
When Can We Answer Queries
Using Result-Bounded Data Interfaces?

Antoine Amarilli1, Michael Benedikt2

December 10th, 2018
1Télécom ParisTech

2Oxford University

1/16

Problem: Answering Queries Using Web Services

Directory service DBLP service

Query

Find researchers
from a department

Find papers
from a researcher

Find all papers
written by researchers
from my department?

• We have several Web services that expose data

• We want to answer a query using the Web services
→ How can we rephrase the query against the Web services?

2/16

Problem: Answering Queries Using Web Services

Directory service DBLP service Query

?
Find researchers
from a department

Find papers
from a researcher

Find all papers
written by researchers
from my department?

• We have several Web services that expose data
• We want to answer a query using the Web services

→ How can we rephrase the query against the Web services?

2/16

Problem: Answering Queries Using Web Services

Directory service DBLP service Query

?
Find researchers
from a department

Find papers
from a researcher

Find all papers
written by researchers
from my department?

• We have several Web services that expose data
• We want to answer a query using the Web services
→ How can we rephrase the query against the Web services?

2/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation

• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs

• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OK

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

3/16

Formalizing the Problem

Service schema:

DBLP(author, title, year)

Input author? OKMichael Benedikt

author title year

Michael Benedikt Goal-Driven Query Answering ... 2018
Michael Benedikt Form Filling Based on ... 2018
Michael Benedikt How Can Reasoners Simplify ... 2018
Michael Benedikt When Can We Answer Queries ... 2018

.

• Model each service as a relation
• Some attributes are inputs
• Access the service by giving
a binding for the input attributes

• The service returns all tuples
that match the binding

Query: conjunctive query over the relations

? Find all papers written by researchers from my department?
Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

Constraints: express logical relationships between the services

!
Every researcher from the directory is in DBLP
Σ : ∀da Directory(d,a)→ ∃t y DBLP(a, t, y) 3/16

Existing Solutions

Given the service schema S, the query Q and the constraints Σ

we want to �nd a monotone plan for Q using the services of S

Example: Find all papers written by researchers from my department?
with Directory(department, person) and DBLP(author, title, year)

What is a monotone plan?

• Access the services by giving bindings
• Evaluate monotone relational algebra
• The plan is correct if it returns Q(D)

on any database D that satis�es Σ

Example:
T1 ⇐ Directory⇐ MyDept;
T2 ⇐ DBLP⇐ πperson(T1);
T3 ⇐ πtitle(T2);
Return T3

Extensive literature about how to reformulate queries
to monotone plans and about the complexity
depending on the constraint language

4/16

Existing Solutions

Given the service schema S, the query Q and the constraints Σ

we want to �nd a monotone plan for Q using the services of S

Example: Find all papers written by researchers from my department?
with Directory(department, person) and DBLP(author, title, year)

What is a monotone plan?

• Access the services by giving bindings
• Evaluate monotone relational algebra
• The plan is correct if it returns Q(D)

on any database D that satis�es Σ

Example:
T1 ⇐ Directory⇐ MyDept;
T2 ⇐ DBLP⇐ πperson(T1);
T3 ⇐ πtitle(T2);
Return T3

Extensive literature about how to reformulate queries
to monotone plans and about the complexity
depending on the constraint language

4/16

Existing Solutions

Given the service schema S, the query Q and the constraints Σ

we want to �nd a monotone plan for Q using the services of S

Example: Find all papers written by researchers from my department?
with Directory(department, person) and DBLP(author, title, year)

What is a monotone plan?

• Access the services by giving bindings
• Evaluate monotone relational algebra
• The plan is correct if it returns Q(D)

on any database D that satis�es Σ

Example:
T1 ⇐ Directory⇐ MyDept;
T2 ⇐ DBLP⇐ πperson(T1);
T3 ⇐ πtitle(T2);
Return T3

Extensive literature about how to reformulate queries
to monotone plans and about the complexity
depending on the constraint language

4/16

Existing Solutions

Given the service schema S, the query Q and the constraints Σ

we want to �nd a monotone plan for Q using the services of S

Example: Find all papers written by researchers from my department?
with Directory(department, person) and DBLP(author, title, year)

What is a monotone plan?

• Access the services by giving bindings
• Evaluate monotone relational algebra
• The plan is correct if it returns Q(D)

on any database D that satis�es Σ

Example:
T1 ⇐ Directory⇐ MyDept;
T2 ⇐ DBLP⇐ πperson(T1);
T3 ⇐ πtitle(T2);
Return T3

Extensive literature about how to reformulate queries
to monotone plans and about the complexity
depending on the constraint language

4/16

New Challenge: Result Bounds

• Real Web services do not return all matching tuples for accesses!

→ Plan results are nondeterministic and may not be correct!

Formalization: DBLP(author, title, year) has a result bound of 1000

• If an access matches ≤ 1000 tuples then they are all returned
• If it matches > 1000 tuples then we get 1000 of them (random)

→ How to reformulate queries using result-bounded services?

5/16

New Challenge: Result Bounds

• Real Web services do not return all matching tuples for accesses!

→ Plan results are nondeterministic and may not be correct!

Formalization: DBLP(author, title, year) has a result bound of 1000

• If an access matches ≤ 1000 tuples then they are all returned
• If it matches > 1000 tuples then we get 1000 of them (random)

→ How to reformulate queries using result-bounded services?

5/16

New Challenge: Result Bounds

• Real Web services do not return all matching tuples for accesses!

→ Plan results are nondeterministic and may not be correct!

Formalization: DBLP(author, title, year) has a result bound of 1000

• If an access matches ≤ 1000 tuples then they are all returned
• If it matches > 1000 tuples then we get 1000 of them (random)

→ How to reformulate queries using result-bounded services?

5/16

New Challenge: Result Bounds

• Real Web services do not return all matching tuples for accesses!

→ Plan results are nondeterministic and may not be correct!

Formalization: DBLP(author, title, year) has a result bound of 1000

• If an access matches ≤ 1000 tuples then they are all returned
• If it matches > 1000 tuples then we get 1000 of them (random)

→ How to reformulate queries using result-bounded services?
5/16

Formal Problem Statement

Input:

• Service schema S of relation names and attributes
with input attributes and optionally a result bound
→ Directory(department, person)
→ DBLP(author, title, year) with bound 1000

• Conjunctive query Q
→ Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

• Constraints Σ
→ ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

Output:

• Is there a monotone plan for Q on S under Σ?
We study:
→ What is the complexity of deciding plan existence,

depending on the constraint language?
→ In which ways are result-bounded services useful?

6/16

Formal Problem Statement

Input:

• Service schema S of relation names and attributes
with input attributes and optionally a result bound
→ Directory(department, person)
→ DBLP(author, title, year) with bound 1000

• Conjunctive query Q
→ Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

• Constraints Σ
→ ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

Output:

• Is there a monotone plan for Q on S under Σ?

We study:
→ What is the complexity of deciding plan existence,

depending on the constraint language?
→ In which ways are result-bounded services useful?

6/16

Formal Problem Statement

Input:

• Service schema S of relation names and attributes
with input attributes and optionally a result bound
→ Directory(department, person)
→ DBLP(author, title, year) with bound 1000

• Conjunctive query Q
→ Q(t) : ∃a y Directory(MyDept,a) ∧ DBLP(a, t, y)

• Constraints Σ
→ ∀da Directory(d,a)→ ∃t y DBLP(a, t, y)

Output:

• Is there a monotone plan for Q on S under Σ?
We study:
→ What is the complexity of deciding plan existence,

depending on the constraint language?
→ In which ways are result-bounded services useful? 6/16

Summary of Results

→ We show schema simpli�cation results that describe
when result bounds on services can be removed

→ We show complexity results for many constraint languages
on deciding the existence of monotone plans

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ Let’s see the schema simpli�cation results and proof techniques

7/16

Summary of Results

→ We show schema simpli�cation results that describe
when result bounds on services can be removed

→ We show complexity results for many constraint languages
on deciding the existence of monotone plans

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ Let’s see the schema simpli�cation results and proof techniques

7/16

Summary of Results

→ We show schema simpli�cation results that describe
when result bounds on services can be removed

→ We show complexity results for many constraint languages
on deciding the existence of monotone plans

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ Let’s see the schema simpli�cation results and proof techniques

7/16

Summary of Results

→ We show schema simpli�cation results that describe
when result bounds on services can be removed

→ We show complexity results for many constraint languages
on deciding the existence of monotone plans

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ Let’s see the schema simpli�cation results and proof techniques 7/16

Existence-Check Simpli�cation

Idea: use result-bounded services to check the existence of tuples

• Schema: DBLP(author, title, year) with bound 1000
• Query Q: Has Michael Benedikt published something?
• Plan: access DBLP with “Michael Benedikt” and check if empty

A schema S with constraints Σ is existence-check simpli�able if
any query that has a plan on S under Σ still has a plan
on the existence-check approximation:

• For each relation DBLP(author, title, year) with a result bound,
create a new relation DBLPcheck(author)

• Add two IDs in Σ to relate DBLPcheck and DBLP:
∀a DBLPcheck(a)↔ ∃t y DBLP(a, t, y)

• Forbid direct accesses to DBLP (so the result bound is irrelevant)

8/16

Existence-Check Simpli�cation

Idea: use result-bounded services to check the existence of tuples

• Schema: DBLP(author, title, year) with bound 1000
• Query Q: Has Michael Benedikt published something?
• Plan: access DBLP with “Michael Benedikt” and check if empty

A schema S with constraints Σ is existence-check simpli�able if
any query that has a plan on S under Σ still has a plan
on the existence-check approximation:

• For each relation DBLP(author, title, year) with a result bound,
create a new relation DBLPcheck(author)

• Add two IDs in Σ to relate DBLPcheck and DBLP:
∀a DBLPcheck(a)↔ ∃t y DBLP(a, t, y)

• Forbid direct accesses to DBLP (so the result bound is irrelevant)

8/16

Existence-Check Simpli�cation

Idea: use result-bounded services to check the existence of tuples

• Schema: DBLP(author, title, year) with bound 1000
• Query Q: Has Michael Benedikt published something?
• Plan: access DBLP with “Michael Benedikt” and check if empty

A schema S with constraints Σ is existence-check simpli�able if
any query that has a plan on S under Σ still has a plan
on the existence-check approximation:

• For each relation DBLP(author, title, year) with a result bound,
create a new relation DBLPcheck(author)

• Add two IDs in Σ to relate DBLPcheck and DBLP:
∀a DBLPcheck(a)↔ ∃t y DBLP(a, t, y)

• Forbid direct accesses to DBLP (so the result bound is irrelevant)

8/16

Existence-Check Simpli�cation

Idea: use result-bounded services to check the existence of tuples

• Schema: DBLP(author, title, year) with bound 1000
• Query Q: Has Michael Benedikt published something?
• Plan: access DBLP with “Michael Benedikt” and check if empty

A schema S with constraints Σ is existence-check simpli�able if
any query that has a plan on S under Σ still has a plan
on the existence-check approximation:

• For each relation DBLP(author, title, year) with a result bound,
create a new relation DBLPcheck(author)

• Add two IDs in Σ to relate DBLPcheck and DBLP:
∀a DBLPcheck(a)↔ ∃t y DBLP(a, t, y)

• Forbid direct accesses to DBLP (so the result bound is irrelevant)

8/16

Existence-Check Simpli�cation

Idea: use result-bounded services to check the existence of tuples

• Schema: DBLP(author, title, year) with bound 1000
• Query Q: Has Michael Benedikt published something?
• Plan: access DBLP with “Michael Benedikt” and check if empty

A schema S with constraints Σ is existence-check simpli�able if
any query that has a plan on S under Σ still has a plan
on the existence-check approximation:

• For each relation DBLP(author, title, year) with a result bound,
create a new relation DBLPcheck(author)

• Add two IDs in Σ to relate DBLPcheck and DBLP:
∀a DBLPcheck(a)↔ ∃t y DBLP(a, t, y)

• Forbid direct accesses to DBLP (so the result bound is irrelevant)
8/16

Existence-Check Simpli�cation Results

Theorem
Any schema S with constraints Σ in Inclusion dependencies (IDs)
is existence-check simpli�able

→ Under IDs, result-bounded services only serve as existence checks

As the existence-check approximation has no result bounds,
we can reduce to the classical setting and deduce:

Corollary
For any schema S with result bounds, ID constraints Σ, and query Q,
deciding the existence of a monotone plan is EXPTIME-complete

9/16

Existence-Check Simpli�cation Results

Theorem
Any schema S with constraints Σ in Inclusion dependencies (IDs)
is existence-check simpli�able

→ Under IDs, result-bounded services only serve as existence checks

As the existence-check approximation has no result bounds,
we can reduce to the classical setting and deduce:

Corollary
For any schema S with result bounds, ID constraints Σ, and query Q,
deciding the existence of a monotone plan is EXPTIME-complete

9/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”

• Plan: access Dir2, return the address of any obtained tuple
We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes

• Forbid accesses on Dir2 and add IDs with Dir2FD like before
∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)

10/16

FD Simpli�cation

Result-bounded services can do more than existence checks:

• Schema S: directory that returns addresses and phone numbers
→ Dir2(name, address, phone) with bound 1000

• Constraints: a Functional dependency (FD) φ : name→ address
→ Each person has at most one address

• Query: Find the address of “Michael Benedikt”
• Plan: access Dir2, return the address of any obtained tuple

We call S and Σ FD-simpli�able if any query that has a plan
on S and Σ still has one on the FD approximation:

• For each relation Dir2(name, address, phone) with result bound,
create a new relation Dir2FD(name, address) that outputs
the attributes determined in Σ by the input attributes
• Forbid accesses on Dir2 and add IDs with Dir2FD like before

∀na Dir2FD(n,a)↔ ∃p Dir2(n,a,p)
10/16

FD Simpli�cation Results

Theorem
Any schema S with constraints Σ in Functional dependencies (FDs)
is FD simpli�able

→ Under FDs, result-bounded services are only useful
to access outputs that are functionally determined
(i.e., we are guaranteed to have only one result)

Again, there are no result bounds left in the FD approximation,
so we can use this result to show:
Corollary
For any schema S with result bounds, FD constraints Σ, and query Q,
deciding the existence of a monotone plan is NP-complete

11/16

FD Simpli�cation Results

Theorem
Any schema S with constraints Σ in Functional dependencies (FDs)
is FD simpli�able

→ Under FDs, result-bounded services are only useful
to access outputs that are functionally determined
(i.e., we are guaranteed to have only one result)

Again, there are no result bounds left in the FD approximation,
so we can use this result to show:
Corollary
For any schema S with result bounds, FD constraints Σ, and query Q,
deciding the existence of a monotone plan is NP-complete

11/16

Choice Simpli�cation

With expressive constraints, the FD approximation is not enough:

Lemma
There is a service schema S, query Q, and TGDs Σ such that
Q is not FD-simpli�able (hence, not existence-check-simpli�able)

A less drastic simpli�cation is the choice simpli�cation:

• For every service with a result bound, change the bound to be 1
→ Intuition: It’s important to get some tuple if one exists

12/16

Choice Simpli�cation

With expressive constraints, the FD approximation is not enough:

Lemma
There is a service schema S, query Q, and TGDs Σ such that
Q is not FD-simpli�able (hence, not existence-check-simpli�able)

A less drastic simpli�cation is the choice simpli�cation:

• For every service with a result bound, change the bound to be 1
→ Intuition: It’s important to get some tuple if one exists

12/16

Choice Simpli�cation Results

Theorem
Any schema S with constraints Σ in equality-free �rst-order logic
(e.g., TGDs) is choice simpli�able

Thus, plan existence is decidable for decidable FO fragments, e.g.,
frontier-guarded TGDs (FGTGDs):
Corollary
For any schema S with result bounds, query Q, and FGTGDs Σ

deciding the existence of a monotone plan is 2EXPTIME-complete

We can also show choice approximability for another fragment:
Theorem
Any schema S with constraints Σ that are FDs and unary IDs (UIDs)
is choice simpli�able
→ This implies that plan existence is decidable for FDs and UIDs

13/16

Choice Simpli�cation Results

Theorem
Any schema S with constraints Σ in equality-free �rst-order logic
(e.g., TGDs) is choice simpli�able

Thus, plan existence is decidable for decidable FO fragments, e.g.,
frontier-guarded TGDs (FGTGDs):
Corollary
For any schema S with result bounds, query Q, and FGTGDs Σ

deciding the existence of a monotone plan is 2EXPTIME-complete

We can also show choice approximability for another fragment:
Theorem
Any schema S with constraints Σ that are FDs and unary IDs (UIDs)
is choice simpli�able
→ This implies that plan existence is decidable for FDs and UIDs

13/16

Choice Simpli�cation Results

Theorem
Any schema S with constraints Σ in equality-free �rst-order logic
(e.g., TGDs) is choice simpli�able

Thus, plan existence is decidable for decidable FO fragments, e.g.,
frontier-guarded TGDs (FGTGDs):
Corollary
For any schema S with result bounds, query Q, and FGTGDs Σ

deciding the existence of a monotone plan is 2EXPTIME-complete

We can also show choice approximability for another fragment:
Theorem
Any schema S with constraints Σ that are FDs and unary IDs (UIDs)
is choice simpli�able
→ This implies that plan existence is decidable for FDs and UIDs 13/16

Overview of Proof Techniques

• Show that result bounds can be axiomatized in simpler ways:
• Ensure that doing the same access twice returns the same result
• Only write the lower bound: “if i results exist then i are returned”

• Show that plan existence can be rephrased as answerability:
→ If a database I satis�es Q and I′ has more accessible data than I

then I′ should satisfy Q as well

• Show simpli�cation results using a blowup technique:
• Start with a counterexample to answerability on the simpli�cation
• Blow it up to a counterexample on the original schema

• Reduce to query containment under constraints
→ Study the result of the translation to show complexity bounds

14/16

Overview of Proof Techniques

• Show that result bounds can be axiomatized in simpler ways:
• Ensure that doing the same access twice returns the same result
• Only write the lower bound: “if i results exist then i are returned”

• Show that plan existence can be rephrased as answerability:
→ If a database I satis�es Q and I′ has more accessible data than I

then I′ should satisfy Q as well

• Show simpli�cation results using a blowup technique:
• Start with a counterexample to answerability on the simpli�cation
• Blow it up to a counterexample on the original schema

• Reduce to query containment under constraints
→ Study the result of the translation to show complexity bounds

14/16

Overview of Proof Techniques

• Show that result bounds can be axiomatized in simpler ways:
• Ensure that doing the same access twice returns the same result
• Only write the lower bound: “if i results exist then i are returned”

• Show that plan existence can be rephrased as answerability:
→ If a database I satis�es Q and I′ has more accessible data than I

then I′ should satisfy Q as well

• Show simpli�cation results using a blowup technique:
• Start with a counterexample to answerability on the simpli�cation
• Blow it up to a counterexample on the original schema

• Reduce to query containment under constraints
→ Study the result of the translation to show complexity bounds

14/16

Overview of Proof Techniques

• Show that result bounds can be axiomatized in simpler ways:
• Ensure that doing the same access twice returns the same result
• Only write the lower bound: “if i results exist then i are returned”

• Show that plan existence can be rephrased as answerability:
→ If a database I satis�es Q and I′ has more accessible data than I

then I′ should satisfy Q as well

• Show simpli�cation results using a blowup technique:
• Start with a counterexample to answerability on the simpli�cation
• Blow it up to a counterexample on the original schema

• Reduce to query containment under constraints
→ Study the result of the translation to show complexity bounds

14/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite

• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)

• Example of FO constraints that are not choice simpli�able

15/16

Other Results in the Paper

• Better complexity bounds using a linearization technique
for query containment under IDs + side information

Theorem
Plan existence under bounded-width IDs is NP-complete

Theorem
Plan existence under UIDs and FDs is NP-hard and in EXPTIME

• Result for arity-2 constraints
Theorem
Plan existence is decidable for guarded two-variable FO + counting

• Results when the database is assumed to be �nite
• Results for non-monotone plans (= with relational di�erence)
• Example of FO constraints that are not choice simpli�able 15/16

Summary and future work

• Problem: Given a schema of services with result bounds,
logical constraints, and a query, is there a plan to answer it?
• Simpli�cation results to remove bounds, and complexity results

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ What are other possible uses of the linearization technique?
→ Do the bounds matter in practice? (approximate plans?)

Thanks for your attention!

16/16

Summary and future work

• Problem: Given a schema of services with result bounds,
logical constraints, and a query, is there a plan to answer it?
• Simpli�cation results to remove bounds, and complexity results

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ What are other possible uses of the linearization technique?
→ Do the bounds matter in practice? (approximate plans?)

Thanks for your attention!

16/16

Summary and future work

• Problem: Given a schema of services with result bounds,
logical constraints, and a query, is there a plan to answer it?
• Simpli�cation results to remove bounds, and complexity results

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ What are other possible uses of the linearization technique?
→ Do the bounds matter in practice? (approximate plans?)

Thanks for your attention!

16/16

Summary and future work

• Problem: Given a schema of services with result bounds,
logical constraints, and a query, is there a plan to answer it?
• Simpli�cation results to remove bounds, and complexity results

Fragment Simpli�cation Complexity

Inclusion dependencies (IDs) Existence-check EXPTIME-complete
Bounded-width IDs Existence-check NP-complete

Functional dependencies (FDs) FD NP-complete
FDs and UIDs Choice NP-hard, in EXPTIME

Equality-free FO Choice Undecidable
Frontier-guarded TGDs Choice 2EXPTIME-complete

→ What are other possible uses of the linearization technique?
→ Do the bounds matter in practice? (approximate plans?)

Thanks for your attention! 16/16

References

Benedikt, M., Leblay, J., Cate, B. t., and Tsamoura, E. (2016).
Generating plans from proofs: the interpolation-based approach
to query reformulation.
Morgan & Claypool.

	Appendix

