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Data: a tree T where nodes have a color
from an alphabet OO O

Query Q: a formula in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Return all blue nodes
that have a pink child”
3y Po(x) APo(y) AX =y

Q Result: { (X1,...,Xg) | (X1,..-,X) = Q}

Up to |T|® many answers

3/16



Enumeration algorithm

: 2

Input



Enumeration algorithm

Step
—| Indexing




Enumeration algorithm

Step 1: IE.
—| Indexing P

in O(input)| Indexed
Input (input) input




Enumeration algorithm

Step 1: IE. Step 2:
—| Indexing P — Enumeration

Input | in Olinput) qugﬁ?{d in O(result)




Enumeration algorithm

-

Input

Step
Indexing
in O(input)

_)IE._)

Indexed

Step 2:
Enumeration
in O(result)

Input

Results



Enumeration algorithm

A B C
Step 1: IE. Step 2: a b c
— Indexing b —| Enumeration >
in O(input)| Indexed in O(result
Input (input) input ( )
Results
0011
N

State



Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

N

Step 2:
Enumeration
in O(result)

L 2

0011

W —

State

Results

4/16



Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

Step 2:
Enumeration

N

in O(result)

010001

W —

State

Results

4/16



Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

Step 2:
Enumeration

N

L 2

in O(result)

01100111

W —

State

Results

4/16



Enumeration algorithm

-

Input

Step
Indexing
in O(input)

N

Indexed

Input

N

Step 2:
Enumeration
in O(result)

L 2

il
W —

State

4/16



Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

5/16



Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)

5/16



Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
[Niewerth, 2018] trees O(T) O(logT) O(logT)

5/16



Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
[Bagan, 2006], trees O(T) 0(1) o(T)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
[Niewerth, 2018] trees O(T) O(logT) O(logT)
[Niewerth and Segoufin, 2018] text  O(T) 0(1) O(logT)

5/16



Known results on dynamic trees

All these results are on data complexity in T (for a fixed pattern):

Work Data Preproc. Delay Updates
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[Losemann and Martens, 2014] trees O(T) O(log®T) O(log®T)
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Tree Automata

« MSO query evaluation is non-elementary (if P # NP)

e Most queries are much simpler

» We use bottom-up (binary) tree-automata

dy ...
Query

Automaton Knowlege

g / Compilation

Tree

Set Circuit
in DNNF
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{{X Y1} Every gate g captures set of sets S(g)
s( @) = {{x1}}
{{x}} {{x,y}}
” s @Dy =1

° ° S(@) =10
S( @) ={51US> |51 €5(g1).52 € 5(92)}
() ()

S = 5(g91) US(92
W ((©D):=ste)usia:

Task: Enumerate the elements of the set S(g) captured by a gate g
—E.g, for S(g) = {{x}, {x,y}}, enumerate {x} and then {x,y}
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Compiling Trees in Set Circuits

/ N\ / N\
= EE u
/ N\

* One box for each node of the tree
* In each box: one U-gate for each state g of the automaton
- Captures partial runs that end in g
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Compiling Trees in Set Circuits

/\ /\
&= EE =
/ N\
e

Constructions are bottom-up

» Updates can be done in O(depth(T))

» Problem: depth(T) can be linearin T
Solution: Depict trees by forest algebra terms
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Free Forest Algebra in a Nutshell

tree term alternative term

The leaves of the formula correspond to the nodes of the tree
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Main Result

Theorem o
Enumertion of MSO formulas on trees can be done in time:

Preprocessing O( |T| x |Q[**")
Delay o(|Q* x|s|)
Updates O( log(IT[) x |Q**")

IT| size of tree

|Q| number of states of a nondeterministic tree automaton
IS| size of result

w exponent for Boolean matrix multiplication
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Fixed Query Q: Return all special nodes with a marked ancestor
For every marked ancestor query v:

1. Mark node v special

2. Enumerate Q and return “yes”, iff Q produces some result

3. Mark v as non-special again

[
Theorem: max(tgelay, tupdate) € Q(|ogo|go(£()n))
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Updates O( log(|T|) x |Q**")

IT| size of tree

|Q| number of states of a nondeterministic tree automaton
IS| size of result

w exponent for Boolean matrix multiplication

Theorem

max(tdelay,tupdate) S Q< log(n) > Thank YOU

log log(n)
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Normalization: handling ()

 Problem: if S(g) = 0 we waste time
 Solution: in preprocessing

- compute bottom-up if S(g) =0
- then get rid of the gate
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Normalization: handling empty sets

» Problem: if S(g) contains {} we waste time
in chains of x-gates
* Solution:

- remove inputs with S(g) = {{}} for x-gates
X3} - collapse x-chains with fan-in 1

— Now, traversing a x-gate ensures that we make progress:
it splits the sets non-trivially
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Indexing: handling U-hierarchies

e Problem: we waste time in U-hierarchies
to find a reachable exit (non-U gate)

» Solution: compute reachability index

e Problem: must be done in linear time

 Solution: Compute reachability index with box-granularity

e Use matrix multiplication
« Circuit has bounded width (by the size of the automaton)
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