

A Circuit-Based Approach to Efficient Enumeration

Antoine Amarilli¹, Pierre Bourhis², Louis Jachiet³, Stefan Mengel⁴

May 9th, 2017

¹Télécom ParisTech

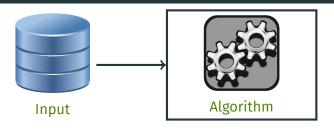
²CNRS CRIStAL

³Université Grenoble-Alpes

⁴CNRS CRIL

Problem statement

Input



• Problem: The output may be too large to compute efficiently

• Problem: The output may be too large to compute efficiently

Q paris big data

• Problem: The output may be too large to compute efficiently



Results 1 - 20 of 10,514

• Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

. . .

Problem: The output may be too large to compute efficiently

Results 1 - 20 of 10,514

. . .

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

• Problem: The output may be too large to compute efficiently

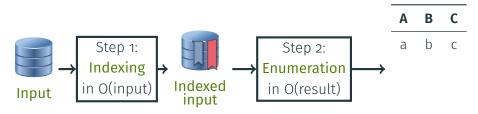


Results 1 - 20 of 10,514

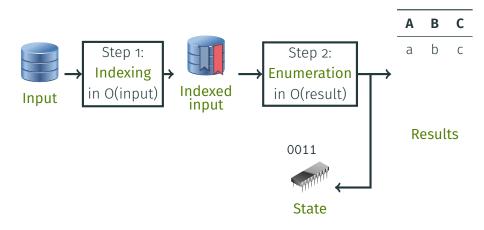
View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

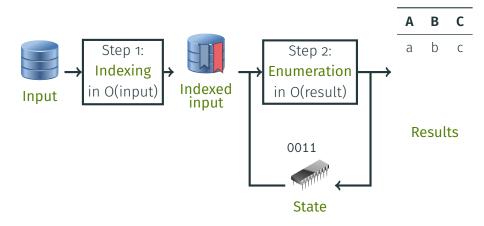
→ Solution: Enumerate solutions one after the other

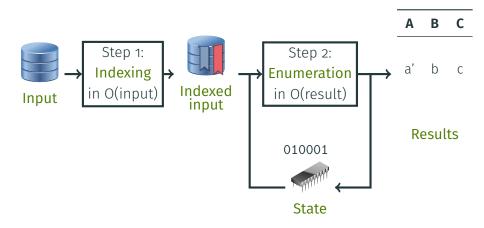
Input

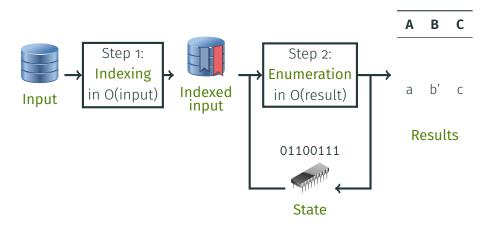


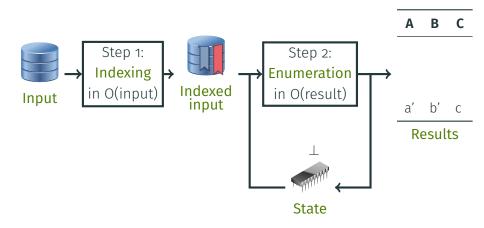
Results





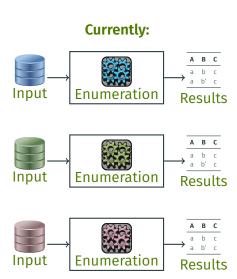






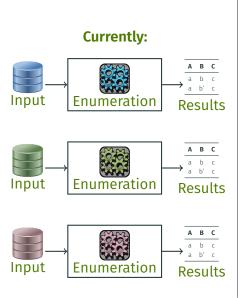
Currently:

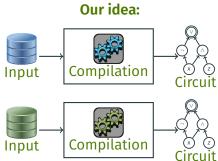
Currently:



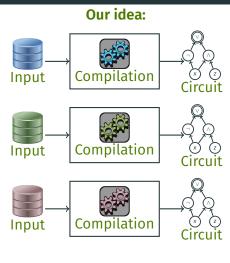
Currently:

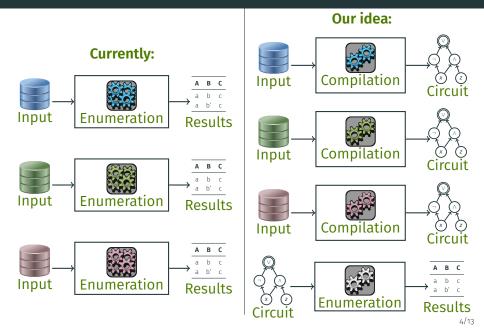
Our idea:

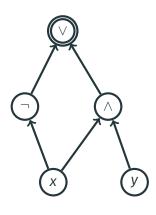




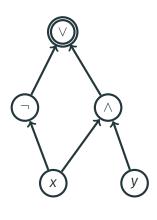
Currently: Enumeration Input Results Input Enumeration Results Enumeration Input Results



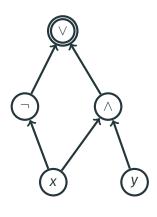




• Directed acyclic graph of gates

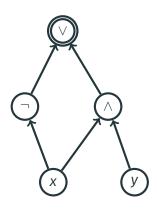


- Directed acyclic graph of gates
- Output gate:



- Directed acyclic graph of gates
- Output gate:

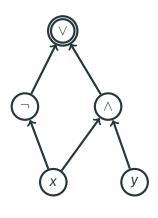
• Variable gates:



- Directed acyclic graph of gates
- Output gate:

• Variable gates:

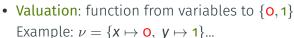
• Internal gates:

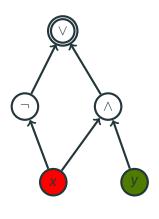


- Directed acyclic graph of gates
- Output gate:

• Variable gates:

• Internal gates:

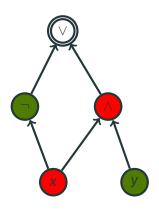




- Directed acyclic graph of gates
- Output gate:

• Variable gates:

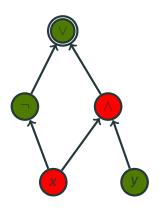
• Valuation: function from variables to {0,1} Example: $\nu = \{x \mapsto 0, y \mapsto 1\}...$



- Directed acyclic graph of gates
- Output gate:

• Variable gates:

• Valuation: function from variables to {0,1} Example: $\nu = \{x \mapsto 0, y \mapsto 1\}...$



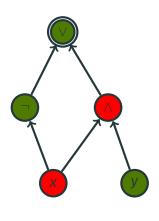
- Directed acyclic graph of gates
- Output gate:

• Variable gates:

• Internal gates:

• Valuation: function from variables to {0,1} Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1

Boolean circuits



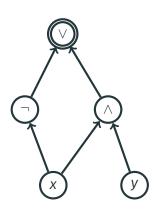
- Directed acyclic graph of gates
- Output gate:

• Variable gates:

• Internal gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu} = \{y\}$; more concise than ν

Boolean circuits



- Directed acyclic graph of gates
- Output gate:

• Variable gates:

- Valuation: function from variables to $\{0,1\}$ Example: $\nu = \{x \mapsto 0, y \mapsto 1\}$... mapped to 1
- Assignment: set of variables mapped to 1 Example: $S_{\nu} = \{y\}$; more concise than ν

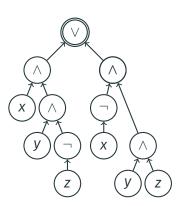
Our task: Enumerate all satisfying assignments of an input circuit

Circuit restrictions

d-DNNF:

• (V) are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)



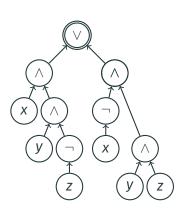
Circuit restrictions

d-DNNF:

• (V) are all deterministic:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

The inputs are **independent** (= no variable *x* has a path to two different inputs)



Circuit restrictions

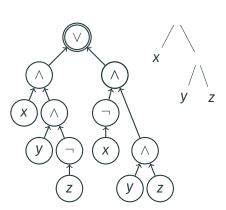
d-DNNF:

• (V) are all **deterministic**:

The inputs are mutually exclusive (= no valuation ν makes two inputs simultaneously evaluate to 1)

The inputs are **independent** (= no variable *x* has a path to two different inputs)

v-tree: ∧-gates follow a **tree** on the variables



Main results

Theorem

Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

Main results

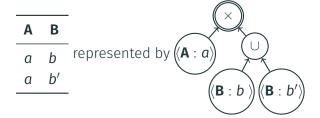
Theorem

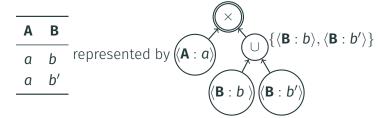
Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** with preprocessing **linear in** |C| + |T| and delay **linear in each assignment**

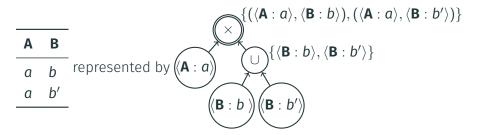
Also: restrict to assignments of **constant size** $k \in \mathbb{N}$ (at most k variables are set to 1):

Theorem

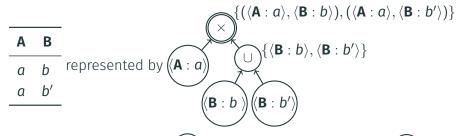
Given a **d-DNNF circuit C** with a **v-tree T**, we can enumerate its **satisfying assignments** of size $\leq k$ with preprocessing **linear in** |C| + |T| and **constant delay**







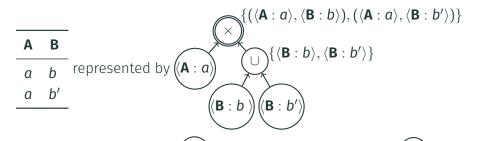
• Factorized databases: implicit representation of database tables



· Relational product

Relational product

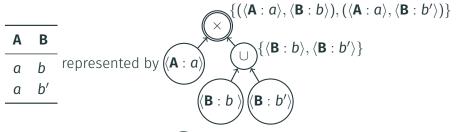
• Factorized databases: implicit representation of database tables



• Deterministic: We do not obtain the same tuple multiple times

• Relational union

• Factorized databases: implicit representation of database tables



- Relational product
- (\times)

• Relational union

• Deterministic: We do not obtain the same tuple multiple times

Theorem (Strenghtens result of [Olteanu and Závodnỳ, 2015])

Given a deterministic factorized representation, we can enumerate its tuples with linear preprocessing and constant delay

• Compute the results (a, b, c) of a query Q(x, y, z) on a database D

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - \rightarrow Captures **trees**, words, etc.

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - → Captures trees, words, etc.
- Query given as a deterministic tree automaton
 - → Captures monadic second-order (data-independent translation)
 - → Captures conjunctive queries, SQL, etc.

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - → Captures trees, words, etc.
- Query given as a deterministic tree automaton
 - → Captures monadic second-order (data-independent translation)
 - → Captures conjunctive queries, SQL, etc.
- \rightarrow We can construct a **d-DNNF** that describes the query results

- Compute the results (a, b, c) of a query Q(x, y, z) on a database D
- Assumption: the database has bounded treewidth
 - → Captures trees, words, etc.
- Query given as a deterministic tree automaton
 - → Captures monadic second-order (data-independent translation)
 - → Captures conjunctive queries, SQL, etc.
- ightarrow We can construct a **d-DNNF** that describes the query results

Theorem (Recaptures [Bagan, 2006], [Kazana and Segoufin, 2013]) For any constant $k \in \mathbb{N}$ and fixed MSO query Q, given a database D of treewidth $\leq k$, the results of Q on D can be enumerated with linear preprocessing in D and linear delay in each answer (\rightarrow constant delay for free first-order variables)

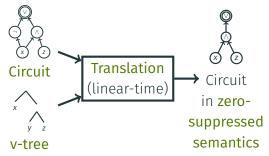
Proof techniques

Preprocessing phase:

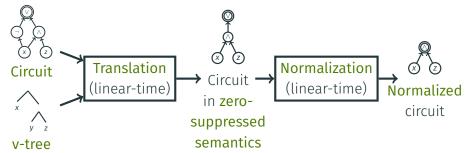
Circuit

v-tree

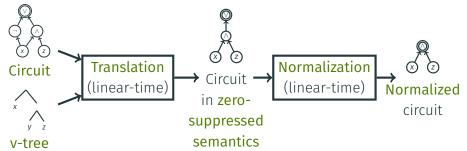
Preprocessing phase:



Preprocessing phase:



Preprocessing phase:

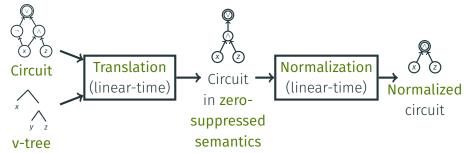


Enumeration phase:

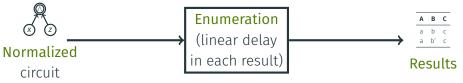
Normalized

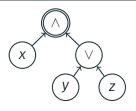
circuit

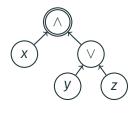
Preprocessing phase:



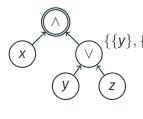
Enumeration phase:



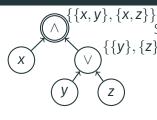




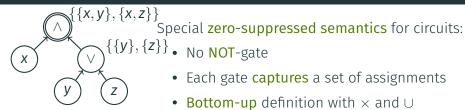
- No NOT-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup



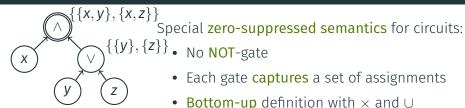
- $\{\{y\},\{z\}\}$ No NOT-gate
 - Each gate captures a set of assignments
 - Bottom-up definition with \times and \cup



- $\{\{y\},\{z\}\}$ No NOT-gate
 - Each gate captures a set of assignments
 - Bottom-up definition with \times and \cup



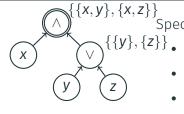
• d-DNNF: ∪ are disjoint, × are on disjoint sets



• d-DNNF: ∪ are disjoint, × are on disjoint sets

Many equivalent ways to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials



Special **zero-suppressed semantics** for circuits:

- No **NOT**-gate
- Each gate captures a set of assignments
- Bottom-up definition with \times and \cup
- d-DNNF: ∪ are disjoint, × are on disjoint sets

Many equivalent ways to understand this:

- Generalization of factorized representations
- Analogue of zero-suppressed OBDDs (implicit negation)
- Arithmetic circuits: × and + on polynomials

Simplification: rewrite circuits to arity-two (fan-in \leq 2)

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Task: Enumerate the elements of the set S(g) captured by a gate g

 \rightarrow E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Base case: variable (x):

Task: Enumerate the elements of the set S(q) captured by a gate q

 \rightarrow E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}\$, enumerate $\{x,y\}$ and then $\{x,z\}$

Base case: variable (x): enumerate $\{x\}$ and stop

Task: Enumerate the elements of the set S(q) captured by a gate q

$$\rightarrow$$
 E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Concatenation: enumerate S(q)and then enumerate S(q')

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

$$ightarrow$$
 E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Base case: variable (x): enumerate (x) and stop

Concatenation: enumerate S(g) and then enumerate S(g')

Determinism: no duplicates

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

$$\rightarrow$$
 E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Base case: variable

 $\begin{pmatrix} x \end{pmatrix}$: enumerate $\{x\}$ and stop

Concatenation: enumerate S(g) and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g) and for each result t enumerate S(g') and concatenate t with each result

Enumerating assignments in the zero-suppressed semantics

Task: Enumerate the elements of the set S(g) captured by a gate g

$$\rightarrow$$
 E.g., for $S(g) = \{\{x,y\}, \{x,z\}\}$, enumerate $\{x,y\}$ and then $\{x,z\}$

Base case: variable (x): enumerate $\{x\}$ and stop

AND-gate

Concatenation: enumerate S(g) and then enumerate S(g')

Determinism: no duplicates

Lexicographic product: enumerate S(g) and for each result t enumerate S(g') and concatenate t with each result

Decomposability: no duplicates

Conclusion

Summary:

• Usual approach: develop enumeration algorithms by hand

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - Develop general enumeration results on circuits

Summary:

- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - · Develop general enumeration results on circuits

Future work:

- Theory: handle updates on the structure
- Practice: implement the technique with automata

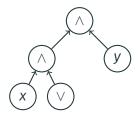
Summary:

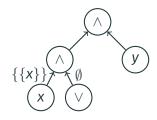
- Usual approach: develop enumeration algorithms by hand
- Proposed approach:
 - Develop linear-time compilation algorithm to circuits
 - Use restricted circuit classes (structured d-DNNF)
 - · Develop general enumeration results on circuits

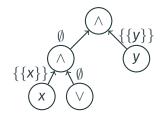
Future work:

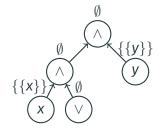
- Theory: handle updates on the structure
- Practice: implement the technique with automata

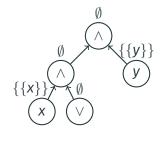
Thanks for your attention!



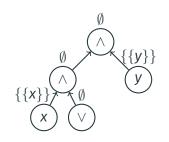






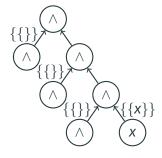


• **Problem:** if $S(g) = \emptyset$ we waste time

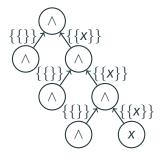


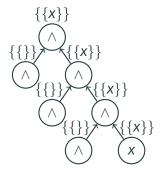
- **Problem:** if $S(g) = \emptyset$ we waste time
- Solution: compute bottom-up if $S(g) = \emptyset$

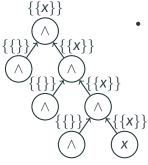




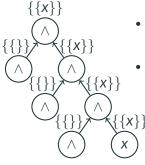




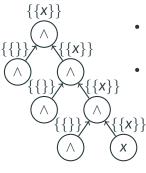




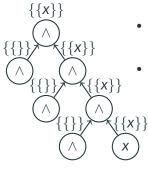
• **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates



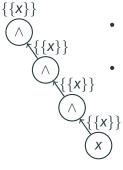
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:



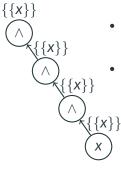
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)



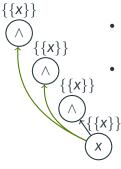
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}$ for AND-gates



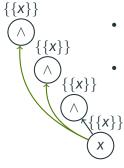
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}\$ for AND-gates



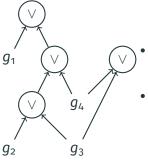
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}\$ for AND-gates
 - · collapse AND-chains with fan-in 1



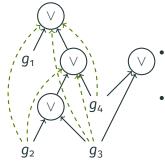
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}\$ for AND-gates
 - · collapse AND-chains with fan-in 1



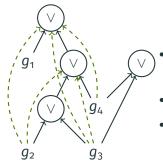
- **Problem:** if *S*(*g*) contains {} we waste time in chains of AND-gates
- Solution:
 - split g between $S(g) \cap \{\{\}\}$ and $S(g) \setminus \{\{\}\}$ (homogenization)
 - remove inputs with $S(g) = \{\{\}\}\$ for AND-gates
 - · collapse AND-chains with fan-in 1
- → Now, traversing an AND-gate ensures that we make progress: it splits the assignments non-trivially



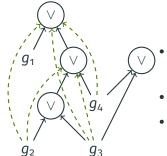
- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index



- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index



- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

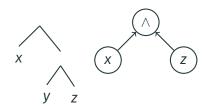


- Problem: we waste time in OR-hierarchies to find a reachable exit (non-OR gate)
- Solution: compute reachability index
- Problem: must be done in linear time

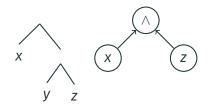
Solution:

- Determinism ensures we have a multitree (we cannot have the pattern at the right)
- Custom constant-delay reachability index for multitrees

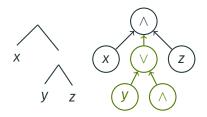
• This is where we use the v-tree



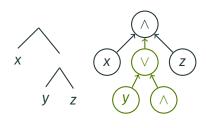
- This is where we use the v-tree
- Add explicitly untested variables

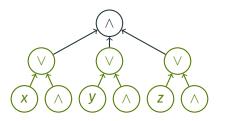


- This is where we use the v-tree
- Add explicitly untested variables



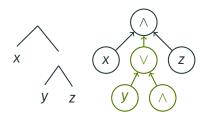
- This is where we use the v-tree
- Add explicitly untested variables





• Problem: quadratic blowup

- This is where we use the v-tree
- Add explicitly untested variables





- Problem: quadratic blowup
- Solution:
 - Order < on variables in the v-tree (x < y < z)
 - Interval [x, z]
 - Range gates to denote $\bigvee [x,z]$ in constant space

References

Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay.

In CSL.

🚺 Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees.

TOCL, 14(4).

Olteanu, D. and Závodnỳ, J. (2015).

Size bounds for factorised representations of query results.

TODS, 40(1).