
Linear Time Subsequence and Supersequence Regex Matching

Antoine Amarilli, Florin Manea, Tina Ringleb, Markus L. Schmid

MFCS 2025

August 26, 2025

Overview

1 Preliminaries

2 The ⪯sub-Matching Problem

3 The Min- and Max-Variant of the ⪯sub-Matching Problem

4 The Universal ⪯sub-Matching Problem

Sub-/Supersequence Regex Matching August 26, 2025

Overview

1 Preliminaries

2 The ⪯sub-Matching Problem

3 The Min- and Max-Variant of the ⪯sub-Matching Problem

4 The Universal ⪯sub-Matching Problem

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025

Regular Expressions and εNFAs

regular expression over Σ:

∅ is a regular expression with L(∅) = ∅
every x ∈ Σ ∪ {ε} is a regular expression with L(x) = {x}
if s and t are regular expressions, then the following are regular expressions:

▶ s · t, with L(s · t) = L(s) · L(t), where L1 · L2 = {uv | u ∈ L1, v ∈ L2}
▶ s ∨ t, with L(s ∨ t) = L(s) ∪ L(t)
▶ s∗, with L(s∗) = (L(s))∗, where L0 = {ε}, Lk = Lk−1 · L for every k ≥ 1 and L∗ =

⋃
k≥0 L

k

Example

r = (a · b)∗ ∨ b · a∗, L(r) = {(ab)k | k ≥ 0} ∪ {bak | k ≥ 0}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 2 / 15

Regular Expressions and εNFAs

non-deterministic finite automaton A = (Q,Σ, q0, qf , δ) with ε-transitions:

finite set of states Q with |Q| = n, initial state q0, final state qf

set of transitions δ ⊆ Q × Σ ∪ {ε} × Q with |δ| = |A| = m

can be interpreted as a graph with vertex set Q:
▶ directed edges labelled by symbols from Σ ∪ {ε} given by the transitions of δ: (p, a, q) ∈ δ

corresponds to a directed edge from p to q labelled with a
▶ run of A on string w : path from q0 to some state p which is labelled by w (when ignoring

ε-labels); accepting if p = qf
▶ L(A) = {w ∈ Σ∗ | there is an accepting run of A on w}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 2 / 15

Regular Expressions and εNFAs

Thompson’s construction: a regular expression r can be converted in time O(|r |) into an εNFA
A such that L(A) = L(r) and |A| = O(|r |)

Example

r = (a · b)∗ ∨ b · a∗ corresponds to

q0

q1 q2 q3

q4 q5 q6

qf

ε

ε

a b

b a

ε

ε

ε

ε
ε

ε

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 2 / 15

String Relations

string relation ⪯ (over Σ): subset of Σ∗ × Σ∗

Λ⪯(w) := {u ∈ Σ∗ | u ⪯ w}, i. e. the set of all strings that are in ⪯-relation to w

lift this notation to languages: Λ⪯(L) =
⋃

w∈L Λ⪯(w)

prefix u ⪯pre w uv = w for some v ∈ Σ∗

infix u ⪯in w vuv ′ = w for some v , v ′ ∈ Σ∗

subsequence u ⪯sub w u = w [i1] . . .w [i|u|], 1 ≤ i1 < . . . < i|u| ≤ |w |

supersequence u ⪯sup w w ⪯sub u

left-extension u ⪯lext w u = vw for some v ∈ Σ∗

extension u ⪯ext w u = vwv ′ for some v , v ′ ∈ Σ∗

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 3 / 15

Variants of Regex Matching

regex matching problem w ∈ L(r)?

εNFA acceptance problem w ∈ L(A)?

⪯-matching problem Λ⪯(w) ∩ L(A) ̸= ∅?

min-/max-variant argmin
u

(/-max){|u| | u ∈ Λ⪯(w) ∩ L(A)}?

universal-variant Λ⪯(w) ⊆ L(A)?

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 4 / 15

Results

1○ in pre ext/lext sub sup

⪯ O(|w |m) O(|w |m) O(|w |m) O(|w |+m) O(|w |+m)
min O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
max O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
∀ O(|w |2m) O(|w |m) PSPACE coNP PSPACE

2○ in/pre ext/lext sub sup

⪯ no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) — —
min no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m) no O((|w |m)1−ϵ)
max no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m)
∀ no O((|w |m)1−ϵ) PSPACE-hard coNP-hard PSPACE-hard

Upper bounds 1○ and (conditional) lower bounds 2○ for the different problem variants; note that m is
the size of the εNFA A

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 5 / 15

Results

1○ in pre ext/lext sub sup

⪯ O(|w |m) O(|w |m) O(|w |m) O(|w |+m) O(|w |+m)
min O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
max O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
∀ O(|w |2m) O(|w |m) PSPACE coNP PSPACE

2○ in/pre ext/lext sub sup

⪯ no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) — —
min no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m) no O((|w |m)1−ϵ)
max no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m)
∀ no O((|w |m)1−ϵ) PSPACE-hard coNP-hard PSPACE-hard

Upper bounds 1○ and (conditional) lower bounds 2○ for the different problem variants; note that m is
the size of the εNFA A

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 5 / 15

State-Set Simulation

decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation

decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}

▶ p ∈ Q is active at step i if p ∈ Si
▶ w ∈ L(A) if qf is active at step |w |

update step from Si−1 to Si :
▶ compute S ′

i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}
▶ compute ε-closure Si = C∗

ε(S
′
i)

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation

decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}

▶ p ∈ Q is active at step i if p ∈ Si
▶ w ∈ L(A) if qf is active at step |w |

update step from Si−1 to Si :
▶ compute S ′

i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}
▶ compute ε-closure Si = C∗

ε(S
′
i)

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S ′
0 = {q0}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S0 = {q0} ∪ {q1}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S1 = S ′
1 = {q1, q2}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S ′
2 = {q2, q3}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S2 = {q2, q3}∪
{q4, q6}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S ′
3 = {q3, qf}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S3 = {q3, qf}∪
{q4, q6}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S ′
4 = {q0, q5, q6}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

State-Set Simulation
decide whether w ∈ L(A) in O(|w ||A|) time

Si = {p ∈ Q | there is a w [1 : i]-labelled path from q0 to p} is the set of active states at
step i ∈ {0, 1, . . . , |w |}
update step from Si−1 to Si :

▶ compute S ′
i = Cw [i](Si−1), where Cb(S) = {q | p ∈ S , (p, b, q) ∈ δ}

▶ compute ε-closure Si = C∗
ε(S

′
i)

Example

q0

q1

q2

q3

q4

q5

q6

qf

a

a

ε

a

b

b b

ε

a

a ε

a

ε

b
b

a

∈ Si

∈ Si−1

w = abba

S4 = {q0, q5, q6}∪
{q1, q2}

Sub-/Supersequence Regex Matching Preliminaries August 26, 2025 6 / 15

Overview

1 Preliminaries

2 The ⪯sub-Matching Problem

3 The Min- and Max-Variant of the ⪯sub-Matching Problem

4 The Universal ⪯sub-Matching Problem

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025

O(|w |+m) Algorithm

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the ⪯sub-matching problem can be
solved in time O(|w |+m).

transform A into εNFA Asub accepting the upwards closure of A (i. e.,
L(Asub) = {u ∈ Σ∗ | ∃v ∈ L(A) : v ⪯sub u})

▶ add transition (p, a, p) to Asub for every p ∈ Q, a ∈ Σ (= ignore letters from w)
▶ ‘non-ignoring’ transitions of an accepting run of w on Asub spell out a subsequence of w

accepted by A

[Bachmeier, Luttenberger, Schlund ’15]: when a state p of Asub is added to the set of
active states, it stays active until the end of the state-set simulation

▶ S0 ⊆ S1 ⊆ . . . ⊆ S|w |
▶ at most n + 1 different sets of active states

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 7 / 15

O(|w |+m) Algorithm

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the ⪯sub-matching problem can be
solved in time O(|w |+m).

transform A into εNFA Asub accepting the upwards closure of A (i. e.,
L(Asub) = {u ∈ Σ∗ | ∃v ∈ L(A) : v ⪯sub u})

▶ add transition (p, a, p) to Asub for every p ∈ Q, a ∈ Σ (= ignore letters from w)
▶ ‘non-ignoring’ transitions of an accepting run of w on Asub spell out a subsequence of w

accepted by A

[Bachmeier, Luttenberger, Schlund ’15]: when a state p of Asub is added to the set of
active states, it stays active until the end of the state-set simulation

▶ S0 ⊆ S1 ⊆ . . . ⊆ S|w |
▶ at most n + 1 different sets of active states

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 7 / 15

O(|w |+m) Algorithm

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the ⪯sub-matching problem can be
solved in time O(|w |+m).

transform A into εNFA Asub accepting the upwards closure of A (i. e.,
L(Asub) = {u ∈ Σ∗ | ∃v ∈ L(A) : v ⪯sub u})

▶ add transition (p, a, p) to Asub for every p ∈ Q, a ∈ Σ (= ignore letters from w)
▶ ‘non-ignoring’ transitions of an accepting run of w on Asub spell out a subsequence of w

accepted by A

[Bachmeier, Luttenberger, Schlund ’15]: when a state p of Asub is added to the set of
active states, it stays active until the end of the state-set simulation

▶ S0 ⊆ S1 ⊆ . . . ⊆ S|w |
▶ at most n + 1 different sets of active states

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 7 / 15

O(|w |+m) Algorithm

state-set simulation on Asub is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

computing Cw [i](Si−1): if p ∈ Si−1 and state q is added due to transition (p,w [i], q),
then q ∈ Sj holds for all j ≥ i

▶ transition (p,w [i], q) can be ignored afterwards
▶ only consider unmarked transitions (p,w [i], q) with p ∈ Si−1

▶ mark transition (p,w [i], q) after use

computing C∗
ε(S

′): same idea for transitions (p, ε, q) with p ∈ Si−1

storing relevant transitions: array H[·] of lists, indexed by elements of Σ
▶ store all unmarked transitions (p, a, q) with a ∈ Σ, p ∈ Si−1 in list H[a]
▶ while computing Cw [i](Si−1), we mark all transitions in H[w [i]]
▶ remove (p, a, q) from H[a] after (p, a, q) has been marked

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8 / 15

O(|w |+m) Algorithm

state-set simulation on Asub is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

computing Cw [i](Si−1): if p ∈ Si−1 and state q is added due to transition (p,w [i], q),
then q ∈ Sj holds for all j ≥ i

▶ transition (p,w [i], q) can be ignored afterwards
▶ only consider unmarked transitions (p,w [i], q) with p ∈ Si−1

▶ mark transition (p,w [i], q) after use

computing C∗
ε(S

′): same idea for transitions (p, ε, q) with p ∈ Si−1

storing relevant transitions: array H[·] of lists, indexed by elements of Σ
▶ store all unmarked transitions (p, a, q) with a ∈ Σ, p ∈ Si−1 in list H[a]
▶ while computing Cw [i](Si−1), we mark all transitions in H[w [i]]
▶ remove (p, a, q) from H[a] after (p, a, q) has been marked

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8 / 15

O(|w |+m) Algorithm

state-set simulation on Asub is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

computing Cw [i](Si−1): if p ∈ Si−1 and state q is added due to transition (p,w [i], q),
then q ∈ Sj holds for all j ≥ i

▶ transition (p,w [i], q) can be ignored afterwards
▶ only consider unmarked transitions (p,w [i], q) with p ∈ Si−1

▶ mark transition (p,w [i], q) after use

computing C∗
ε(S

′): same idea for transitions (p, ε, q) with p ∈ Si−1

storing relevant transitions: array H[·] of lists, indexed by elements of Σ
▶ store all unmarked transitions (p, a, q) with a ∈ Σ, p ∈ Si−1 in list H[a]
▶ while computing Cw [i](Si−1), we mark all transitions in H[w [i]]
▶ remove (p, a, q) from H[a] after (p, a, q) has been marked

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8 / 15

O(|w |+m) Algorithm

state-set simulation on Asub is too slow: run state-set simulation on A while only considering
‘new’ active states at each step

computing Cw [i](Si−1): if p ∈ Si−1 and state q is added due to transition (p,w [i], q),
then q ∈ Sj holds for all j ≥ i

▶ transition (p,w [i], q) can be ignored afterwards
▶ only consider unmarked transitions (p,w [i], q) with p ∈ Si−1

▶ mark transition (p,w [i], q) after use

computing C∗
ε(S

′): same idea for transitions (p, ε, q) with p ∈ Si−1

storing relevant transitions: array H[·] of lists, indexed by elements of Σ
▶ store all unmarked transitions (p, a, q) with a ∈ Σ, p ∈ Si−1 in list H[a]
▶ while computing Cw [i](Si−1), we mark all transitions in H[w [i]]
▶ remove (p, a, q) from H[a] after (p, a, q) has been marked

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 8 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])

▶ store all new states q (i. e., q /∈ Si−1) in queue R
▶ compute Si = C∗

ε(R), adding to R all new states
▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])
▶ store all new states q (i. e., q /∈ Si−1) in queue R

▶ compute Si = C∗
ε(R), adding to R all new states

▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])
▶ store all new states q (i. e., q /∈ Si−1) in queue R
▶ compute Si = C∗

ε(R), adding to R all new states

▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])
▶ store all new states q (i. e., q /∈ Si−1) in queue R
▶ compute Si = C∗

ε(R), adding to R all new states
▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])
▶ store all new states q (i. e., q /∈ Si−1) in queue R
▶ compute Si = C∗

ε(R), adding to R all new states
▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

O(|w |+m) Algorithm

update step (Si−1 → Si):
▶ compute S ′ = Cw [i](Si−1) using only transitions in H[w [i]] (while marking and removing

them from H[w [i]])
▶ store all new states q (i. e., q /∈ Si−1) in queue R
▶ compute Si = C∗

ε(R), adding to R all new states
▶ update H, only considering transitions (p, a, q) with p ∈ R

every transition is either
▶ not marked at all, or
▶ marked in the computation of some ε-closure (including the initialisation) and then ignored,

or
▶ put into H[a] at some update step (or initialisation) and then marked at some later update

step and then ignored

linear time: only O(m) additional time over the whole state-set simulation in addition to
the |w | update steps

Sub-/Supersequence Regex Matching Subsequence-Matching August 26, 2025 9 / 15

Overview

1 Preliminaries

2 The ⪯sub-Matching Problem

3 The Min- and Max-Variant of the ⪯sub-Matching Problem

4 The Universal ⪯sub-Matching Problem

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025

O(|w |m) Upper Bound

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the min- and max-variant of the
⪯sub-matching problem can be solved in time O(|w |m).

build Σ ∪ {ε}-labelled directed product graph GA,w of size O(|w |m) with edge weights of
0 or 1, source s, and sink t

shortest/longest u ⪯sub w with u ∈ L(A) corresponds to minimum/maximum weight
s-t-path (path labelled with u, weight |u|)
find shortest/longest path in O(|GA,w |) = O(|w |m) time using basic graph algorithmic
techniques

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10 / 15

O(|w |m) Upper Bound

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the min- and max-variant of the
⪯sub-matching problem can be solved in time O(|w |m).

build Σ ∪ {ε}-labelled directed product graph GA,w of size O(|w |m) with edge weights of
0 or 1, source s, and sink t

shortest/longest u ⪯sub w with u ∈ L(A) corresponds to minimum/maximum weight
s-t-path (path labelled with u, weight |u|)
find shortest/longest path in O(|GA,w |) = O(|w |m) time using basic graph algorithmic
techniques

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10 / 15

O(|w |m) Upper Bound

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the min- and max-variant of the
⪯sub-matching problem can be solved in time O(|w |m).

build Σ ∪ {ε}-labelled directed product graph GA,w of size O(|w |m) with edge weights of
0 or 1, source s, and sink t :

▶ vertices {0, 1, . . . , |w |} × Q, s = (0, q0) and t = (|w |, qf)

▶ transition (p, ε, q) and i ∈ {0, . . . , |w |}: add edge from (i , p) to (i , q) with label ε and
weight 0

▶ transition (p, a, q) and i ∈ {1, . . . , |w |} with w [i] = a: add edge from (i − 1, p) to (i , q) with
label a and weight 1 (= taking letter w [i])

▶ state q ∈ Q and i ∈ {1, . . . , |w |}: add edge from (i − 1, q) to (i , q) with label ε and weight 0
(= ignoring letter w [i])

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10 / 15

O(|w |m) Upper Bound

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the min- and max-variant of the
⪯sub-matching problem can be solved in time O(|w |m).

build Σ ∪ {ε}-labelled directed product graph GA,w of size O(|w |m) with edge weights of
0 or 1, source s, and sink t :

▶ vertices {0, 1, . . . , |w |} × Q, s = (0, q0) and t = (|w |, qf)
▶ transition (p, ε, q) and i ∈ {0, . . . , |w |}: add edge from (i , p) to (i , q) with label ε and

weight 0
▶ transition (p, a, q) and i ∈ {1, . . . , |w |} with w [i] = a: add edge from (i − 1, p) to (i , q) with

label a and weight 1 (= taking letter w [i])

▶ state q ∈ Q and i ∈ {1, . . . , |w |}: add edge from (i − 1, q) to (i , q) with label ε and weight 0
(= ignoring letter w [i])

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10 / 15

O(|w |m) Upper Bound

Theorem

Given w ∈ Σ∗ and εNFA A = (Q,Σ, q0, qf , δ) of size m, the min- and max-variant of the
⪯sub-matching problem can be solved in time O(|w |m).

build Σ ∪ {ε}-labelled directed product graph GA,w of size O(|w |m) with edge weights of
0 or 1, source s, and sink t :

▶ vertices {0, 1, . . . , |w |} × Q, s = (0, q0) and t = (|w |, qf)
▶ transition (p, ε, q) and i ∈ {0, . . . , |w |}: add edge from (i , p) to (i , q) with label ε and

weight 0
▶ transition (p, a, q) and i ∈ {1, . . . , |w |} with w [i] = a: add edge from (i − 1, p) to (i , q) with

label a and weight 1 (= taking letter w [i])
▶ state q ∈ Q and i ∈ {1, . . . , |w |}: add edge from (i − 1, q) to (i , q) with label ε and weight 0

(= ignoring letter w [i])

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 10 / 15

Conditional Lower Bound for the Min-Variant

Theorem

If the min-variant of the ⪯sub-matching problem can be solved in time O(|w |+m), then we
can decide whether a given dense graph G has a triangle in time O(|G |).

Any truly subcubic (in the number of nodes) combinatorial algorithm for triangle detection
yields a truly subcubic combinatorial algorithm for Boolean matrix multiplication, which is
considered unlikely [Williams, Williams ’18].

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 11 / 15

Conditional Lower Bound for the Min-Variant

transform dense graph G = ({v1, . . . , vn},E) into NFA MG :

▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point
▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest

labelled with b)
▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest

labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant

transform dense graph G = ({v1, . . . , vn},E) into NFA MG :
▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’

▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point
▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest

labelled with b)
▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest

labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant
transform dense graph G = ({v1, . . . , vn},E) into NFA MG :

▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ split into left, middle, and right part:

s pi

p1

pn

q1

qn

r1

rn

s1

sn

si
rk

qj

tb
b

b

···

··
·

···

··
·

···

··
·

···

··
·

left part middle part right part

▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point
▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest

labelled with b)
▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest

labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point
an accepted string going through the i-th entry- and j-th exit point

1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant
transform dense graph G = ({v1, . . . , vn},E) into NFA MG :

▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ split into left, middle, and right part:

s pi

p1

pn

q1

qn

r1

rn

s1

sn

si
rk

qj

tb
b

b

···

··
·

···

··
·

···

··
·

···

··
·

left part middle part right part

▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point

▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest
labelled with b)

▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest
labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point
an accepted string going through the i-th entry- and j-th exit point

1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant

transform dense graph G = ({v1, . . . , vn},E) into NFA MG :
▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point

▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest
labelled with b)

▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest
labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant

transform dense graph G = ({v1, . . . , vn},E) into NFA MG :
▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point
▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest

labelled with b)
▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest

labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant

transform dense graph G = ({v1, . . . , vn},E) into NFA MG :
▶ states {pi , qi , ri , si | 1 ≤ i ≤ n}, source s, target t
▶ pi : i-th ‘entry point’, si : i-th ‘exit point’
▶ middle part: edges (pi , b, qj), (qi , b, rj), (ri , b, sj) for every {vi , vj} ∈ E
▶ G has a triangle containing vi ⇐⇒ there is a bbb-labelled path from the i-th entry point to

the i-th exit point
▶ left part: length-(2(n + 1)− i) path from s to pi , where i edges are labelled with a (rest

labelled with b)
▶ right part: length-(n + 1 + i) path from si to t, where n − i edges are labelled with a (rest

labelled with b)

every string accepted by MG must go through exactly one entry point and exactly one
exit point

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 12 / 15

Conditional Lower Bound for the Min-Variant

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

consider string w = b2(n+1)bbb(ab2(n+1)bbb)n

query: Is the minimal length of a subsequence of w accepted by MG equal to
N := 3(n + 1) + 3?

N is a lower bound on the length of accepted subsequences:
▶ let u ⪯sub w be accepted using the i-th entry and j-th exit point
▶ u has at most n occurrences of a
▶ using (2): j ≥ i , thus |u| = 3(n + 1) + (j − i) + 3 ≥ N

length-N subsequence of w can only be accepted using the same entry- and exit point i ,
which is only possible if G has a triangle containing vi

|w |+ |MG | = O(n2 + |G |) = O(|G |), since |G | = Ω(n2): if we can not decide whether G
has a triangle in O(|G |) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 / 15

Conditional Lower Bound for the Min-Variant

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

consider string w = b2(n+1)bbb(ab2(n+1)bbb)n

query: Is the minimal length of a subsequence of w accepted by MG equal to
N := 3(n + 1) + 3?

N is a lower bound on the length of accepted subsequences:
▶ let u ⪯sub w be accepted using the i-th entry and j-th exit point
▶ u has at most n occurrences of a
▶ using (2): j ≥ i , thus |u| = 3(n + 1) + (j − i) + 3 ≥ N

length-N subsequence of w can only be accepted using the same entry- and exit point i ,
which is only possible if G has a triangle containing vi

|w |+ |MG | = O(n2 + |G |) = O(|G |), since |G | = Ω(n2): if we can not decide whether G
has a triangle in O(|G |) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 / 15

Conditional Lower Bound for the Min-Variant

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

consider string w = b2(n+1)bbb(ab2(n+1)bbb)n

query: Is the minimal length of a subsequence of w accepted by MG equal to
N := 3(n + 1) + 3?

N is a lower bound on the length of accepted subsequences:
▶ let u ⪯sub w be accepted using the i-th entry and j-th exit point
▶ u has at most n occurrences of a
▶ using (2): j ≥ i , thus |u| = 3(n + 1) + (j − i) + 3 ≥ N

length-N subsequence of w can only be accepted using the same entry- and exit point i ,
which is only possible if G has a triangle containing vi

|w |+ |MG | = O(n2 + |G |) = O(|G |), since |G | = Ω(n2): if we can not decide whether G
has a triangle in O(|G |) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 / 15

Conditional Lower Bound for the Min-Variant

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

consider string w = b2(n+1)bbb(ab2(n+1)bbb)n

query: Is the minimal length of a subsequence of w accepted by MG equal to
N := 3(n + 1) + 3?

N is a lower bound on the length of accepted subsequences:
▶ let u ⪯sub w be accepted using the i-th entry and j-th exit point
▶ u has at most n occurrences of a
▶ using (2): j ≥ i , thus |u| = 3(n + 1) + (j − i) + 3 ≥ N

length-N subsequence of w can only be accepted using the same entry- and exit point i ,
which is only possible if G has a triangle containing vi

|w |+ |MG | = O(n2 + |G |) = O(|G |), since |G | = Ω(n2): if we can not decide whether G
has a triangle in O(|G |) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 / 15

Conditional Lower Bound for the Min-Variant

an accepted string going through the i-th entry- and j-th exit point
1 has length 3(n + 1) + (j − i) + 3
2 has n − (j − i) occurrences of a

consider string w = b2(n+1)bbb(ab2(n+1)bbb)n

query: Is the minimal length of a subsequence of w accepted by MG equal to
N := 3(n + 1) + 3?

N is a lower bound on the length of accepted subsequences:
▶ let u ⪯sub w be accepted using the i-th entry and j-th exit point
▶ u has at most n occurrences of a
▶ using (2): j ≥ i , thus |u| = 3(n + 1) + (j − i) + 3 ≥ N

length-N subsequence of w can only be accepted using the same entry- and exit point i ,
which is only possible if G has a triangle containing vi

|w |+ |MG | = O(n2 + |G |) = O(|G |), since |G | = Ω(n2): if we can not decide whether G
has a triangle in O(|G |) time, then we cannot solve the min-variant in linear time

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 13 / 15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the ⪯sub-matching problem can be solved in time O((|w |m)1−ϵ) for some
ϵ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

[Abboud, Backurs, Williams ’15]: If we can compute the length of the longest common
subsequence of two strings u and v in time O((|u||v |)1−ϵ) for some ϵ > 0, then SETH
fails.

construct εNFA Au,sub accepting exactly the subsequences of u ∈ Σ∗ (note: |Au,sub| = |u|)
solving the max-variant of the ⪯sub-matching problem for string v and εNFA Au,sub

amounts to computing the longest common subsequence of u and v =⇒
SETH-conditional lower bound carries over

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 / 15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the ⪯sub-matching problem can be solved in time O((|w |m)1−ϵ) for some
ϵ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

[Abboud, Backurs, Williams ’15]: If we can compute the length of the longest common
subsequence of two strings u and v in time O((|u||v |)1−ϵ) for some ϵ > 0, then SETH
fails.

construct εNFA Au,sub accepting exactly the subsequences of u ∈ Σ∗ (note: |Au,sub| = |u|)
solving the max-variant of the ⪯sub-matching problem for string v and εNFA Au,sub

amounts to computing the longest common subsequence of u and v =⇒
SETH-conditional lower bound carries over

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 / 15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the ⪯sub-matching problem can be solved in time O((|w |m)1−ϵ) for some
ϵ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

[Abboud, Backurs, Williams ’15]: If we can compute the length of the longest common
subsequence of two strings u and v in time O((|u||v |)1−ϵ) for some ϵ > 0, then SETH
fails.

construct εNFA Au,sub accepting exactly the subsequences of u ∈ Σ∗ (note: |Au,sub| = |u|)

solving the max-variant of the ⪯sub-matching problem for string v and εNFA Au,sub

amounts to computing the longest common subsequence of u and v =⇒
SETH-conditional lower bound carries over

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 / 15

Conditional Lower Bound for the Max-Variant

Theorem

If the max-variant of the ⪯sub-matching problem can be solved in time O((|w |m)1−ϵ) for some
ϵ > 0, then the Strong Exponential Time Hypothesis (SETH) fails.

[Abboud, Backurs, Williams ’15]: If we can compute the length of the longest common
subsequence of two strings u and v in time O((|u||v |)1−ϵ) for some ϵ > 0, then SETH
fails.

construct εNFA Au,sub accepting exactly the subsequences of u ∈ Σ∗ (note: |Au,sub| = |u|)
solving the max-variant of the ⪯sub-matching problem for string v and εNFA Au,sub

amounts to computing the longest common subsequence of u and v =⇒
SETH-conditional lower bound carries over

Sub-/Supersequence Regex Matching Quantitative Variants August 26, 2025 14 / 15

Overview

1 Preliminaries

2 The ⪯sub-Matching Problem

3 The Min- and Max-Variant of the ⪯sub-Matching Problem

4 The Universal ⪯sub-Matching Problem

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025

coNP-Completeness

Theorem

Given string w ∈ Σ∗ and εNFA A, deciding whether Λ⪯sub
(w) ⊆ L(A) is coNP-complete.

∈ coNP: guess subsequence u ⪯sub w , check if u /∈ L(A)

coNP-hard:
▶ consider 3CNF formula F over n variables
▶ build εNFA AF that accepts all {0, 1}-strings of lengths k ∈ {0, 1, . . . , n − 1, n + 1, . . . , 2n}

and all {0, 1}-strings of length n that represent non-satisfying assignments of F

▶ Λ⪯sub
((01)n) ⊆ L(AF) ⇐⇒ F is not satisfiable

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15 / 15

coNP-Completeness

Theorem

Given string w ∈ Σ∗ and εNFA A, deciding whether Λ⪯sub
(w) ⊆ L(A) is coNP-complete.

∈ coNP: guess subsequence u ⪯sub w , check if u /∈ L(A)

coNP-hard:
▶ consider 3CNF formula F over n variables
▶ build εNFA AF that accepts all {0, 1}-strings of lengths k ∈ {0, 1, . . . , n − 1, n + 1, . . . , 2n}

and all {0, 1}-strings of length n that represent non-satisfying assignments of F

▶ Λ⪯sub
((01)n) ⊆ L(AF) ⇐⇒ F is not satisfiable

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15 / 15

coNP-Completeness

Theorem

Given string w ∈ Σ∗ and εNFA A, deciding whether Λ⪯sub
(w) ⊆ L(A) is coNP-complete.

∈ coNP: guess subsequence u ⪯sub w , check if u /∈ L(A)

coNP-hard:
▶ consider 3CNF formula F over n variables
▶ build εNFA AF that accepts all {0, 1}-strings of lengths k ∈ {0, 1, . . . , n − 1, n + 1, . . . , 2n}

and all {0, 1}-strings of length n that represent non-satisfying assignments of F
▶ Λ⪯sub

((01)n) ⊆ L(AF) ⇐⇒ F is not satisfiable

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025 15 / 15

Results

1○ in pre ext/lext sub sup

⪯ O(|w |m) O(|w |m) O(|w |m) O(|w |+m) O(|w |+m)
min O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
max O(|w |m) O(|w |m) O(|w |m) O(|w |m) O(|w |m)
∀ O(|w |2m) O(|w |m) PSPACE coNP PSPACE

2○ in/pre ext/lext sub sup

⪯ no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) — —
min no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m) no O((|w |m)1−ϵ)
max no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O((|w |m)1−ϵ) no O(|w |+m)
∀ no O((|w |m)1−ϵ) PSPACE-hard coNP-hard PSPACE-hard

Upper bounds 1○ and (conditional) lower bounds 2○ for the different problem variants; note that m is
the size of the εNFA A

Thank you for your attention!

Sub-/Supersequence Regex Matching Universal Variant August 26, 2025

	Preliminaries
	The sub-Matching Problem
	The Min- and Max-Variant of the sub-Matching Problem
	The Universal sub-Matching Problem

