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Example application: Subway routing

Ir | | 1\ L P
2.2 - Correspondances autorisées

Une fois validé, un ticket t+ permet, sans limites de
distance, les correspondances suivantes :

les correspondances entre les lignes de Métro et les
lignes de RER dans Paris, par les cheminements
autorisés ;

les correspondances entre lignes de bus, et entre ces E
lignes et les lignes de tramway, sur une durée d'une
heure trente entre la 1°® et la derniére validation,
sous réserve des dispositions suivantes.
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Database theory and query evaluation
@ Database

» (Hyper)graph

+ Collection of
ground facts

G(aaq, ab), G(aby, ac3),
S(aaq, my), S(ab, rg), ...
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Database theory and query evaluation
@ Database Q) Query

Rechercher mon itinéraire

« (Hyper)graph  Regular path
(Metro|RER)*
+ Collection of |(Bus| Tram)*

ground facts Logic formula
VX(rm € X A Vxy

G(aa1, abp), Glaby, ac3), (X € X A Glx, y) >
S(aaq, ma), S(aby, rp), ... YEX)>gn€EX
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Database theory and query evaluation
@ Database Q) Query

Rechercher mon itinéraire

De Rue Monticelli ]

fiid
=
» (Hyper)graph » Regular path « TRUE/FALSE
(Metro|RER )* & Model checking
« Collection of '(Bf’s'“am)
ground facts « Logic formula

VX(rm € X A Vx
G(aaq, ab), G(aby, ac3), (X € X A Glx, y) X)

S(aaq, ma), S(aby, rp), ... YEX)>gn€EX
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Probabilistic query evaluation
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Départ
20h17 - 5 rue Monticelli, Paris

1.1km | 13 min

20h30 - CITE UNIVERSITAIRE, Paris

RER B - EPAU
Vers Aéroport CDG Terminal 2 TGV

v 6 arréts | 14 min

Arrivée
20h44 - GARE DU NORD RER, Paris
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Probabilistic query evaluation

Panne du RER B : trafic interrompu entre
Paris et Roissy, des TGV en renfort




Probabilistic query evaluation

Panne du RER B : trafic interrompu entre

MY T

Paris : pourqu0| ilya autant de perturbatlons sur
le RER B et a Gare du Nord

-

La circulation de I'ensemble des trains au départ de gare du Nord est totalement interrompue & la suite d'une panne
électrique.
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Probabilistic query evaluation

Panne du RER B : trafic interrompu entre

MY T

Paris : pourqu0| ilya autant de perturbatlons sur

'e INCIDENT SUR LE RER B : QUE
“|S’EST-IL PASSE CE MATIN ?

Malaise voyageur et application des mesures de
sécurité : pour quelles raisons le trafic a-t-il été
perturbé ce matin sur la ligne B ?

-

| Pour beaucoup, le voyage a été difficile ce matin. Au fil
| de vos réactions sur Twitter notamment, je constate
que les raisons de ces perturbations ne paraissent pas
cohérentes. Je tiens donc a vous apporter des premiers

alamantec A’avnliratinn Ai1a nnalic nalirranc davalannar
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Probabilistic query evaluation

Panne du RER B : trafic interrompu entre

MY T

Paris : pourqu0| ilya autant de perturbatlons sur
Ie'II\I('IhFI\IT SliR IF PFD R - OlIF |

B
CTUALITES

Le RER B en panne, les voyageurs n'ont pas eu
d'autre choix que de descendre sur les voies

Alors que la circulation alternée a augmenté le nombre de
voyageurs dans les transports en commun, le RER B s'est
retrouvé a l'arrét.

OUr beaucoup, (€ VOoyage a ete difficile ce matin. AU 11
de vos réactions sur Twitter notamment, je constate
que les raisons de ces perturbations ne paraissent pas
cohérentes. Je tiens donc a vous apporter des premiers

alamantec A’avnliratinn Ai1a nnalic nalirranc davalannar
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Probabilistic query evaluation

Panne du RER B : trafic interrompu entre

MY T

Paris : pourqu0| ilya autant de perturbatlons sur
le| IN(‘IDFNT SliR IF PFD R - OlIF |

=
CTUALITES

Le RER B en panne, les voyageurs n'ont pas eu

RER B et D en panne, gare du Nord paralg/sée,
' pollution: deuxieme jour de galere

r Actualité / Société  Trafic / Par Iris Péron, publié le 07/12/2016 a 13:40 , mis a jour a 16:07

Partager g Tweeter + Partager N\ O
)

que les raisons de ces perturbations ne paraissent pas
cohérentes. Je tiens donc a vous apporter des premiers

alamantec A’avnliratinn Ai1a nnalic nalirranc davalannar
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Probabilistic query evaluation

Panne du RER B : trafic interrompu entre

MY T

Paris : pourqu0| ilya autant de perturbatlons sur
le| IN(‘IDFNT SliR IF PFD R - OlIF |

an nanna lacvauasaiire n'ant nac ann
Le RER B Ile-de-France : le trafic toujours

RER B ginterrompu sur le RER B entre
' PJAulnay-sous-Bois et Roissy

r

La circulation est arrétée depuis mardi matin en raison d'une

| panne de caténaire. Le retour a la normale a été plusieurs fois
retardé mais devrait avoir lieu mercredi vers 16 heures, selon la
que SNCF.

cohé

alarm
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Probabilistic query evaluation

Probabilistic
database

» (Hyper)graph

* Collection of
ground facts
+ independent

probabilities
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Probabilistic query evaluation

Probabilistic
database QD Query

Rechercher mon itinéraire

De

Rue Monticelli ]
AN Gare du Nord

» (Hyper)graph » Regular path
. (Metro|RER)*
* Collection of I(Bus|Tram)*
ground facts « Logic formula
+ independent VX(rm € X A Vxy

xEXAGKy >
probabilities yEX)>gn€EX
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Probabilistic query evaluation

Probabilistic
database QD Query

Rechercher mon itinéraire

De. Rue Monticel i Q
&
-
* (Hyper)graph * Regular path
. (Metro|RER)*
* Collection of |(Bus|Tram)*
ground facts » Logic formula
i VX EXAV
+ mdep.e.n.dent ; (e"; < G(X'ty)xg
probabilities yEX)>gn€EX

Probabilistic
Result

llllllllllllllllllllllllll

20n43- Gare i ord, pars
proba to be on time: 98%

« Probability
according to
the input
distribution
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Computational complexity

e Computing paths on a large graph:
— Well-studied problem, efficient algorithms
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» Computing paths on a large probabilistic graph:
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» Computing paths on a large probabilistic graph:
— Exponential number of possibilities
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Computational complexity

@ 12} @6 . o

» Computing paths on a large probabilistic graph:
— Exponential number of possibilities

— #P-hard computational complexity in the database
5/33



Idea: use the structure of data

6/33



Idea: use the structure of data

6/33



Idea: use the structure of data

6/33



Idea: use the structure of data

6/33



Idea: use the structure of data

6/33



Idea: use the structure of data

6/33



Idea: use the structure of data

— Shortest path: very easy on a large tree
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Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?
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Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

 Existing tools for non-probabilistic data:

- Tree automata, to evaluate queries on trees
- Treewidth, formalizes the notion of being “close to a tree”
- Courcelle’s theorem

e |ntroduce new tools and results:

- Provenance circuits of tree automata on uncertain trees
- Application to probabilistic query evaluation

e Other application: enumeration of query results
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Query evaluation on words

) Database: a word w where nodes have a

—

&—) color from an alphabet O QO o-0-0-0-0
Query Q: a sentence (yes/no question) “Is there both a pink
in monadic second-order logic (MSO) and a blue node?”

@ Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)
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Monadic second-order logic (MSO)

* Po(x) means “x is blue”; also Po(x), Po(x)
o-0-0O00-0

e X — y means “x is the predecessor of y”

» Propositional logic: formulas with AND A, OR Vv, NOT —
- Po(x) A Po(y) means “Node x is pink and node y is blue”

* First-order logic: adds existential quantifier 3 and
universal quantifier V
- 3xy Po(x) A Po(y) means “There is both a pink and a blue node”

» Monadic second-order logic (MSO): adds quantifiers over sets
- 3S Vx S(x) means “there is a set S containing every element x”
- Can express transitive closure x —* y, i.e,, “x is before y”
- VXPo(x) = 3y Po(y) AX —*y
means “There is a blue node after every pink node”
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Alphabet: OO O w: O—O—0O—-0O-0O Q: 3y Po(x) A Po(y)
I PP T T

o States: {L,B,P, T}
* Final states: {T}

e Initial function: O L QP OB
« Transitions (examples): L—O P—O T—O

Theorem (Biichi, 1960)
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Word automata

Translate the query Q to a deterministic word automaton

Alphabet: OO O w: O—O—0O—-0O-0O Q: 3y Po(x) A Po(y)
I PP T T

States: {L,B,P, T}
Final states: {T}
Initial function: O 1L QP QOB

Transitions (examples): L —O P —Q T —O

Theorem (Biichi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time.
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Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet OO O

Query Q: a sentence in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(X) A Po(y)

@ Result: TRUE/FALSE indicating if the tree T satisfies the query Q

Computational complexity as a function of T
(the query Q is fixed)
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Tree alphabet: » Bottom-up deterministic tree automaton
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Final states: {T}

Initial function: O L QP QOB

Transitions (examples):
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Tree automata

Tree alphabet: » Bottom-up deterministic tree automaton

00O

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

, AR RA

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees
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Tree automata

Tree alphabet: » Bottom-up deterministic tree automaton

00O

“Is there both a pink and a blue node?”
States: {L,B,P, T}
Final states: {T}

Initial function: O L QP QOB

Transitions (examples):

, AR RA

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Query evaluation of MSO on trees is in linear time. 13/33



Query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet OO O

Query Q: a sentence in monadic
second-order logic (MSO)

- Po(x) means “x is blue”

- X — ¥y means “x is the parent of y”

“Is there both a pink
and a blue node?”

Ixy Po(X) A Po(y)

@ Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of T
(the query Q is fixed)
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Query evaluation on treelike data

@ Database: a treelike database T ???
Query Q: a sentence in monadic (Metro|RER)*
second-order logic (MSO) | (Bus|Tram)*

Q Result: TRUE/FALSE indicating if T satisfies the query Q

Computational complexity as a function of T
(the query Q is fixed)
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» Trees have treewidth 1
e Cycles have treewidth 2
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Treewidth

Treewidth by example:

/\

e Trees have treewidth 1
e Cycles have treewidth 2

» k-cliques and (k — 1)-grids have treewidth k — 1
— Treelike: the treewidth is bounded by a constant
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Courcelle’s theorem

Treelike data

MSO query

(RER|metro)*
|(bus|tram)*
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Courcelle’s theorem

Treelike data Tree encoding
: Query
linear linear answer
= > > TRUE

MSO query Tree automaton
(RER|metro)*
|(bus|tram)* — —

Theorem [Courcelle, 1990]

For any fixed Boolean MSO query Q and R € N,

given a database D of treewidth < R,

we can compute in linear time in D whether D satisfies Q 16/33
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for some constant k )
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to be actually present in the data PSS
(independently from other facts) ,)/\ T/ e

Q) Query Q: a sentence in monadic (Metro|RER)*

second-order logic (MSO) | (Bus|Tram)*

Q Result: Probability that the database D satisfies query Q

Computational complexity as a function of the database D
(the query Q is fixed)
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Boolean circuit

 Directed acyclic graph of gates

 Output gate: @
 Variable gates: @
 Internal gates: @ @ @

* Valuation: function from variables to {0, 1}
Example: v = {x — 0, y — 1}... mapped to 1
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Provenance circuit

0 Query: Is there both a pink and a blue node?

e e Provenance circuit: @ 0

Formally:

e Tree automaton A, uncertain tree T, circuit C
» Variable gates of C: nodes of T
 Condition: Let v be a valuation of T, then v(C) iff A accepts v(T)
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Details of the approach

Probabilistic Uncertain Provenance Probability

treelike data  tree encoding +procl|);cll;iiltities

©)
*Cf@_) 9’0 —>» 95%
o ONO

Each fact can Each node label Each variable Probability
disappear can disappear with  can be true with that the circuit
with some the probability the probability of  evaluates
probability of the coded fact the coded fact to true

— How to compute efficiently the probability of the circuit?
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Computing the probability of a circuit

e We are given a circuit and a probability P for each variable
» Each variable x is true independently with probability P(x)
e What is the probability that the circuit evaluates to true?

« In general, #P-hard (harder than SAT)

» Here it's easy:
- The inputs to the A-gate are independent
- The —-gate has probability 1 — P(input)
- The Vv-gate has mutually exclusive inputs

e let's focus on a restricted class of circuits
. P(X) = 40% that satisfies these conditions

© P(y) = 50%
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. @ gates only have @ P(g) :=1—P(g')

variables as inputs g
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+ () sates always have P(g) := P(g5) + P(3)
mutually exclusive inputs g/ g,
g
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The circuit is a d-DNNF... ... S0 probability computation is easy!

g
. @ gates only have @ P(g) :=1—P(g')

variables as inputs !

g
. @ gates always have §:’>\ P(g7) + P(g5)

mutually exclusive inputs g/

. @ gates are all on /@\g P(g) := P(g7) x P(g3)

independent inputs

Q

Lemma
The provenance circuit computed in our construction is a d-DNNF

27/33
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Final result

Probabilistic Uncertain Provenance
treelike data tree encoding d-DNNF
RN +probabilities
linear linear ©
—> > e’c
ONO.
MSO query Tree automaton linear ¢
(RER|metro)* 95%
) _ (o]
|(bus|tram)* Probability

Theorem [Amarilli et al., 2015]

For any fixed Boolean MSO query Q and k € N,

given a database D of treewidth < k with independent probabilities,
we can compute in linear time the probability that D satisfies Q 28133
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Non-Boolean queries

e We have studied Boolean queries:

“Is there both a pink and a blue node?”

Q() : 3xy Po(x) A Po(y)
e |n practice, queries often return some results:

“Find all pairs of a pink and a blue node?”

Q(x,Y) : Po(X) A Po(y)

» We can consider each pair (a, b) and test if Q(a, b) is true

e Can we do better?
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* Query: Q(Xy,...,Xn) with free variables X;, ..., X,
* Goal: find all tuples a4, ..., a, such that Q(as, ..., ay) holds
— Add special facts to materialize all possible assignments
- eg, Xj(g;) means element g; is mapped to variable X;
— The provenance circuit of Q is now a factorized representation
which describes all the tuples that make Q true

Example query: Provenance circuit:

Q(X1,X2) : Po(x) A Po(y) {(X1(1),X2(3)), (X1 (1), X2(5)) }
Database: @

02020200 [5) XX}

Results: @

X1 X
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We can compute a factorized representation of the query results
in linear time in the data, even if there are polynomially many results

— Application: Constant-delay enumeration of query results

* First, preprocess the circuit in linear time

{(X2(1), X2(3));
(X1(1), X2(5)) }

Then, produce each result in constant time

» Extends existing results on MSO enumeration
[Bagan, 2006, Kazana and Segoufin, 2013]

e Can even be done tractably in the automaton

 Applications to information extraction
(“spanners”) [Amarilli et al., 2019a]

e Extensions to support updates on the database

[Amarilli et al,, 2019a, Amarilli et al., 2019b]
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- Complexity in the query: generally nonelementary but can be
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- Combined tractability for probabilistic query evaluation
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