

Enumeration on Trees with Tractable Combined Complexity and Efficient Updates

Antoine Amarilli¹, Pierre Bourhis², Stefan Mengel³, **Matthias Niewerth**⁴ May 20th, 2019

¹Télécom ParisTech

²CNRS, CRIStAL, Lille

³CNRS, CRIL, Lens

⁴University of Bayreuth

Dramatis Personae

Antoine Amarilli

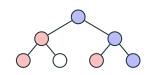
Stefan Mengel

Pierre Bourhis

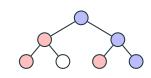
Matthias Niewerth

Problem statement

Data: a **tree** T where nodes have a color from an alphabet $\bigcirc\bigcirc\bigcirc$



Data: a **tree** T where nodes have a color from an alphabet $\bigcirc \bigcirc$

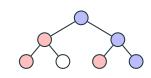


Query Q: a **formula** in monadic second-order logic (MSO)

- $P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y \ P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

Data: a **tree** T where nodes have a color from an alphabet $\bigcirc \bigcirc$



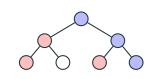
Query Q: a **formula** in monadic second-order logic (MSO)

- $P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y \ P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

Result: $\{(x_1, ..., x_k) | (x_1, ..., x_k) \models Q\}$

Data: a **tree** T where nodes have a color from an alphabet $\bigcirc \bigcirc$



Query Q: a **formula** in monadic second-order logic (MSO)

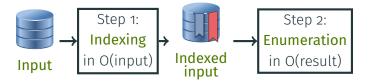
- $P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y"

"Return all blue nodes that have a pink child" $\exists y \ P_{\odot}(x) \land P_{\odot}(y) \land x \to y$

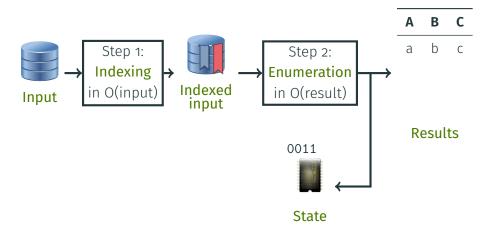
Result: $\{(x_1, ..., x_k) | (x_1, ..., x_k) \models Q\}$

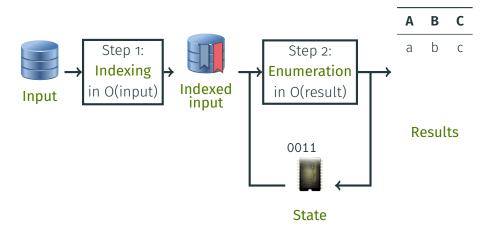
Up to $|T|^k$ many answers

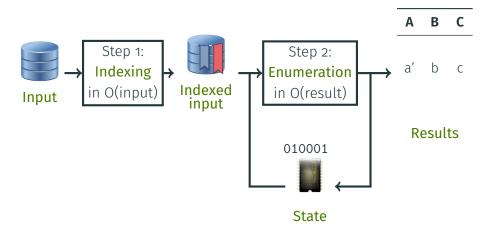
Input

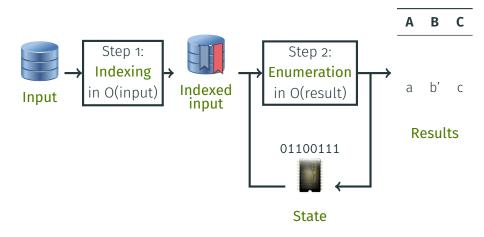


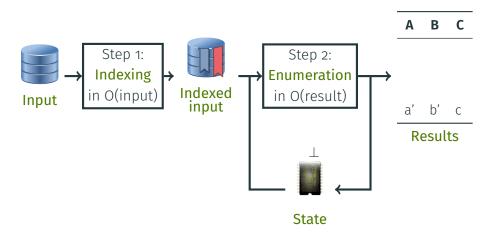
Results











Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	O(T)
[Kazana and Segoufin, 2013]				

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	O(T)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	O(T)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	$O(\log T)$	$O(\log T)$

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	O(T)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	$O(\log T)$	$O(\log T)$
[Niewerth and Segoufin, 2018]	text	O(T)	O(1)	$O(\log T)$

Work	Data	Preproc.	Delay	Updates
[Bagan, 2006],	trees	O(T)	O(1)	O(T)
[Kazana and Segoufin, 2013]				
[Losemann and Martens, 2014]	trees	O(T)	$O(\log^2 T)$	$O(\log^2 T)$
[Niewerth, 2018]	trees	O(T)	$O(\log T)$	$O(\log T)$
[Niewerth and Segoufin, 2018]	text	O(T)	<i>O</i> (1)	$O(\log T)$
this paper	trees	O(T)	<i>O</i> (1)	$O(\log T)$

• MSO query evaluation is non-elementary (if $P \neq NP$)

- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler

- MSO query evaluation is non-elementary (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

- MSO query evaluation is non-elementary (if P ≠ NP)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

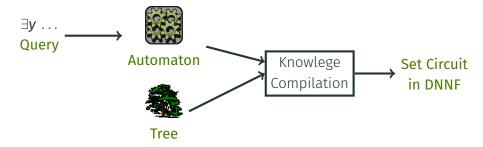
∃y ... Query

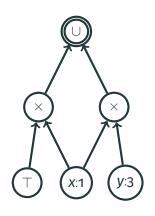
- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

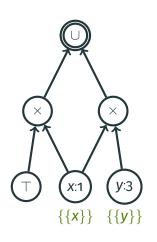
- MSO query evaluation is non-elementary (if P ≠ NP)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata

Tree

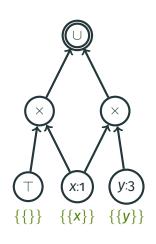
- MSO query evaluation is **non-elementary** (if $P \neq NP$)
- Most queries are much simpler
- We use bottom-up (binary) tree-automata



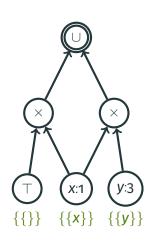




$$S((X:1)) := \{\{x:1\}\}$$



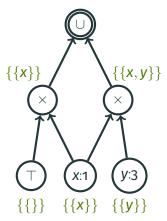
$$S(\overbrace{X:1}) := \{\{X:1\}\}$$

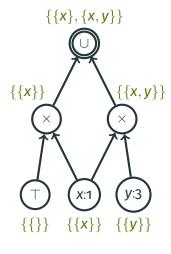


$$S(\stackrel{X:1}{\underbrace{\hspace{1cm}}}) := \{\{X:1\}\}$$

$$S(\bigcirc) := \{ \{ \} \}$$

$$S((\bot)) := \emptyset$$





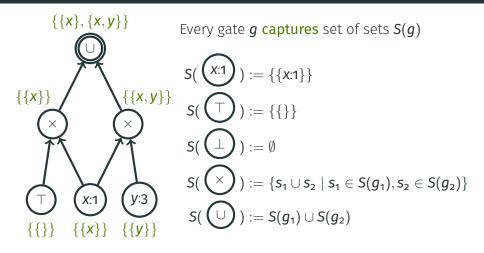
$$S(\begin{pmatrix} X:1 \end{pmatrix}) := \{\{X:1\}\}$$

$$S(\bigcirc) := \{ \{ \} \}$$

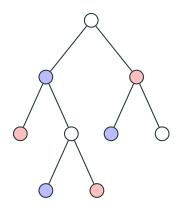
$$S((\bot)) := \emptyset$$

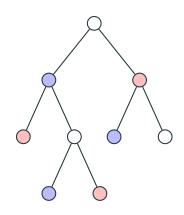
$$S((X)) := \{s_1 \cup s_2 \mid s_1 \in S(g_1), s_2 \in S(g_2)\}$$

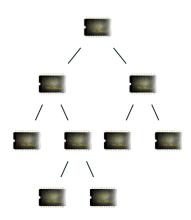
$$S(\bigcirc) := S(g_1) \cup S(g_2)$$

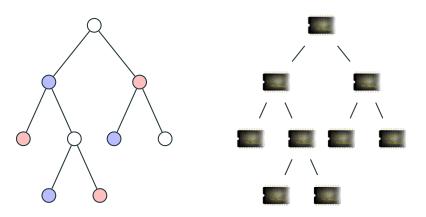


Task: Enumerate the elements of the set S(g) captured by a gate $g \to E.g.$, for $S(g) = \{\{x\}, \{x,y\}\}$, enumerate $\{x\}$ and then $\{x,y\}$

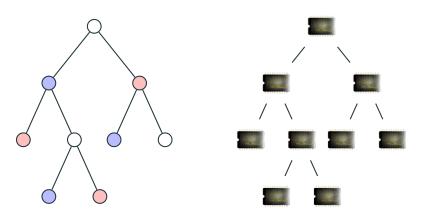








• One box for each node of the tree



- One box for each node of the tree
- In each box: one \cup -gate for each state q of the automaton
 - · Captures partial runs that end in q

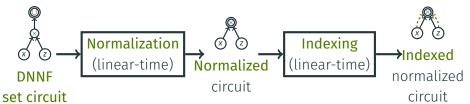
Preprocessing phase:

DNNF

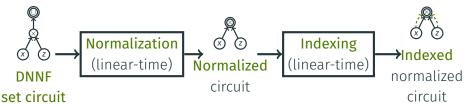
set circuit

Preprocessing phase:

Preprocessing phase:



Preprocessing phase:

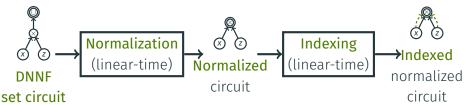


Enumeration phase:

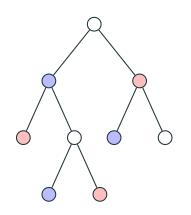
Indexed

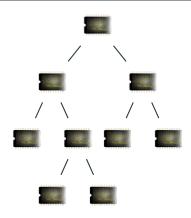
normalized circuit

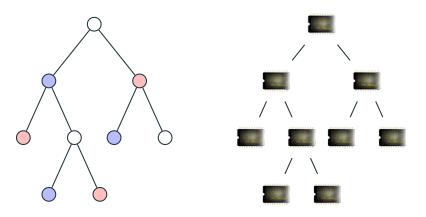
Preprocessing phase:



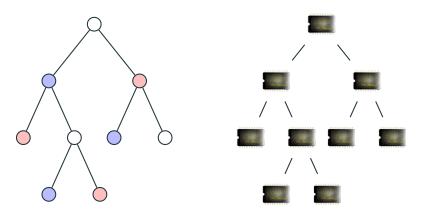
Enumeration phase:



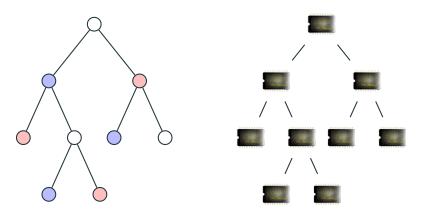




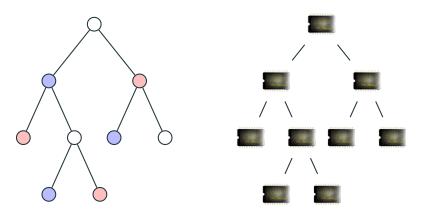
Constructions are bottom-up



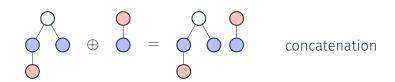
- Constructions are bottom-up
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$

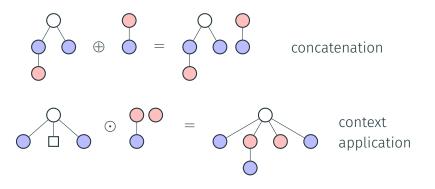


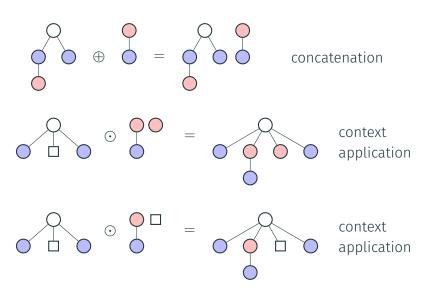
- Constructions are **bottom-up**
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$
- Problem: depth(T) can be linear in T



- Constructions are bottom-up
- Updates can be done in $\mathcal{O}(\operatorname{depth}(T))$
- Problem: depth(T) can be linear in T
- Solution: Depict trees by forest algebra terms



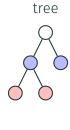




tree

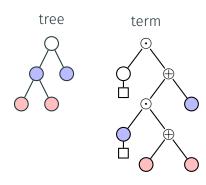
tree

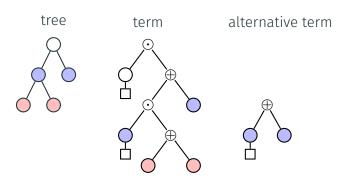
term

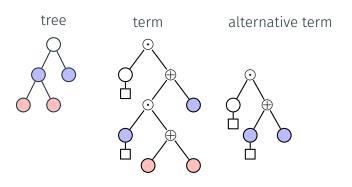


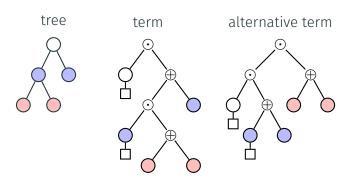
term

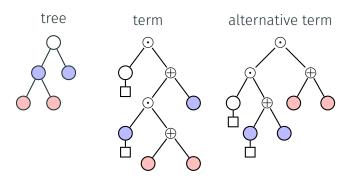




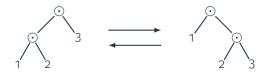


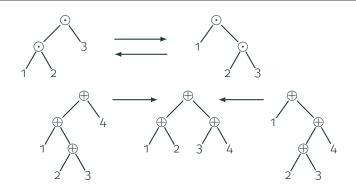


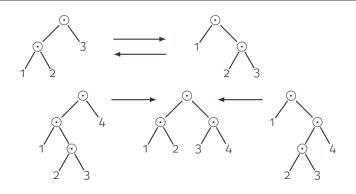


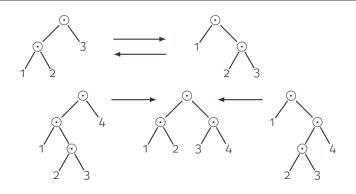


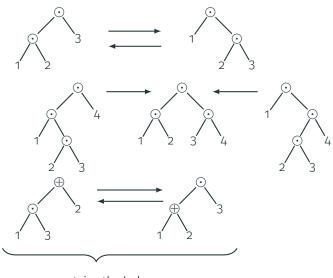
The leaves of the formula correspond to the nodes of the tree



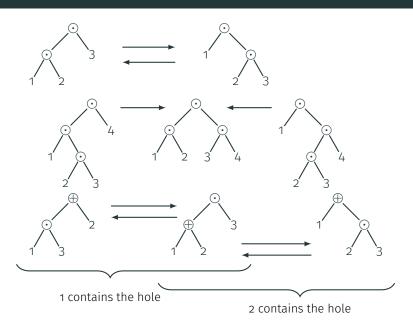








1 contains the hole



Main Result

Theorem

Enumertion of MSO formulas on trees can be done in time:

```
Preprocessing O(|T| \times |Q|^{4\omega+1})

Delay O(|Q|^{4\omega} \times |S|)

Updates O(\log(|T|) \times |Q|^{4\omega+1})
```

- |T| size of tree
- |**Q**| **number** of **states** of a nondeterministic tree automaton
- |S| size of result
- ω exponent for Boolean matrix multiplication

Existencial Marked Ancestor Queries

Input: Tree *t* with some marked nodes

Query: Does node v have a marked ancestor?

Updates: Mark or unmark a node

Existencial Marked Ancestor Queries

Input: Tree *t* with some marked nodes

Query: Does node v have a marked ancestor?

Updates: Mark or unmark a node

Theorem: $t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$

Existencial Marked Ancestor Queries

Input: Tree *t* with some marked nodes

Query: Does node v have a marked ancestor?

Updates: Mark or unmark a node

Theorem: $t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all **special nodes** with a marked ancestor For every marked ancestor query **v**:

- 1. Mark node **v** special
- 2. Enumerate **Q** and return "yes", iff **Q** produces some result
- 3. Mark **v** as non-special again

Existencial Marked Ancestor Queries

Input: Tree *t* with some marked nodes

Query: Does node v have a marked ancestor?

Updates: Mark or unmark a node

Theorem:
$$t_{query} \in \Omega\left(\frac{\log(n)}{\log(t_{update}\log(n))}\right)$$

Reduction to Query Enumeration with Updates

Fixed Query Q: Return all **special nodes** with a marked ancestor For every marked ancestor query **v**:

- 1. Mark node **v** special
- 2. Enumerate **Q** and return "yes", iff **Q** produces some result
- 3. Mark v as non-special again

Theorem:
$$\max(t_{\text{delay}}, t_{\text{update}}) \in \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:

```
Preprocessing O(|T| \times |Q|^{4\omega+1})

Delay O(|Q|^{4\omega} \times |S|)

Updates O(\log(|T|) \times |Q|^{4\omega+1})
```

- |T| size of tree
- **Q**| **number** of **states** of a nondeterministic tree automaton
- |S| size of result
- ω exponent for Boolean matrix multiplication

Theorem

$$\max(t_{\textit{delay}}, t_{\textit{update}}) \ \in \ \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$$

Results

Theorem

Enumertion of MSO formulas on trees can be done in time:

```
Preprocessing O(|T| \times |Q|^{4\omega+1})

Delay O(|Q|^{4\omega} \times |S|)

Updates O(\log(|T|) \times |Q|^{4\omega+1})
```

- |T| size of tree
- |**Q**| **number** of **states** of a nondeterministic tree automaton
- |S| size of result
- ω exponent for Boolean matrix multiplication

Theorem

$$\max(t_{delay}, t_{update}) \in \Omega\left(\frac{\log(n)}{\log\log(n)}\right)$$

References i

Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees.

TOCL, 14(4).

Losemann, K. and Martens, W. (2014).

MSO queries on trees: Enumerating answers under updates. In *CSL-LICS*.

References ii

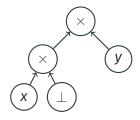
Mso queries on trees: Enumerating answers under updates using forest algebras.

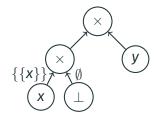
In LICS.

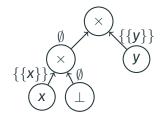
Niewerth, M. and Segoufin, L. (2018).

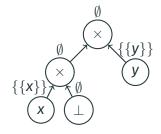
Enumeration of MSO queries on strings with constant delay and logarithmic updates.

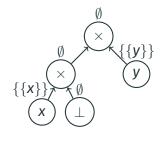
In PODS.



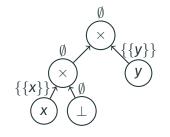




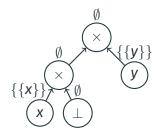




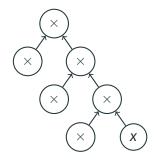
• **Problem:** if $S(g) = \emptyset$ we waste time

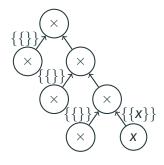


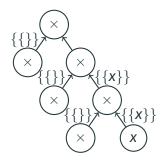
- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: in preprocessing
 - compute $\operatorname{\mathtt{bottom-up}}$ if $S(g)=\emptyset$

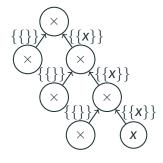


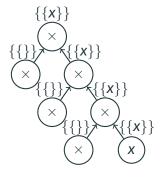
- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: in preprocessing
 - compute **bottom-up** if $S(g) = \emptyset$
 - · then get rid of the gate

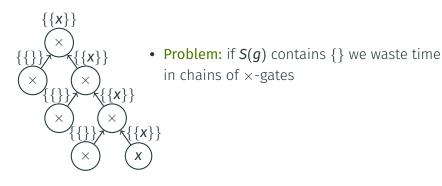


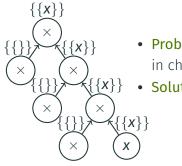




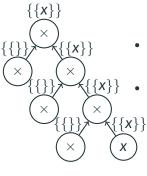




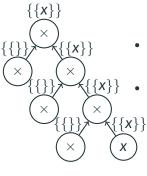




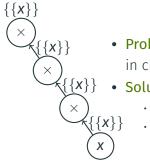
- Problem: if S(g) contains $\{\}$ we waste time in chains of x-gates
- Solution:



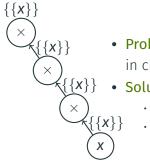
- Problem: if S(g) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}\$ for \times -gates



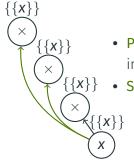
- Problem: if S(g) contains {} we waste time in chains of ×-gates
- Solution:
 - remove inputs with $S(g) = \{\{\}\}\$ for \times -gates



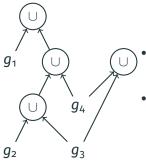
- Problem: if S(g) contains $\{\}$ we waste time in chains of x-gates
- Solution:
 - **remove** inputs with $S(g) = \{\{\}\}$ for \times -gates
 - collapse ×-chains with fan-in 1



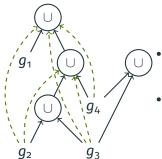
- Problem: if S(g) contains $\{\}$ we waste time in chains of x-gates
- Solution:
 - **remove** inputs with $S(g) = \{\{\}\}$ for \times -gates
 - collapse ×-chains with fan-in 1



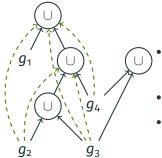
- Problem: if S(g) contains {} we waste time in chains of ×-gates
- Solution:
 - **remove** inputs with $S(g) = \{\{\}\}$ for \times -gates
 - · collapse ×-chains with fan-in 1
- → Now, traversing a ×-gate ensures that we make progress: it splits the sets non-trivially



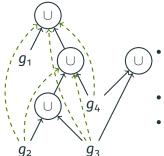
- Problem: we waste time in U-hierarchies to find a reachable exit (non-U gate)
- Solution: compute reachability index



- Problem: we waste time in U-hierarchies to find a reachable exit (non-U gate)
- Solution: compute reachability index



- **Problem:** we waste time in U-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index
 - Problem: must be done in linear time



- **Problem:** we waste time in ∪-hierarchies to find a **reachable exit** (non-∪ gate)
- Solution: compute reachability index
- Problem: must be done in linear time

- Solution: Compute reachability index with box-granularity
- Use matrix multiplication
- Circuit has bounded width (by the size of the automaton)