Finding Topological Sorts in a Regular Language

Antoine Amarilli
February 12th, 2018
Télécom ParisTech
• Fix an alphabet: e.g., \(\Sigma = \{a, b\} \)
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
• Fix an alphabet: e.g., $\Sigma = \{a, b\}$

• Fix a language: e.g., $L = (ab)^*$

• Consider the problem CTS(L):
 • Input: DAG whose vertices carry a label from Σ
The Constrained Topological Sorting Problem

• Fix an alphabet: e.g., $\Sigma = \{a, b\}$
• Fix a language: e.g., $L = (ab)^*$
• Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
The Constrained Topological Sorting Problem

- Fix an **alphabet**: e.g., $\Sigma = \{a, b\}$
- Fix a **language**: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input**: DAG whose vertices carry a label from Σ
 - **Output**: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

• Fix an **alphabet**: e.g., $\Sigma = \{a, b\}$

• Fix a **language**: e.g., $L = (ab)^*$

• Consider the problem $\text{CTS}(L)$:
 • **Input**: DAG whose vertices carry a label from Σ
 • **Output**: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an **alphabet**: e.g., $\Sigma = \{a, b\}$
- Fix a **language**: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input**: DAG whose vertices carry a label from Σ
 - **Output**: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input:** DAG whose vertices carry a label from Σ
 - **Output:** is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an **alphabet**: e.g., \(\Sigma = \{a, b\} \)
- Fix a **language**: e.g., \(L = (ab)^* \)
- Consider the problem \(\text{CTS}(L) \):
 - **Input**: DAG whose vertices carry a label from \(\Sigma \)
 - **Output**: is there a topological sort achieving a word of \(L \)?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input:** DAG whose vertices carry a label from Σ
 - **Output:** is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?

$a \ b \ a \ b \ b \ a$

... not in L!
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?

Diagram:

- Vertices labeled with a, b, a, b, b, a, a.
- Edges from b to a, b, a, b.
- Edges from a to b, a.
- Edges from b to b, a.
The Constrained Topological Sorting Problem

• Fix an alphabet: e.g., $\Sigma = \{a, b\}$

• Fix a language: e.g., $L = (ab)^*$

• Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input:** DAG whose vertices carry a label from Σ
 - **Output:** is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - Input: DAG whose vertices carry a label from Σ
 - Output: is there a topological sort achieving a word of L?

$a \ b \ a \ b \ a$
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $CTS(L)$:
 - **Input**: DAG whose vertices carry a label from Σ
 - **Output**: is there a topological sort achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an **alphabet**: e.g., $\Sigma = \{a, b\}$
- Fix a **language**: e.g., $L = (ab)^*$
- Consider the problem CTS(L):
 - **Input**: DAG whose vertices carry a label from Σ
 - **Output**: is there a topological sort achieving a word of L?

... in L!
The Constrained Topological Sorting Problem

- Fix an **alphabet**: e.g., $\Sigma = \{a, b\}$
- Fix a **language**: e.g., $L = (ab)^*$
- Consider the problem $\text{CTS}(L)$:
 - **Input**: DAG whose vertices carry a label from Σ
 - **Output**: is there a **topological sort** achieving a word of L?
The Constrained Topological Sorting Problem

- Fix an alphabet: e.g., $\Sigma = \{a, b\}$
- Fix a language: e.g., $L = (ab)^*$
- Consider the problem $CTS(L)$:
 - **Input:** DAG whose vertices carry a label from Σ
 - **Output:** is there a topological sort achieving a word of L?
- **Question:** for which languages is $CTS(L)$ tractable?
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart

Current results:

- $(ab)^* \text{ is NP-hard}$
- $(a|bb)^* \text{ is NP-hard}$
- $(a|bb)^* \text{ is NP-hard}$
- $(ab)^* | \Sigma^* \text{ is in NL}$
- $(a|bb)^* \Sigma^* \text{ is ?!?}$

Groups are PTIME?

Dyck language?

Can we show a dichotomy: CTS(L) is either PTIME or NP-hard?

More info in our preprint: https://arxiv.org/abs/1707.04310
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[
(ab)^* \text{ is NP-hard} \\
(a|ab)^* \text{ is NP-hard} \\
(aa|bb)^* \text{ is NP-hard} \\
(ab)^* | \Sigma^* \text{ is in NL} \\
\text{Groups are PTIME?} \\
\text{Dyck language?}
\]

Can we show a dichotomy: CTS(\L) is either PTIME or NP-hard?

More info in our preprint: https://arxiv.org/abs/1707.04310
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

\((ab)^*\) is

Groups are PTIME?

\((a|bb)^*\) is NP-hard

\((ab)^*|\Sigma^*\) is in NL

\((ab)\) is in NL

\((aa|bb)^*\) is NP-hard

\((aaabab)^*\) is NP-hard

\(ba^*ba^*b\) is in NL

\((a|bb|^*)\) is NP-hard

\(\Sigma^*aa\Sigma^*\) is in NL

Can we show a dichotomy: CTS (\(L\)) is either PTIME or NP-hard?

Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\((ab)^*\) is NP-hard
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

\[(ab)^* \text{ is NP-hard}\]

\[(a|ab)^* \text{ is}\]
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^*\] is **NP-hard**

\[(a|ab)^*\] is **NP-hard**
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\((ab)^*\) is **NP-hard**
\((a|ab)^*\) is **NP-hard**
\((aa|bb)^*\) is
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

 \[(ab)^* \text{ is NP-hard}\]
 \[(a|ab)^* \text{ is NP-hard}\]
 \[(aa|bb)^* \text{ is NP-hard}\]

Groups are PTIME?

Dyck language?

Can we show a dichotomy: CTS \((L)\) is either PTIME or NP-hard?

More info in our preprint: https://arxiv.org/abs/1707.04310
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^* \text{ is NP-hard} \]
\[(a|ab)^* \text{ is NP-hard} \]
\[(aa|bb)^* \text{ is NP-hard} \]
\[(aaabab)^* \text{ is NP-hard} \]
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^* \text{ is NP-hard} \quad (aaabab)^* \text{ is NP-hard}\]
\[(a|ab)^* \text{ is NP-hard} \quad (aa|bb)^* \text{ is NP-hard}\]
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^* \text{ is NP-hard}\] \[(aa|ab)^* \text{ is NP-hard}\] \[(a|ab)^* \text{ is NP-hard}\] \[(aa\|bb)^* \text{ is NP-hard}\] \[(aaabab)^* \text{ is NP-hard}\] \[ba*ba*b \text{ is}\]
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^* \text{ is NP-hard}\]

\[(aa|bb)^* \text{ is NP-hard}\]

\[(a|ab)^* \text{ is NP-hard}\]

\[(aa|ba)^*b \text{ is in NL}\]

\[(aa|bb)^* \text{ is NP-hard}\]
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

$$(ab)^*$$ is NP-hard
$$(aa|bb)^*$$ is NP-hard
$$(ab)^* | (aa|bb)^*$$ is NP-hard

$$(a|ab)^*$$ is NP-hard
$$(aaabab)^*$$ is NP-hard
$$(ba^*ba^*b)^*$$ is in NL
$$(ab)^* | \Sigma^*aa\Sigma^*$$ is
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

$(ab)^* \text{ is NP-hard}$

$(a|ab)^* \text{ is NP-hard}$

$(aa|bb)^* \text{ is NP-hard}$

$(aaabab)^* \text{ is NP-hard}$

$(a|ab)^* \text{ is NP-hard}$

$ba^*ba^*b \text{ is in NL}$

$(ab)^* | \Sigma^* aa \Sigma^* \text{ is in NL}$
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

 $(ab)^* \text{ is NP-hard}$

 $(a|ab)^* \text{ is NP-hard}$

 $(aa|bb)^* \text{ is NP-hard}$

 $(aaabab)^* \text{ is NP-hard}$

 $ba^*ba^*b \text{ is in NL}$

 $\Sigma^*aa\Sigma^* \text{ is in NL}$
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

 \((ab)^* \text{ is } \text{NP-hard}\)
 \((aaabab)^* \text{ is } \text{NP-hard}\)
 \((ab)^* \mid \Sigma^*aa\Sigma^* \text{ is } \text{in } \text{NL}\)

\((a|ab)^* \text{ is } \text{NP-hard}\)
\((aba^*ba^*b) \text{ is } \text{in } \text{NL}\)
\((aa|bb)^* \text{ is } \text{NP-hard}\)

Groups are \text{PTIME}? Dyck language? Can we show a dichotomy: CTS(L) is either \text{PTIME} or \text{NP-hard}? More info in our preprint: https://arxiv.org/abs/1707.04310
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\[(ab)^* \text{ is NP-hard}\]
\[(a|ab)^* \text{ is NP-hard}\]
\[(aa|bb)^* \text{ is NP-hard}\]
\[(aaabab)^* \text{ is NP-hard}\]
\[ba^*ba^*b \text{ is in NL}\]
\[(a|bb)^* \text{ is in NL}\]
\[(ab)^* | \Sigma^*aa\Sigma^* \text{ is in NL}\]

Groups are PTIME?
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

 \((ab)^*\) is NP-hard
 \((a|ab)^*\) is NP-hard
 \((aa|bb)^*\) is NP-hard
 \((aa|bb)^*\) is NP-hard
 \((aa|bb)^*\) is NP-hard
 \((aaabab)^*\) is NP-hard
 \((ab)^* | \Sigma^*aa\Sigma^*\) is in NL
 \((ab)^* | \Sigma^*aa\Sigma^*\) is in NL
 Groups are PTIME?
 \((a|bb)^*\) is ?!!

More info in our preprint: https://arxiv.org/abs/1707.04310
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

\[(ab)^* \text{ is NP-hard}\]
\[(a|ab)^* \text{ is NP-hard}\]
\[(aa|bb)^* \text{ is NP-hard}\]
\[(aaabab)^* \text{ is NP-hard}\]
\[(ab)^* | \Sigma^*aa\Sigma^* \text{ is in NL}\]

- Groups are PTIME?
- \[(a|bb)^* \text{ is } ?!?\]
- Dyck language?
Our Current Results

- Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
- Now working on this with Charles Paperman
- Current results:

 \[(ab)^* \text{ is NP-hard}\]
 \[(a|ab)^* \text{ is NP-hard}\]
 \[(aa|bb)^* \text{ is NP-hard}\]
 \[(aaabab)^* \text{ is NP-hard}\]
 \[(a|bb)^* \text{ is ?!?}\]
 \[(a|bb)^* \text{ is ?!?}\]
 \[(ab)^* \mid \Sigma^*aa\Sigma^* \text{ is in NL}\]
 \[(ba^*ba^*b \text{ is in NL}\]
 \[(a|bb)^* \text{ is ?!?}\]
 \[(ab)^* \text{ is in NL}\]

Can we show a dichotomy: \(\text{CTS}(L)\) is either PTIME or NP-hard?
Our Current Results

• Originally with Daniel Deutch, Lamine Ba, and Pierre Senellart
• Now working on this with Charles Paperman
• Current results:

\((ab)^* \) is NP-hard
\((a|ab)^* \) is NP-hard
\((aa|bb)^* \) is NP-hard

\((aaabab)^* \) is NP-hard
\(ba^*ba^*b \) is in NL
\((ab)^* \mid \Sigma^*aa\Sigma^* \) is in NL

Can we show a dichotomy:\(\text{CTS}(L) \) is either PTIME or NP-hard?

More info in our preprint: https://arxiv.org/abs/1707.04310