Linear Time Subsequence and Supersequence Regex Matching

Antoine Amarilli, Florin Manea, Tina Ringleb, Markus L. Schmid
MFCS 2025

August 26, 2025

Overview

© Preliminaries
o The =4,p-Matching Problem
9 The Min- and Max-Variant of the <4,,-Matching Problem

o The Universal < -Matching Problem

Sub-/Supersequence Regex Matching

Overview

© Preliminaries

/Supersequence Regex Matching Preliminaries

Regular Expressions and eNFAs

regular expression over X
e () is a regular expression with L(()) =0
@ every x € X U{e} is a regular expression with L(x) = {x}
o if s and t are regular expressions, then the following are regular expressions:
» s-t, with L(s-t) = L(s) - L(t), where Ly - Ly = {uv | u € Ly,v € Lp}
» sV t, with L(sV t) = L(s)UL(t)
» s*, with L(s*) = (L(s))*, where L% = {e}, Lk = Lk=1. [for every k > 1 and L* = Urkso Lk

Example
r=(a-b)*Vvb-a* L(r)={(ab)* | k >0} U {ba* | k > 0} J

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 2/15

Regular Expressions and eNFAs

non-deterministic finite automaton A = (Q, ¥, qo, gf, 0) with e-transitions:
o finite set of states Q with |Q| = n, initial state qo, final state gf
@ set of transitions § C Q x X U {e} x Q with |§| = |A|=m
@ can be interpreted as a graph with vertex set Q:

» directed edges labelled by symbols from X U {€} given by the transitions of ¢: (p,a,q) € ¢
corresponds to a directed edge from p to g labelled with a

> run of A on string w: path from o to some state p which is labelled by w (when ignoring
e-labels); accepting if p = g¢

» L(A) = {w € X*| there is an accepting run of A on w}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 2/15

Regular Expressions and eNFAs

Thompson's construction: a regular expression r can be converted in time O(|r|) into an eNFA
A such that L(A) = L(r) and |A| = O(|r]|)

Example

r=(a-b)"V b-a* corresponds to

Sub-/Supersequence Regex Matching

Preliminaries August 26, 2025 2/15

String Relations

@ string relation < (over ¥): subset of ¥* x L*
o Ax(w) ={ueX*|u=w} ie thesetof all strings that are in <-relation to w

e lift this notation to languages: A<(L) = J,,c; A<(w)

prefix U =prew | uv=w for some v c r*
infix u=inw | vuv' =w for some v,V € ¥*
subsequence UZabw | u=wli]...wliy], 1< <...<iy <|wl

supersequence | U Sgup W | W Sgup U
left-extension | U <jext W | U = vw for some v € X*

extension U=ext W | u=vmwv' for some v,v' € T*

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 3/15

Variants of Regex Matching

regex matching problem
eNFA acceptance problem
=-matching problem

min-/max-variant

universal-variant

w e L(r)?

w e L(A)?

A< (w) N L(A) # 07

arglrlnin(/-max){]u] | ue A<x(w)nL(A)}?

A<(w) C L(A)?

Preliminaries

Sub-/Supersequence Regex Matching

August 26, 2025

4/15

Results

©) in pre ext/lext sub sup

= O(lwlm) O(lw|m) O(lw|m) O(|w|+ m) O(|w|+ m)
min O(lw|m) — O(|w|m) O(lw|m) O(lw|m) O(|w|m)
max O(lw|m) — O(|w|m) O(|w|m) O(lw|m) O(|w|m)
4 O(lw|>m) O(lw|m) PSPACE coNP PSPACE
in/pre ext/lext sub sup

no O((lw|m)*=) no O((lw|m)!~) — —

n no O((lw|m)=¢) no O((|lw|m)}=¢) no O(|w|+ m) no O((|w|m)t=¢)

max no O((|w|m)}=¢) no O((|w|m)}=¢) no O((Jw|m)1=¢) no O(|w|+ m)
no O((|w|m)=¢) PSPACE-hard coNP-hard PSPACE-hard

3 14(®

<C

Upper bounds (1) and (conditional) lower bounds (2) for the different problem variants; note that m is
the size of the eNFA A

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 5/15

Results

©) in pre ext/lext sub sup

= O(lwlm) O(lw|m) O(lw|m) O(|w|+ m) O(|w|+ m)
min O(lw|m) — O(|w|m) O(lw|m) O(lw|m) O(|w|m)
max O(lw|m) — O(|w|m) O(lw|m) O(lw|m) O(|w|m)
4 O(lw|>m) O(lw|m) PSPACE coNP PSPACE
in/pre ext/lext sub sup

no O((lw|m)*=) no O((lw|m)!~) — —

n no O((|w|m)!™) no O((lw|m)!=) no O(lw|+m) — no O((|w|m)!~)

max no O((|lw|m)}=¢) no O((|w|m)}=¢) no O((Jw|m)1=¢) no O(|w|+ m)
no O((|w|m)=¢) PSPACE-hard coNP-hard PSPACE-hard

3 14(®

<C

Upper bounds (1) and (conditional) lower bounds (2) for the different problem variants; note that m is
the size of the eNFA A

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 5/15

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time

Sub-/Supersequence Regex Matching Preliminaries

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time
o S;={pe€ Q]thereis a w[l: i]-labelled path from g to p} is the set of active states at
step i € {0,1,...,|w|}
» pe Qisactive at step i if pe S;
» w € L(A) if g is active at step |w|

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time
o S;={pe€ Q]thereis a w[l: i]-labelled path from g to p} is the set of active states at
step i € {0,1,...,|wl|}

» pe Qisactive at step i if pe S;
» w € L(A) if g is active at step |w|

@ update step from S;_; to S;:
» compute SI/ = Cw[i](si—l)v where Cb(s) = {q | pe 53 (pv ba q) € 6}
» compute e-closure S; = C%(S/)

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

Qes W = abba
€Si_1

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

Oc¢esi W = abba
€5i-1 | Sh= {q}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

Qes W = abba
€51 | So= {q} U{a}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€Si_1

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time

o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:

» compute SI/ = Cw[i](sifl)v where Cb(s) = {q | pe 5’ (Pv b7 q) € 6}
» compute e-closure S; = C%(S/)
Example

OQesi w = abba
€3i-1 | 5 = St =A{q1, 2}

Sub-/Supersequence Regex Matching

Preliminaries

August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€Si_1

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€5i-1| 8= {q,q3}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€5i-1 | S, = {q,q3}U
{q4a CI6}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€Si_1

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€5i-1 | S} = {gs,q}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

QeSS w = abba
€5i-1 | S3= {qg3,q}U
{Q4,CI6}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation
decide whether w € L(A) in O(|w||A]) time
o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:
» compute 57 = C,7(Si—1), where Cp(S) ={q | p<€ S,(p,b,q) € 6}
» compute e-closure S; = C%(S/)

Example

OQesi w = abba
€Si_1

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6/15

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time

o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at

step i € {0,1,...,|w|}

@ update step from S;_; to 5;:
» compute SI/ = Cw[i](sifl)v where Cb(s) = {q | pe 5’ (Pv b7 q) € 6}

» compute e-closure S; = C%(S/)

Example

OES,‘

w abba
€5i-1 | S4 = {90,956}

Sub-/Supersequence Regex Matching

Preliminaries

August 26, 2025 6/15

State-Set Simulation

decide whether w € L(A) in O(|w||A]) time

o Si={pe€ Q|thereis a w[l: i]-labelled path from qo to p} is the set of active states at
step i € {0,1,...,|w|}
@ update step from S;_; to 5;:

» compute SI/ = Cw[i](sifl)v where Cb(s) = {q | pe 57 (Pv b7 q) € 6}
» compute e-closure S; = C%(S/)
Example

O€S | w= abba
< Si_l S4 = {q07 as, qﬁ}U
{qla CIZ}
Sub-/Supersequence Regex Matching Preliminaries

August 26, 2025 6/15

Overview

o The =sup-Matching Problem

ipersequence Regex Matching Subsequence-Matching

O(|w| 4+ m) Algorithm

Theorem

Given w € ¥* and eNFA A= (Q, X, qo, gf,) of size m, the <q,,-matching problem can be
solved in time O(|w| 4+ m).

Sub-/Supersequence Regex Matching Subsequence-Matching

O(|w| 4+ m) Algorithm

Theorem

Given w € ¥* and eNFA A= (Q, %, qo, gf, 0) of size m, the <q,p,-matching problem can be
solved in time O(|w|+ m).

e transform A into eNFA Ag,p accepting the upwards closure of A (i.e.,
L(Asup) ={u e X |Ive L(A): v 2 u})
» add transition (p, a, p) to Agp for every p € Q,a € ¥ (= ignore letters from w)
> ‘non-ignoring’ transitions of an accepting run of w on Ay, spell out a subsequence of w
accepted by A

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 7/15

O(|w| 4+ m) Algorithm

Theorem

Given w € ¥* and eNFA A= (Q, %, qo, gf, 0) of size m, the <q,p,-matching problem can be
solved in time O(|w|+ m).

e transform A into eNFA Ag,p accepting the upwards closure of A (i.e.,
L(Asup) ={u e X |Ive L(A): v 2 u})
» add transition (p, a, p) to A for every p € Q,a € X (= ignore letters from w)
> ‘non-ignoring’ transitions of an accepting run of w on Ay, spell out a subsequence of w
accepted by A
e [Bachmeier, Luttenberger, Schlund '15]: when a state p of Agyp is added to the set of
active states, it stays active until the end of the state-set simulation
» 55 C S5 C...C Sy
» at most n+ 1 different sets of active states

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 7/15

O(|w| 4+ m) Algorithm

state-set simulation on Ag,p is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8/15

O(|w| 4+ m) Algorithm

state-set simulation on Ag,p is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

o computing C,;1(Si-1): if p € S;—1 and state g is added due to transition (p, w[i], q),
then g € S; holds for all j > i

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8/15

O(|w| 4+ m) Algorithm

state-set simulation on Ag,p is too slow: run state-set simulation on A while only considering
‘new’ active states at each step
o computing C,;1(Si-1): if p € S;—1 and state g is added due to transition (p, w[i], q),
then g € S; holds for all j > i

» transition (p, w[i], g) can be ignored afterwards
» only consider unmarked transitions (p, w[i], q) with p € 5;_4
» mark transition (p, w[i], q) after use

e computing CX(S’): same idea for transitions (p, e, q) with p € S;_1

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8/15

O(|w| 4+ m) Algorithm

state-set simulation on Ag,p is too slow: run state-set simulation on A while only considering
‘new’ active states at each step
o computing C,;1(Si-1): if p € S;—1 and state g is added due to transition (p, w[i], q),
then g € S; holds for all j > i
» transition (p, w[i], g) can be ignored afterwards
» only consider unmarked transitions (p, w[i], q) with p € 5;_4
» mark transition (p, w[i], q) after use
e computing CX(S’): same idea for transitions (p, e, q) with p € S;_1
@ storing relevant transitions: array H[-| of lists, indexed by elements of ¥

» store all unmarked transitions (p, a, g) with a € X, p € 5;_1 in list H[a]
» while computing C,,[;j(Si-1), we mark all transitions in H[w/[/]]
» remove (p, a, q) from H[a] after (p, a, q) has been marked

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8/15

O(|w| 4+ m) Algorithm

@ update step (Sj—1 — Si):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[w[i]])

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

O(|w| 4+ m) Algorithm

@ update step (Sj—1 — Si):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[w[i]])
> store all new states g (i.e., g ¢ Si—1) in queue R

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

O(|w| 4+ m) Algorithm

o update step (Si—1 — Si):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[w[i]])
> store all new states g (i.e., g ¢ Si—1) in queue R
» compute S; = C(R), adding to R all new states

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

O(|w| 4+ m) Algorithm

o update step (Si—1 — Si):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[w[i]])
> store all new states g (i.e., g ¢ Si—1) in queue R
» compute S; = C(R), adding to R all new states
» update H, only considering transitions (p, a, g) with p € R

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

O(|w| 4+ m) Algorithm

e update step (S;i—1 — S;):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[wl[i]])
» store all new states q (i.e., ¢ ¢ Si_1) in queue R
» compute S; = C(R), adding to R all new states
» update H, only considering transitions (p, a, g) with p € R
@ every transition is either
» not marked at all, or
» marked in the computation of some e-closure (including the initialisation) and then ignored,

or
» put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

O(|w| 4+ m) Algorithm

e update step (S;i—1 — S;):
» compute §’ = C,(7(S;—1) using only transitions in H[w[i]] (while marking and removing
them from H[wl[i]])
» store all new states q (i.e., ¢ ¢ Si_1) in queue R
» compute S; = C(R), adding to R all new states
» update H, only considering transitions (p, a, g) with p € R
@ every transition is either
» not marked at all, or
» marked in the computation of some e-closure (including the initialisation) and then ignored,
or
» put into H[a] at some update step (or initialisation) and then marked at some later update
step and then ignored

e linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w| update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9/15

Overview

9 The Min- and Max-Variant of the <,,,-Matching Problem

Sub-/Supersequence Regex Matching Quantitative Variants

O(|w|m) Upper Bound

Theorem

Given w € ¥* and eNFA A = (Q, X, qo, gf,) of size m, the min- and max-variant of the
=sub-matching problem can be solved in time O(|w|m).

@ build X U {e}-labelled directed product graph Ga ,, of size O(|w|m) with edge weights of
0 or 1, source s, and sink t

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10/15

O(|w|m) Upper Bound

Theorem
Given w € ¥* and eNFA A = (Q, X, qo, gf,) of size m, the min- and max-variant of the
=sub-matching problem can be solved in time O(|w|m).

@ build X U {e}-labelled directed product graph Ga ,, of size O(|w|m) with edge weights of
0 or 1, source s, and sink t

@ shortest/longest u =gy w with u € L(A) corresponds to minimum/maximum weight
s-t-path (path labelled with u, weight |u|)

o find shortest/longest path in O(|Ga w|) = O(|w|m) time using basic graph algorithmic
techniques

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10/15

O(|w|m) Upper Bound

Theorem

Given w € ¥* and eNFA A = (Q, X, qo, g5, 0) of size m, the min- and max-variant of the
=sub-matching problem can be solved in time O(|w|m).

@ build X U {e}-labelled directed product graph Ga ,, of size O(Jw|m) with edge weights of
0 or 1, source s, and sink t :

» vertices {0,1,...,|w|} x Q, s=(0,q0) and t = (|w|, gf)

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10/15

O(|w|m) Upper Bound

Theorem

Given w € ¥* and eNFA A = (Q, X, qo, g5, 0) of size m, the min- and max-variant of the
=sub-matching problem can be solved in time O(|w|m).

@ build X U {e}-labelled directed product graph Ga ,, of size O(Jw|m) with edge weights of
0 or 1, source s, and sink t :

» vertices {0,1,...,|w|} x Q, s=(0,q0) and t = (|w|, gf)

» transition (p,e,q) and i € {0,...,|w|}: add edge from (i, p) to (i, q) with label € and
weight 0
» transition (p,a,q) and i € {1,...,|w|} with w[i] = a: add edge from (i — 1, p) to (i, q) with

label a and weight 1 (= taking letter w]i])

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10/15

O(|w|m) Upper Bound

Theorem

Given w € ¥* and eNFA A = (Q, X, qo, g5, 0) of size m, the min- and max-variant of the
=sub-matching problem can be solved in time O(|w|m).

@ build X U {e}-labelled directed product graph Ga ,, of size O(Jw|m) with edge weights of
0 or 1, source s, and sink t :

» vertices {0,1,...,|w|} x Q, s=(0,q0) and t = (|w|, gf)

» transition (p,e,q) and i € {0,...,|w|}: add edge from (i, p) to (i, q) with label € and
weight 0

» transition (p,a,q) and i € {1,...,|w|} with w[i] = a: add edge from (i — 1, p) to (i, g) with
label a and weight 1 (= taking letter w]i])

» stateg€ Qand i€ {1,...,|w|}: add edge from (i — 1, g) to (i, q) with label £ and weight 0

(= ignoring letter w[i])

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10/15

Conditional Lower Bound for the Min-Variant

Theorem

If the min-variant of the <q,-matching problem can be solved in time O(|w| + m), then we
can decide whether a given dense graph G has a triangle in time O(|G|).

Any truly subcubic (in the number of nodes) combinatorial algorithm for triangle detection
yields a truly subcubic combinatorial algorithm for Boolean matrix multiplication, which is
considered unlikely [Williams, Williams "18].

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 11/15

Conditional Lower Bound for the Min-Variant

o transform dense graph G = ({v1,...,v,}, E) into NFA Mg:

Sub-/Supersequence Regex Matching Quantitative Variants

Conditional Lower Bound for the Min-Variant

o transform dense graph G = ({v1,...,v,}, E) into NFA Mg:

» states {p;, q;, ri,si | 1 < i < n}, source s, target t
» p;: i-th ‘entry point’, s;: i-th ‘exit point’

Sub-/Supersequence Regex Matching Quantitative Variants

August 26, 2025

12/15

Conditional Lower Bound for the Min-Variant

e transform dense graph G = ({v1,...,va}, E) into NFA Mg:
» states {p;, q;, i, | 1 < i < n}, source s, target t
» p;: i-th ‘entry point’, s;: i-th ‘exit point’
> split into left, middle, and right part:

left part middle part right part

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12/15

Conditional Lower Bound for the Min-Variant

e transform dense graph G = ({v1,...,va}, E) into NFA Mg:
» states {p;, q;, i, | 1 < i < n}, source s, target t
» p;: i-th ‘entry point’, s;: i-th ‘exit point’
» split into left, middle, and right part:

left part middle part right part

» middle part: edges (pj, b, q;), (qi, b, r;), (i, b, sj) for every {v;, v} € E
» G has a triangle containing v; <= there is a bbb-labelled path from the i-th entry point to
the i-th exit point

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12/15

Conditional Lower Bound for the Min-Variant

o transform dense graph G = ({v1,...,v,}, E) into NFA Mg:
» states {p;, q;, ri,si | 1 < i < n}, source s, target t
» p;: i-th ‘entry point’, s;: i-th ‘exit point’
» middle part: edges (pi, b, q;), (qi, b, r;), (ri, b, 5;) for every {vi,v;} € E
» G has a triangle containing v; <=> there is a bbb-labelled path from the i-th entry point to
the i-th exit point

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12/15

Conditional Lower Bound for the Min-Variant

o transform dense graph G = ({v1,...,v,}, E) into NFA Mg:

states {p;, qi, i, Si | 1 < i < n}, source s, target t

pi: i-th ‘entry point’, s;: i-th ‘exit point’

middle part: edges (pi, b, q;), (qi, b, r;), (ri, b, s;) for every {v;,v;} € E

G has a triangle containing v; <= there is a bbb-labelled path from the i-th entry point to

the i-th exit point

> left part: length-(2(n+ 1) — i) path from s to p;, where i edges are labelled with a (rest
labelled with b)

» right part: length-(n+ 1+ /i) path from s; to t, where n — i edges are labelled with a (rest
labelled with b)

vV vy VvVYyy

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12/15

Conditional Lower Bound for the Min-Variant

o transform dense graph G = ({v1,...,v,}, E) into NFA Mg:
» states {p;, q;, i, | 1 < i < n}, source s, target t
pi: i-th ‘entry point’, s;: i-th ‘exit point’
middle part: edges (pi, b, q;), (qi, b, r;), (ri, b, s;) for every {v;,v;} € E
G has a triangle containing v; <= there is a bbb-labelled path from the i-th entry point to
the i-th exit point
> left part: length-(2(n+ 1) — i) path from s to p;, where i edges are labelled with a (rest
labelled with b)

» right part: length-(n+ 1+ /i) path from s; to t, where n — i edges are labelled with a (rest
labelled with b)

@ every string accepted by Mg must go through exactly one entry point and exactly one
exit point

v

v

v

@ an accepted string going through the i-th entry- and j-th exit point

© has length 3(n+1)+(—i)+3
@ has n— (j — i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12/15

Conditional Lower Bound for the Min-Variant

@ an accepted string going through the i-th entry- and j-th exit point

@ haslength 3(n+1)+(—1)+3
@ has n— (j — i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13/15

Conditional Lower Bound for the Min-Variant

@ an accepted string going through the i-th entry- and j-th exit point

Q haslength3(n+1)+(—1)+3
@ has n— (j — i) occurrences of a

o consider string w = b2("1) ppb(ab? ("1 pbb)"

@ query: Is the minimal length of a subsequence of w accepted by Mg equal to
N:=3(n+1)+37

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13/15

Conditional Lower Bound for the Min-Variant

@ an accepted string going through the i-th entry- and j-th exit point
© has length 3(n+1)+(—i)+3
@ has n— (j — i) occurrences of a
o consider string w = b2("1) ppb(ab? ("1 pbb)"
@ query: Is the minimal length of a subsequence of w accepted by Mg equal to
N :=3(n+1)+ 37
@ N is a lower bound on the length of accepted subsequences:

> let u <5y w be accepted using the i-th entry and j-th exit point
» u has at most n occurrences of a
> using (2): j >, thus |u| =3(n+ 1)+ (G —i)+3>N

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 /15

Conditional Lower Bound for the Min-Variant

@ an accepted string going through the i-th entry- and j-th exit point
© has length 3(n+1)+(—i)+3
@ has n— (j — i) occurrences of a
o consider string w = b2("1) ppb(ab? ("1 pbb)"
@ query: Is the minimal length of a subsequence of w accepted by Mg equal to
N:=3(n+1)+37?
@ N is a lower bound on the length of accepted subsequences:
> let u <sub W be accepted using the i-th entry and j-th exit point
> u has at most n occurrences of a
» using (2): j >, thus ju| =3(n+1)+(—-i)+3>N
@ length-N subsequence of w can only be accepted using the same entry- and exit point i,
which is only possible if G has a triangle containing v;

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 /15

Conditional Lower Bound for the Min-Variant

@ an accepted string going through the i-th entry- and j-th exit point

© has length 3(n+1)+(—i)+3

@ has n— (j — i) occurrences of a
consider string w = b2("t1) ppp(ab?("+1) ppb)"
query: Is the minimal length of a subsequence of w accepted by Mg equal to
N:=3(n+1)+37?
@ N is a lower bound on the length of accepted subsequences:

> let u <sub W be accepted using the i-th entry and j-th exit point

> u has at most n occurrences of a

» using (2): j >, thus ju| =3(n+1)+(—-i)+3>N
length-N subsequence of w can only be accepted using the same entry- and exit point /,
which is only possible if G has a triangle containing v;
\w| 4 |[Mg| = O(n® + |G|) = O(|G]), since |G| = Q(n?): if we can not decide whether G
has a triangle in O(|G]) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 /15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the =q.,-matching problem can be solved in time O((|w|m)1 =€) for some
€ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

Sub-/Supersequence Regex Matching

Quantitative Variants August 26, 2025 14 /15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the =q.,-matching problem can be solved in time O((|w|m)1 =€) for some
€ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

e [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common

subsequence of two strings u and v in time O((Jul|v|)}~¢) for some € > 0, then SETH
fails.

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 /15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the =q.,-matching problem can be solved in time O((|w|m)1 =€) for some
€ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

e [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common

subsequence of two strings u and v in time O((|ul|v|)!~¢) for some ¢ > 0, then SETH
fails.

o construct eNFA A, 5,5 accepting exactly the subsequences of u € * (note: |A, sup| = |ul)

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 /15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the =q.,-matching problem can be solved in time O((|w|m)1 =€) for some
€ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

e [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common
subsequence of two strings u and v in time O((|ul|v|)!~¢) for some ¢ > 0, then SETH
fails.

o construct eNFA A, 5,5 accepting exactly the subsequences of u € * (note: |A, sup| = |ul)

@ solving the max-variant of the < ,-matching problem for string v and eNFA A, ¢,
amounts to computing the longest common subsequence of u and v —>
SETH-conditional lower bound carries over

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 /15

Overview

o The Universal <¢,p-Matching Problem

ipersequence Regex Matching Universal Variant

coNP-Completeness

Theorem
Given string w € ¥* and eNFA A, deciding whether N<_, (w) C L(A) is coNP-complete. J

@ < coNP: guess subsequence u =g w, check if u ¢ L(A)

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15/15

coNP-Completeness

Theorem
Given string w € ¥* and eNFA A, deciding whether N<_, (w) C L(A) is coNP-complete. J

@ < coNP: guess subsequence u =g w, check if u ¢ L(A)
@ coNP-hard:

» consider 3CNF formula F over n variables
> build eNFA Ar that accepts all {0, 1}-strings of lengths k € {0,1,...,n—1,n+1,...,2n}
and all {0, 1}-strings of length n that represent non-satisfying assignments of F

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15/15

coNP-Completeness

Theorem
Given string w € ¥* and eNFA A, deciding whether N<_, (w) C L(A) is coNP-complete. J

@ < coNP: guess subsequence u =g w, check if u ¢ L(A)
@ coNP-hard:
» consider 3CNF formula F over n variables
> build eNFA Ar that accepts all {0, 1}-strings of lengths k € {0,1,...,n—1,n+1,...,2n}
and all {0, 1}-strings of length n that represent non-satisfying assignments of F
» A<, ((01)") C L(AF) <= F is not satisfiable

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15/15

Results

@ in pre ext/lext sub sup

= O(lwlm) O(lw|m) O(lw|m) O(|lw|+ m) O(|w|+ m)
min O(lw|m) — O(|w|m) O(lw|m) O(lw|m) O(|w|m)
max O(lw|m) — O(|w|m) O(lw|m) O(lw|m) O(|w|m)
\ O(lw|?m) O(lw|m) PSPACE coNP PSPACE
in/pre ext/lext sub sup

3 14(®

no O((lw|m)™™) no O((lw|m)!™) —

n - no O((|w|m)!™) no O((lw|m)!™) no O(lw|+m) — no O((|w|m)'~)

max no O((|w|m)}=¢) no O((lw|m)*=¢) no O((Jw|m)1=¢) no O(|w|+ m)
no O((|w|m)t=¢) PSPACE-hard coNP-hard PSPACE-hard

<C

Upper bounds () and (conditional) lower bounds (2) for the different problem variants; note that m is
the size of the eNFA A

Thank you for your attention!

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025

	Preliminaries
	The sub-Matching Problem
	The Min- and Max-Variant of the sub-Matching Problem
	The Universal sub-Matching Problem

