TELECOM .

et i |
Enumeration on Trees with Tractable Combined
Complexity and Efficient Updates

Antoine Amarilli', Pierre Bourhis?, Stefan Mengel3, Matthias Niewerth*
May 20th, 2019

'Télécom ParisTech
2CNRS, CRIStAL, Lille
3CNRS, CRIL, Lens

“University of Bayreuth e
11

Dramatis Personae

Antoine Amarilli Pierre Bourhis

R

Stefan Mengel Matthias Niewerth

2/16

Problem statement

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
3y Po(x) APo(y) AX =y

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
3y Po(x) APo(y) AX =y

Q Result: { (X1,...,Xg) | (X1,..-,X) = Q}

3/16

MSO query evaluation on trees

Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
3y Po(x) APo(y) AX =y

Q Result: { (X1,...,Xg) | (X1,..-,X) = Q}

Up to |T|® many answers

3/16

Enumeration algorithm

: 2

Input

Enumeration algorithm

Step
—| Indexing

Enumeration algorithm

Step 1: IE.
—| Indexing P

in O(input)| Indexed
Input (input) input

Enumeration algorithm

Step 1: IE. Step 2:
—| Indexing P — Enumeration

Input | in Olinput) qugﬁ?{d in O(result)

Enumeration algorithm

-

Input

Step
Indexing
in O(input)

)IE.)

Indexed

Step 2:
Enumeration
in O(result)

Input

Results

Enumeration algorithm

A B C
Step 1: IE. Step 2: a b c
— Indexing b —| Enumeration >
in O(input)| Indexed in O(result
Input (input) input ()
Results
0011
N

State

Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

N

Step 2:
Enumeration
in O(result)

L 2

0011

W —

State

Results

4/16

Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

Step 2:
Enumeration

N

in O(result)

010001

W —

State

Results

4/16

Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

Step 2:
Enumeration

N

L 2

in O(result)

01100111

W —

State

Results

4/16

Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

N

Step 2:
Enumeration
in O(result)

L 2

il
W —

State

4/16

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
[Niewerth, 2018] trees O(T) O(logT) O(logT)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
[Niewerth, 2018] trees O(T) O(logT) O(logT)
[Niewerth and Segoufin, 2018] text O(T) 0(1) O(logT)

5/16

Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
[Niewerth, 2018] trees O(T) O(logT) O(logT)
[Niewerth and Segoufin, 2018] text O(T) 0(1) O(logT)
this paper trees O(T) 0(1) O(logT)

5/16

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)

6/16

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)

e Most queries are much simpler

6/16

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)
e Most queries are much simpler

» We use bottom-up (binary) tree-automata

6/16

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)
e Most queries are much simpler

» We use bottom-up (binary) tree-automata

dy ...
Query

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)
e Most queries are much simpler

» We use bottom-up (binary) tree-automata

dy ...
Query

Automaton

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)
e Most queries are much simpler

» We use bottom-up (binary) tree-automata

dy ...
Query

Automaton

[

Tree

Tree Automata

« MSO query evaluation is non-elementary (if P # NP)

e Most queries are much simpler

» We use bottom-up (binary) tree-automata

dy ...
Query

Automaton Knowlege

g / Compilation

Tree

Set Circuit
in DNNF

6/16

Semantics of set circuits

Every gate g captures set of sets S(g)

7/16

Semantics of set circuits

Every gate g captures set of sets S(g)

s(CD) = (e
))

{3y vy}

7/16

Semantics of set circuits

Every gate g captures set of sets S(g)

s(@) = {{x1}}
oo sy =1

{3 {4y v

7/16

Semantics of set circuits

Every gate g captures set of sets S(g)

s((0)) = (e
s (D)=
° ° S(@) =10

{3 {4y v

7/16

Semantics of set circuits

Every gate g captures set of sets S(g)

s(@) = {{x1}}

{{x}} {x.y}} . @) -

° ° S(@) =10
S(@) ={51US> |51 €5(g1).52 € 5(92)}
() ()

{3 {4y v

7/16

Semantics of set circuits

{{X Y1} Every gate g captures set of sets S(g)
s(@) = {{x1}}
{{x}} {{x,y}}
” s @Dy =1

° ° S(@) =10
S(@) ={51US> |51 €5(g1).52 € 5(92)}
() ()

S = 5(g91) US(92
W ((©D):=ste)usia:

7/16

Semantics of set circuits

{{X Y1} Every gate g captures set of sets S(g)
s(@) = {{x1}}
{{x}} {{x,y}}
” s @Dy =1

° ° S(@) =10
S(@) ={51US> |51 €5(g1).52 € 5(92)}
() ()

S = 5(g91) US(92
W ((©D):=ste)usia:

Task: Enumerate the elements of the set S(g) captured by a gate g
—E.g, for S(g) = {{x}, {x,y}}, enumerate {x} and then {x,y}

7/16

Compiling Trees in Set Circuits

8/16

Compiling Trees in Set Circuits

/ N\ / N\
= EE u
/ N\

8/16

Compiling Trees in Set Circuits

/ N\ / N\
= EE B
/ N\
o =&

e One box for each node of the tree

8/16

Compiling Trees in Set Circuits

/ N\ / N\
= EE u
/ N\

* One box for each node of the tree
* In each box: one U-gate for each state g of the automaton
- Captures partial runs that end in g

8/16

Enumerate Circuit Results

Preprocessing phase:
©
©,

®© @
DNNF
set circuit

Enumerate Circuit Results

Preprocessing phase:
©

©
)
Normalization
_)

@ ,. . .
(linear-time) | Normalized

DNNF L

circuit

set circuit

Enumerate Circuit Results

Preprocessing phase:

O

o,
© @ —H

DNNF

Normalization
(linear-time)

set circuit

ﬁ

Normalized
circuit

Indexing
(linear-time)

® @

—>Indexed

normalized

circuit

9/16

Enumerate Circuit Results

Preprocessing phase:

O

o,
© @ —H

DNNF

Normalization
(linear-time)

set circuit

Enumeration phase:

® @

Indexed
normalized
circuit

ﬁ

Normalized
circuit

Indexing
(linear-time)

® @

—>Indexed

normalized

circuit

Enumerate Circuit Results

Preprocessing phase:

-

Normalization
(linear-time)

® @

ﬁ

Normalized

DNNF
set circuit

Enumeration phase:

® @

Indexing
(linear-time)

—>Indexed

circuit

Indexed
normalized
circuit

Enumeration

| (constant delay)

normalized
circuit

>
w
[a)

o o
oo
2]

L 2

Results

9/16

Compiling Trees in Set Circuits

/ N\ / N\
= EE =
/ N\

10/16

Compiling Trees in Set Circuits

/\ /\
&= EE =
/ N\
e

e Constructions are bottom-up

10/16

Compiling Trees in Set Circuits

/\ /\
&= EE =
/ N\
e

e Constructions are bottom-up
» Updates can be done in O(depth(T))

10/16

Compiling Trees in Set Circuits

/\ /\
&= EE =
/ N\
e

e Constructions are bottom-up
» Updates can be done in O(depth(T))
» Problem: depth(T) can be linearin T

10/16

Compiling Trees in Set Circuits

/\ /\
&= EE =
/ N\
e

Constructions are bottom-up

» Updates can be done in O(depth(T))

» Problem: depth(T) can be linearin T
Solution: Depict trees by forest algebra terms

10/16

Free Forest Algebra in a Nutshell

§>\© @ g = 5\08 concatenation

1/16

Free Forest Algebra in a Nutshell

§>\© @ g = 5\08 concatenation

ﬁ\ O go = context
application

1/16

Free Forest Algebra in a Nutshell

§>\© @ g = 5\08 concatenation

ﬁ\ ® go = context
application

ﬁ o gm _ context
application

1/16

Free Forest Algebra in a Nutshell

tree

12/16

Free Forest Algebra in a Nutshell

tree term

¢ o

12/16

Free Forest Algebra in a Nutshell

®
N\
%/fx)

12/16

Free Forest Algebra in a Nutshell

tree term

AN
\GB
%/a %

12/16

Free Forest Algebra in a Nutshell

tree term

J@ %/}%

\6-)
%/J hS

12/16

Free Forest Algebra in a Nutshell

tree term alternative term

FUEON

SN

12/16

Free Forest Algebra in a Nutshell

tree term alternative term

G %/x)g%%

12/16

Free Forest Algebra in a Nutshell

tree term alternative term

G %//x) gg\/gg

12/16

Free Forest Algebra in a Nutshell

tree term alternative term

The leaves of the formula correspond to the nodes of the tree

12/16

Rebalancing Forest Algebra Terms

S

13/16

Rebalancing Forest Algebra Terms

@ D
@/ \3 - 1/ \@
VAN / \3

13/16

Rebalancing Forest Algebra Terms

/\ — /\
/\ /\

13/16

Rebalancing Forest Algebra Terms

/\ — /\
/\ /\

13/16

Rebalancing Forest Algebra Terms

//\ — /\\
/\ /\

/\ /\ /\
/\ /\ /\ /\
/\ /\

13/16

Rebalancing Forest Algebra Terms

//\ — /\\
/\ /\

/\ /\ /\
/\ /\ /\ /\
/\ /\

13/16

Rebalancing Forest Algebra Terms

//\ — /\\
/\ /\

/\ /\ /\
/\ /\ /\ /\
/\ /\

13/16

Rebalancing Forest Algebra Terms

/_>/\

A A
AV NeVAN
A AN A
A A

Q
A, == A
A AN

~
1 contains the hole

13/16

Rebalancing Forest Algebra Terms

/_>/\

/\ /\

/\ /\ /\
/\ /\ /\ /\
/\ /\
/\ /\ /\
/\ /\ — /\

1 contains the hole e
2 contains the hole
13/16

Main Result

Theorem o
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| x |Q[**")
Delay o(|Q* x|s|)
Updates O(log(IT[) x |Q**")

IT| size of tree

|Q| number of states of a nondeterministic tree automaton
IS| size of result

w exponent for Boolean matrix multiplication

14116

Lower Bound

Existencial Marked Ancestor Queries
Input: Tree t with some marked nodes

Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

15/16

Existencial Marked Ancestor Queries
Input: Tree t with some marked nodes

Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

. |
Theorem.tquery € Q(bg(tupf%(n)))

15/16

Existencial Marked Ancestor Queries
Input: Tree t with some marked nodes

Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

. |
Theorem.tquery € Q(bg(tu;f%(n)))

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special

2. Enumerate Q and return “yes”, iff Q produces some result
3. Mark v as non-special again

15/16

Existencial Marked Ancestor Queries
Input: Tree t with some marked nodes

Query: Does node v have a marked ancestor?
Updates: Mark or unmark a node

. |
Theorem.tquery € Q(bg(tu;f%(n)))

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special

2. Enumerate Q and return “yes”, iff Q produces some result

3. Mark v as non-special again

[
Theorem: max(tgelay, tupdate) € Q(|ogo|go(£()n))
15/16

Theorem o
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| x |Q|**")
Delay o(|Q* x|S|)
Updates O(log(|T|) x |Q**")

IT| size of tree

|Q| number of states of a nondeterministic tree automaton
IS| size of result

w exponent for Boolean matrix multiplication

Theorem

max(tyelay, tupdate) € Q<|olgﬁ,(£()n)>

16/16

Theorem o
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O(|T| x |Q|**")
Delay o(|Q* x|S|)
Updates O(log(|T|) x |Q**")

IT| size of tree

|Q| number of states of a nondeterministic tree automaton
IS| size of result

w exponent for Boolean matrix multiplication

Theorem

max(tdelay,tupdate) S Q< log(n) > Thank YOU

log log(n)

16/16

References i

[§ Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.

[d Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

[W Losemann, K. and Martens, W. (2014).

MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References ii

[\ Niewerth, M. (2018).
Mso queries on trees: Enumerating answers under updates using
forest algebras.
In LICS.

@ Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.

Normalization: handling ()

Normalization: handling ()

()
MO
0l0

Normalization: handling ()

Normalization: handling ()

Normalization: handling ()

 Problem: if S(g) = 0 we waste time

Normalization: handling ()

 Problem: if S(g) = 0 we waste time
 Solution: in preprocessing
- compute bottom-up if S(g) =0

Normalization: handling ()

 Problem: if S(g) = 0 we waste time
 Solution: in preprocessing

- compute bottom-up if S(g) =0
- then get rid of the gate

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

Normalization: handling empty sets

("2]
)
Q
(V2]
2
Q.
£
Q
on
R
—
p=]
[e
5+
=
£
.
e
(o]
N
—
5
£
.
(=)
=

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates
* Solution:

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

* Solution:

- remove inputs with S(g) = {{}} for x-gates

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates

* Solution:

- remove inputs with S(g) = {{}} for x-gates

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates
* Solution:

- remove inputs with S(g) = {{}} for x-gates
X3} - collapse x-chains with fan-in 1

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates
* Solution:

- remove inputs with S(g) = {{}} for x-gates
X3} - collapse x-chains with fan-in 1

Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates
* Solution:

- remove inputs with S(g) = {{}} for x-gates
X3} - collapse x-chains with fan-in 1

— Now, traversing a x-gate ensures that we make progress:
it splits the sets non-trivially

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies

g .
i to find a reachable exit (non-U gate)

94

92 g3

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies

g
i to find a reachable exit (non-U gate)

¢ Solution: compute reachability index

92 g3

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-U gate)

¢ Solution: compute reachability index

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-U gate)

¢ Solution: compute reachability index

e Problem: must be done in linear time

Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-U gate)

» Solution: compute reachability index

e Problem: must be done in linear time

 Solution: Compute reachability index with box-granularity

e Use matrix multiplication
« Circuit has bounded width (by the size of the automaton)

	Problem statement
	Lower Bound
	Appendix

