of the automaton on T in C

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.
Our main result on trees

Theorem

For any fixed MSO query \(q \) (first order + quantify on sets) we can compute a provenance circuit \(C \) for any input tree \(T \) in linear time in the input \(T \).

→ Key ideas:

- Compile \(q \) to a tree automaton [Thatcher and Wright, 1968]
- Write the possible transitions of the automaton on \(T \) in \(C \)

Corollary

If tree nodes have a probability of being independently kept, we can compute the query probability in linear time.

→ Relates to message passing [Lauritzen and Spiegelhalter, 1988]
→ Already known [Cohen et al., 2009]
Table of contents

1 Introduction
2 Trees
3 Treelike instances
4 Future work
Treewidth intuition

Generalize from trees to treelike instances:
Treewidth intuition

Generalize from trees to treelike instances:

- **Treewidth**: measure on instances
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth $k - 1$

- **Treelike**: the treewidth is bounded by a constant
Treewidth intuition

Generalize from trees to treelike instances:

- **Treewidth**: measure on instances
 - Trees have treewidth 1
 - Cycles have treewidth 2
 - k-cliques and k-grids have treewidth $k - 1$

- **Treelike**: the treewidth is bounded by a constant

→ Treelike instances can be encoded to trees
Treewidth formal definition

Instance:

```
N
a b
b c
c d
d e
e f

S
a c
b e
```
Treewidth formal definition

Instance:

\[
\begin{array}{cccc}
N & & & \\
\hline
a & b & & \\
b & c & & \\
c & d & & \\
d & e & & \\
e & f & & \\
\end{array}
\]

\[
\begin{array}{cccc}
S & & & \\
\hline
a & c & & \\
b & e & & \\
\end{array}
\]

Gaifman graph:

\[
\begin{array}{ccc}
\text{a} & \text{f} & \\
\hline
\text{b} & \text{e} & \\
\text{c} & \text{d} & \\
\end{array}
\]

Tree decomp.:

\[
\begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
\text{b} & \text{c} & \text{e} \\
\text{c} & \text{d} & \text{e} \\
\end{array}
\]

Tree encoding:

\[
\begin{array}{c}
N(a_1; a_2) \\
S(a_2; a_3) \\
N(a_3; a_1) \\
N(a_1; a_4) \\
N(a_4; a_1) \\
\end{array}
\]

Tree-like: constant bound on the maximal bag size
Treewidth formal definition

Instance:
\[
\begin{array}{c|c|c}
\text{N} & \text{S} \\
\hline
a & b & a \\
b & c & c \\
c & d & d \\
d & e & e \\
e & f & f \\
\end{array}
\]

Gaifman graph:
\[
\begin{array}{c|c|c}
\text{a} & \text{f} & \text{abc} \\
\hline
\text{b} & \text{e} & \text{bce} \\
\text{c} & \text{d} & \text{cde} \\
\text{e} & \text{f} & \text{ef} \\
\end{array}
\]

Tree decomp.:
\[
\begin{array}{c|c|c}
\text{a} & \text{b} & \text{c} \\
\hline
\text{b} & \text{e} & \text{d} \\
\text{bce} & \text{cde} & \text{ef} \\
\end{array}
\]
Treewidth formal definition

Instance:

Gaifman graph:

Tree decomp.:

Tree encoding:

Instance:

Gaifman graph:

Tree decomp.:

Tree encoding:
Treewidth formal definition

Instance:

$\begin{array}{c}
N \\
\hline
a & b \\
\hline
b & c \\
\hline
c & d \\
\hline
d & e \\
\hline
e & f \\
\hline
S \\
\end{array}$

Gaifman graph:

$\begin{array}{c}
a & f \\
\hline
b & e \\
\hline
c & d \\
\end{array}$

Tree decomp.:

$\begin{array}{c}
abc \\
\hline
cde \\
\hline
ef \\
\end{array}$

Tree encoding:

$\begin{array}{c}
N(a_1, a_2) \\
\hline
N(a_2, a_3) \\
\hline
S(a_1, a_3) \\
\hline
S(a_2, a_4) \\
\hline
N(a_3, a_1) \\
\hline
N(a_4, a_1) \\
\hline
N(a_1, a_4) \\
\end{array}$

\rightarrow Treelike: constant bound on the maximal bag size
Our main result on treelike instances

Theorem

For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on I.
Our main result on treelike instances

Theorem

For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on I.

→ Key ideas:
- Compute tree decomposition and tree encoding in linear time
- Compile q to an automaton on encodings [Flum et al., 2002]
- Use the previous construction
→ Possible subinstances are possible valuations of the encoding
Our main result on treelike instances

Theorem

For any fixed MSO query q and bound $k \in \mathbb{N}$, for any input instance I of treewidth $\leq k$, we can compute in linear time a provenance circuit of q on I.

→ Key ideas:

- Compute tree decomposition and tree encoding in linear time
- Compile q to an automaton on encodings [Flum et al., 2002]
- Use the previous construction
 → Possible subinstances are possible valuations of the encoding

Corollary

MSO queries have linear data complexity on treelike TID instances.
Further results

- Support other models with dependencies between facts:
 - Block-independent disjoint (BID): mutually exclusive facts
 - pc-tables: events and Boolean annotations
Further results

- Support **other models** with dependencies between facts:
 - **Block-independent disjoint (BID):** mutually exclusive facts
 - **pc-tables:** events and Boolean annotations

- Support **other tasks:**
 - **Counting query results** encodes to probabilistic evaluation
 - General connection to **semiring provenance** [Green et al., 2007]
Table of contents

1 Introduction
2 Trees
3 Treelike instances
4 Future work
Extending the provenance connection

- **Negation:**
 - Semiring provenance usually defined for positive queries
 - Yet our provenance circuits work fine with negation
 → Relate this to provenance for queries with negation?
Extending the provenance connection

- **Negation:**
 - Semiring provenance usually defined for positive queries
 - Yet our provenance circuits work fine with negation
 → Relate this to provenance for queries with negation?

- **Multiplicities:**
 - Our works connects to the universal semiring $\mathbb{N}[X]$...
 - ... but only for UCQs, not arbitrary MSO
 - Missing: notion of multiplicity for MSO (multisets?)
Extending the provenance connection

- **Negation:**
 - Semiring provenance usually defined for positive queries
 - Yet our provenance circuits work fine with negation
 - Relate this to provenance for queries with negation?

- **Multiplicities:**
 - Our works connects to the universal semiring $\mathbb{N}[X]$
 - ... but only for UCQs, not arbitrary MSO
 - Missing: notion of multiplicity for MSO (multisets?)

- **Structural restrictions:**
 - Are real-world instances tree-like?
 - Are there other possible restrictions?
 - Experiments?
Connect to other frameworks

- Compiling to automata has high combined complexity
 → Investigate Monadic Datalog approaches [Gottlob et al., 2010]
Connect to other frameworks

- Compiling to automata has high combined complexity
 → Investigate Monadic Datalog approaches [Gottlob et al., 2010]

- Uncertainty on facts not values
 → Connect to work on nulls [Libkin, 2014]
Connect to other frameworks

- Compiling to automata has high combined complexity
 → Investigate Monadic Datalog approaches [Gottlob et al., 2010]

- Uncertainty on facts not values
 → Connect to work on nulls [Libkin, 2014]

- What about reasoning on uncertain data and its implications?
 → Connect to tractable languages (e.g., guarded Datalog)
Connect to other frameworks

- Compiling to automata has high combined complexity
 → Investigate Monadic Datalog approaches [Gottlob et al., 2010]

- Uncertainty on facts not values
 → Connect to work on nulls [Libkin, 2014]

- What about reasoning on uncertain data and its implications?
 → Connect to tractable languages (e.g., guarded Datalog)

- What about incorporating new evidence?
 → Connect to work on conditioning [Tang et al., 2012]
Other projects and directions

- Open-world query answering (with Michael Benedikt)
 - Certainty of a Boolean CQ when completing under constraints
 - Which constraint languages are decidable?
 - What is the impact of assuming finiteness?
Other projects and directions

- Open-world query answering (with Michael Benedikt)
 - Certainty of a Boolean CQ when completing under constraints
 - Which constraint languages are decidable?
 - What is the impact of assuming finiteness?

- Uncertain ordered data
 - Bag semantics for the relational algebra
 (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
 - Interpolation schemes for partially ordered numerical values
 (with Yael Amsterdamer, Tova Milo, Pierre Senellart)
Other projects and directions

- **Open-world query answering** (with Michael Benedikt)
 - Certainty of a Boolean CQ when completing under constraints
 - Which constraint languages are decidable?
 - What is the impact of assuming finiteness?

- **Uncertain ordered data**
 - Bag semantics for the relational algebra
 (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
 - Interpolation schemes for partially ordered numerical values
 (with Yael Amsterdamer, Tova Milo, Pierre Senellart)

- **Problem of instance possibility**
 - On uncertain orders (labeled posets)
 - On probabilistic XML
Other projects and directions

- Open-world query answering (with Michael Benedikt)
 - Certainty of a Boolean CQ when completing under constraints
 - Which constraint languages are decidable?
 - What is the impact of assuming finiteness?

- Uncertain ordered data
 - Bag semantics for the relational algebra
 (with M. Lamine Ba, Daniel Deutch, Pierre Senellart)
 - Interpolation schemes for partially ordered numerical values
 (with Yael Amsterdamer, Tova Milo, Pierre Senellart)

- Problem of instance possibility
 - On uncertain orders (labeled posets)
 - On probabilistic XML

Thanks for your attention!

Semiring provenance [Green et al., 2007]

- **Semiring** \((K, \oplus, \otimes, 0, 1)\)
 - \((K, \oplus)\) commutative monoid with identity 0
 - \((K, \otimes)\) commutative monoid with identity 1
 - \(\otimes\) distributes over \(\oplus\)
 - 0 absorptive for \(\otimes\)
Semiring provenance [Green et al., 2007]

- **Semiring** \((K, \oplus, \otimes, 0, 1)\)
 - \((K, \oplus)\) commutative monoid with identity 0
 - \((K, \otimes)\) commutative monoid with identity 1
 - \(\otimes\) distributes over \(\oplus\)
 - 0 absorptive for \(\otimes\)

- **Idea**: Maintain annotations on tuples while evaluating:
 - **Union**: annotation is the sum of union tuples
 - **Select**: select as usual
 - **Project**: annotation is the sum of projected tuples
 - **Product**: annotation is the product
Tree automata

Tree alphabet: □ □ □

Is there both a red and green node?

States: f, G, R, ⊤

Final states: f⊤

Initial function: R G

Transitions (examples):
R ? R ⊤ G R ? ?
Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- “Is there both a red and green node?”
Tree automata

- **bNTA**: bottom-up nondeterministic tree automaton
- "Is there both a red and green node?"
- **States**: \(\{ \bot, G, R, \top \} \)
Tree automata

Tree alphabet:

- bNTA: bottom-up nondeterministic tree automaton
- “Is there both a red and green node?”
- States: \{⊥, G, R, ⊤\}
- Final states: \{⊤\}
Tree automata

bNTA: bottom-up nondeterministic tree automaton

“Is there both a red and green node?”

States: \{\bot, G, R, \top\}

Final states: \{\top\}

Initial function:

\[
\begin{align*}
\bullet & \quad \bot \\
\bullet & \quad R \\
\bullet & \quad G
\end{align*}
\]
Tree automata

Tree alphabet: \(\text{\textcolor{red}{R}} \) \(\text{\textcolor{green}{G}} \) \(\text{\textcolor{gray}{\bot}} \)

- **bNTA**: bottom-up nondeterministic tree automaton
- “Is there both a red and green node?”
- **States**: \(\{ \bot, G, R, \top \} \)
- **Final states**: \(\{ \top \} \)
- **Initial function**:
 \[
 \begin{align*}
 \text{\textcolor{red}{R}} & \rightarrow \text{\textcolor{red}{R}} \\
 \text{\textcolor{gray}{\bot}} & \rightarrow \text{\textcolor{gray}{\bot}} \\
 \text{\textcolor{gray}{\bot}} & \rightarrow \text{\textcolor{gray}{\bot}} \\
 \text{\textcolor{green}{G}} & \rightarrow \text{\textcolor{green}{G}}
 \end{align*}
 \]
Tree automata

Tree alphabet: \(\bullet \bullet \bullet \)

- **bNTA:** bottom-up nondeterministic tree automaton
- “Is there both a red and green node?”
- **States:** \(\{ \bot, G, R, \top \} \)
- **Final states:** \(\{ \top \} \)
- **Initial function:**
 - \(\bot \)
 - \(R \)
 - \(G \)

Transitions (examples):
Tree automata

- **bNTA**: bottom-up nondeterministic tree automaton
- “Is there both a red and green node?”
- **States**: \{\bot, G, R, \top\}
- **Final states**: \{\top\}
- **Initial function**:
 - \bot
 - \textcolor{red}{R}
 - \textcolor{green}{G}
- **Transitions** (examples):
 - \begin{array}{c}
 \text{\textcolor{red}{R}} \\
 \text{\bot} \\
 \text{\bot} \\
 \text{\textcolor{green}{G}}
 \end{array}
Tree automata

Tree alphabet: \top

bNTA: bottom-up nondeterministic tree automaton

“Is there both a red and green node?”

- **States**: $\{\bot, G, R, \top\}$
- **Final states**: $\{\top\}$
- **Initial function**:
 - \bot
 - R
 - G

Transitions (examples):

- R \bot G \bot \bot
Constructing the provenance circuit

Construct a Boolean provenance circuit bottom-up
Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up
Constructing the provenance circuit

→ Construct a Boolean provenance circuit bottom-up

Diagram showing a Boolean circuit with variables q_1, q_2, and q, connected by logical operators and inputs.
Example: block-independent disjoint (BID) instances

<table>
<thead>
<tr>
<th>name</th>
<th>city</th>
<th>iso</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>pods</td>
<td>melbourne</td>
<td>au</td>
<td>0.8</td>
</tr>
<tr>
<td>pods</td>
<td>sydney</td>
<td>au</td>
<td>0.2</td>
</tr>
<tr>
<td>icalp</td>
<td>tokyo</td>
<td>jp</td>
<td>0.1</td>
</tr>
<tr>
<td>icalp</td>
<td>kyoto</td>
<td>jp</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Example: block-independent disjoint (BID) instances

<table>
<thead>
<tr>
<th>name</th>
<th>city</th>
<th>iso</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>pods</td>
<td>melbourne</td>
<td>au</td>
<td>0.8</td>
</tr>
<tr>
<td>pods</td>
<td>sydney</td>
<td>au</td>
<td>0.2</td>
</tr>
<tr>
<td>icalp</td>
<td>tokyo</td>
<td>jp</td>
<td>0.1</td>
</tr>
<tr>
<td>icalp</td>
<td>kyoto</td>
<td>jp</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- Evaluating a fixed CQ is \#P-hard in general
Example: block-independent disjoint (BID) instances

<table>
<thead>
<tr>
<th>name</th>
<th>city</th>
<th>iso</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>pods</td>
<td>melbourne</td>
<td>au</td>
<td>0.8</td>
</tr>
<tr>
<td>pods</td>
<td>sydney</td>
<td>au</td>
<td>0.2</td>
</tr>
<tr>
<td>icalp</td>
<td>tokyo</td>
<td>jp</td>
<td>0.1</td>
</tr>
<tr>
<td>icalp</td>
<td>kyoto</td>
<td>jp</td>
<td>0.9</td>
</tr>
</tbody>
</table>

- Evaluating a fixed CQ is $\#P$-hard in general
 → For a treelike instance, linear time!
Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 → Number of accepting runs of the bNTA

- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms
Supporting coefficients

- In the world of trees
 - The same valuation can be accepted multiple times
 → Number of accepting runs of the bNTA

- In the world of treelike instances
 - The same match can be the image of multiple homomorphisms
 → Add assignment facts to represent possible assignments
 → Encode to a bNTA that guesses them
Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact

- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent
Supporting exponents

- In the world of trees
 - The same fact can be used multiple times
 - Annotate nodes with a multiplicity
 - The bNTA is monotone for that multiplicity
 - Use each input gate as many times as we read its fact

- In the world of treelike instances
 - The same fact can be the image of multiple atoms
 - Maximal multiplicity is query-dependent but instance-independent

→ Encodes CQs to bNTAs that read multiplicities
 - Consider all possible CQ self-homomorphisms
 - Count the multiplicities of identical atoms
 - Rewrite relations to add multiplicities
 - Usual compilation on the modified signature