Linear Time Subsequence and Supersequence Regex Matching

Antoine Amarilli, Florin Manea, Tina Ringleb, Markus L. Schmid

MFCS 2025

August 26, 2025

Overview

- Preliminaries
- The $_{sub}$ -Matching Problem
- 3 The Min- and Max-Variant of the \leq_{sub} -Matching Problem
- The Universal ≤_{sub}-Matching Problem

Overview

- Preliminaries
- The \leq_{sub} -Matching Problem
- ③ The Min- and Max-Variant of the ≤_{sub}-Matching Problem
- 4 The Universal ≤_{sub}-Matching Problem

Regular Expressions and ε NFAs

regular expression over Σ :

- \emptyset is a regular expression with $L(\emptyset) = \emptyset$
- every $x \in \Sigma \cup \{\varepsilon\}$ is a regular expression with $L(x) = \{x\}$
- if s and t are regular expressions, then the following are regular expressions:
 - ▶ $s \cdot t$, with $L(s \cdot t) = L(s) \cdot L(t)$, where $L_1 \cdot L_2 = \{uv \mid u \in L_1, v \in L_2\}$
 - $s \lor t$, with $L(s \lor t) = L(s) \cup L(t)$
 - lacksquare s^* , with $L(s^*) = (L(s))^*$, where $L^0 = \{\varepsilon\}$, $L^k = L^{k-1} \cdot L$ for every $k \ge 1$ and $L^* = \bigcup_{k \ge 0} L^k$

Example

$$r = (a \cdot b)^* \lor b \cdot a^*, \ L(r) = \{(ab)^k \mid k \ge 0\} \cup \{ba^k \mid k \ge 0\}$$

Regular Expressions and $\varepsilon NFAs$

non-deterministic finite automaton $A = (Q, \Sigma, q_0, q_f, \delta)$ with ε -transitions:

- finite set of states Q with |Q|=n, initial state q_0 , final state q_f
- set of transitions $\delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times Q$ with $|\delta| = |A| = m$
- can be interpreted as a graph with vertex set Q:
 - ▶ directed edges labelled by symbols from $\Sigma \cup \{\varepsilon\}$ given by the transitions of δ : $(p, a, q) \in \delta$ corresponds to a directed edge from p to q labelled with a
 - ▶ run of A on string w: path from q_0 to some state p which is labelled by w (when ignoring ε -labels); accepting if $p=q_{\rm f}$
 - ▶ $L(A) = \{w \in \Sigma^* \mid \text{ there is an accepting run of } A \text{ on } w\}$

Regular Expressions and ε NFAs

Thompson's construction: a regular expression r can be converted in time O(|r|) into an εNFA A such that L(A) = L(r) and |A| = O(|r|)

Example

 $r = (a \cdot b)^* \vee b \cdot a^*$ corresponds to

String Relations

- string relation \leq (over Σ): subset of $\Sigma^* \times \Sigma^*$
- $\Lambda_{\preceq}(w) := \{u \in \Sigma^* \mid u \preceq w\}$, i.e. the set of all strings that are in \preceq -relation to w
- lift this notation to languages: $\Lambda_{\preceq}(L) = \bigcup_{w \in L} \Lambda_{\preceq}(w)$

prefix	$u \leq_{pre} w$	$uv=w$ for some $v\in \Sigma^*$	
infix	$u \leq_{in} w$	$\mathit{vuv'} = \mathit{w} for some \mathit{v}, \mathit{v'} \in \Sigma^*$	
subsequence	$u \leq_{sub} w$	$u = w[i_1] \dots w[i_{ u }], \ 1 \le i_1 < \dots < i_{ u } \le w $	
supersequence	$u \leq_{sup} w$	$w \leq_{sub} u$	
left-extension	$u \leq_{lext} w$	$u=vw$ for some $v\in \Sigma^*$	
extension	$u \leq_{ext} w$	$u=\mathit{vwv}'$ for some $v,v'\in\Sigma^*$	

Variants of Regex Matching

regex matching problem	$w \in L(r)$?
$arepsilon {\sf NFA}$ acceptance problem	$w \in L(A)$?
\preceq -matching problem	$\Lambda_{\preceq}(w) \cap L(A) \neq \emptyset$?
min-/max-variant	$\underset{u}{\operatorname{argmin}}(/\operatorname{-max})\{ u \mid u\in\Lambda_{\preceq}(w)\cap L(A)\}?$
universal-variant	$\Lambda_{\preceq}(w) \subseteq L(A)$?

Results

1	in	pre	ext/lext	sub	sup
\preceq	O(w m)	O(w m)	O(w m)	O(w +m)	O(w +m)
min	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
max	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
\forall	$O(w ^2m)$	O(w m)	PSPACE	coNP	PSPACE

2	in/pre	ext/lext	sub	sup
\preceq	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	_	_
min	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O(w +m)$	no $O((w m)^{1-\epsilon})$
			no $O((w m)^{1-\epsilon})$	no $O(w +m)$
\forall	no $O((w m)^{1-\epsilon})$	PSPACE-hard	coNP-hard	PSPACE-hard

Upper bounds 1 and (conditional) lower bounds 2 for the different problem variants; note that m is the size of the εNFA A

Results

1	in	pre	ext/lext	sub	sup
\preceq	O(w m)	O(w m)	O(w m)	O(w +m)	O(w +m)
min	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
max	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
\forall	$O(w ^2m)$	O(w m)	PSPACE	coNP	PSPACE

2	in/pre	ext/lext	sub	sup
\preceq	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	_	_
min	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O(w +m)$	no $O((w m)^{1-\epsilon})$
max	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O(w +m)$
\forall	no $O((w m)^{1-\epsilon})$	PSPACE-hard	coNP-hard	PSPACE-hard

Upper bounds ① and (conditional) lower bounds ② for the different problem variants; note that m is the size of the ε NFA A

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
 - ▶ $p \in Q$ is active at step i if $p \in S_i$
 - $w \in L(A)$ if q_f is active at step |w|

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
 - ▶ $p \in Q$ is active at step i if $p \in S_i$
 - $w \in L(A)$ if q_f is active at step |w|
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = \mathsf{C}^*_{\varepsilon}(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{ p \in Q \mid \text{there is a } w[1:i] \text{-labelled path from } q_0 \text{ to } p \}$ is the set of active states at step $i \in \{0,1,\ldots,|w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = C_{\varepsilon}^*(S_i')$

- $S_i = \{p \in Q \mid \text{there is a } w[1:i]\text{-labelled path from } q_0 \text{ to } p\}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = \mathsf{C}^*_{\varepsilon}(S_i')$

- $S_i = \{p \in Q \mid \text{there is a } w[1:i]\text{-labelled path from } q_0 \text{ to } p\}$ is the set of active states at step $i \in \{0, 1, \dots, |w|\}$
- update step from S_{i-1} to S_i :
 - ▶ compute $S_i' = C_{w[i]}(S_{i-1})$, where $C_b(S) = \{q \mid p \in S, (p, b, q) \in \delta\}$
 - compute ε -closure $S_i = \mathsf{C}^*_{\varepsilon}(S_i')$

Overview

- Preliminaries
- The \leq_{sub} -Matching Problem
- ③ The Min- and Max-Variant of the ≤_{sub}-Matching Problem
- 4 The Universal ≤_{sub}-Matching Problem

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the \leq_{sub} -matching problem can be solved in time O(|w| + m).

Theorem

Given $w \in \Sigma^*$ and εNFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the \leq_{sub} -matching problem can be solved in time O(|w| + m).

- transform A into ε NFA A_{sub} accepting the upwards closure of A (i. e., $L(A_{sub}) = \{u \in \Sigma^* \mid \exists v \in L(A) \colon v \leq_{\mathsf{sub}} u\}$)
 - ▶ add transition (p, a, p) to A_{sub} for every $p \in Q, a \in \Sigma$ (= ignore letters from w)
 - 'non-ignoring' transitions of an accepting run of w on A_{sub} spell out a subsequence of w accepted by A

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the \leq_{sub} -matching problem can be solved in time O(|w| + m).

- transform A into ε NFA A_{sub} accepting the upwards closure of A (i. e., $L(A_{sub}) = \{u \in \Sigma^* \mid \exists v \in L(A) \colon v \leq_{\mathsf{sub}} u\}$)
 - ▶ add transition (p, a, p) to A_{sub} for every $p \in Q, a \in \Sigma$ (= ignore letters from w)
 - 'non-ignoring' transitions of an accepting run of w on A_{sub} spell out a subsequence of w accepted by A
- [Bachmeier, Luttenberger, Schlund '15]: when a state p of A_{sub} is added to the set of active states, it stays active until the end of the state-set simulation
 - $ightharpoonup S_0 \subseteq S_1 \subseteq \ldots \subseteq S_{|w|}$
 - ightharpoonup at most n+1 different sets of active states

state-set simulation on A_{sub} is too slow: run state-set simulation on A while only considering 'new' active states at each step

state-set simulation on A_{sub} is too slow: run state-set simulation on A while only considering 'new' active states at each step

• computing $C_{w[i]}(S_{i-1})$: if $p \in S_{i-1}$ and state q is added due to transition (p, w[i], q), then $q \in S_i$ holds for all $j \ge i$

state-set simulation on A_{sub} is too slow: run state-set simulation on A while only considering 'new' active states at each step

- computing $C_{w[i]}(S_{i-1})$: if $p \in S_{i-1}$ and state q is added due to transition (p, w[i], q), then $q \in S_j$ holds for all $j \ge i$
 - ▶ transition (p, w[i], q) can be ignored afterwards
 - ▶ only consider *unmarked* transitions (p, w[i], q) with $p \in S_{i-1}$
 - ▶ mark transition (p, w[i], q) after use
- computing $C^*_{\varepsilon}(S')$: same idea for transitions (p, ε, q) with $p \in S_{i-1}$

state-set simulation on A_{sub} is too slow: run state-set simulation on A while only considering 'new' active states at each step

- computing $C_{w[i]}(S_{i-1})$: if $p \in S_{i-1}$ and state q is added due to transition (p, w[i], q), then $q \in S_j$ holds for all $j \ge i$
 - ▶ transition (p, w[i], q) can be ignored afterwards
 - ▶ only consider *unmarked* transitions (p, w[i], q) with $p \in S_{i-1}$
 - ▶ mark transition (p, w[i], q) after use
- computing $C_{\varepsilon}^*(S')$: same idea for transitions (p, ε, q) with $p \in S_{i-1}$
- ullet storing relevant transitions: array $H[\cdot]$ of lists, indexed by elements of Σ
 - ▶ store all unmarked transitions (p, a, q) with $a \in \Sigma, p \in S_{i-1}$ in list H[a]
 - while computing $C_{w[i]}(S_{i-1})$, we mark all transitions in H[w[i]]
 - remove (p, a, q) from H[a] after (p, a, q) has been marked

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])
 - ▶ store all new states q (i. e., $q \notin S_{i-1}$) in queue R

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])
 - ▶ store all new states q (i. e., $q \notin S_{i-1}$) in queue R
 - compute $S_i = C^*_{\varepsilon}(R)$, adding to R all new states

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])
 - ▶ store all new states q (i. e., $q \notin S_{i-1}$) in queue R
 - compute $S_i = C_{\varepsilon}^*(R)$, adding to R all new states
 - ▶ update H, only considering transitions (p, a, q) with $p \in R$

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])
 - ▶ store all new states q (i. e., $q \notin S_{i-1}$) in queue R
 - ▶ compute $S_i = C_{\varepsilon}^*(R)$, adding to R all new states
 - ▶ update H, only considering transitions (p, a, q) with $p \in R$
- every transition is either
 - ▶ not marked at all. or
 - ightharpoonup marked in the computation of some ε -closure (including the initialisation) and then ignored, or
 - \blacktriangleright put into H[a] at some update step (or initialisation) and then marked at some later update step and then ignored

- update step $(S_{i-1} \rightarrow S_i)$:
 - ▶ compute $S' = C_{w[i]}(S_{i-1})$ using only transitions in H[w[i]] (while marking and removing them from H[w[i]])
 - ▶ store all new states q (i. e., $q \notin S_{i-1}$) in queue R
 - ▶ compute $S_i = C_{\varepsilon}^*(R)$, adding to R all new states
 - ▶ update H, only considering transitions (p, a, q) with $p \in R$
- every transition is either
 - ▶ not marked at all, or
 - ightharpoonup marked in the computation of some ε -closure (including the initialisation) and then ignored, or
 - \blacktriangleright put into H[a] at some update step (or initialisation) and then marked at some later update step and then ignored
- linear time: only O(m) additional time over the whole state-set simulation in addition to the |w| update steps

Overview

- Preliminaries
- The \leq_{sub} -Matching Problem
- 3 The Min- and Max-Variant of the ≤_{sub}-Matching Problem
- 4 The Universal ≤_{sub}-Matching Problem

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the min- and max-variant of the \preceq_{sub} -matching problem can be solved in time O(|w|m).

• build $\Sigma \cup \{\varepsilon\}$ -labelled directed product graph $G_{A,w}$ of size O(|w|m) with edge weights of 0 or 1, source s, and sink t

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the min- and max-variant of the \preceq_{sub} -matching problem can be solved in time O(|w|m).

- build $\Sigma \cup \{\varepsilon\}$ -labelled directed product graph $G_{A,w}$ of size O(|w|m) with edge weights of 0 or 1, source s, and sink t
- shortest/longest $u \leq_{\text{sub}} w$ with $u \in L(A)$ corresponds to minimum/maximum weight s-t-path (path labelled with u, weight |u|)
- find shortest/longest path in $O(|G_{A,w}|) = O(|w|m)$ time using basic graph algorithmic techniques

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the min- and max-variant of the \preceq_{sub} -matching problem can be solved in time O(|w|m).

- build $\Sigma \cup \{\varepsilon\}$ -labelled directed product graph $G_{A,w}$ of size O(|w|m) with edge weights of 0 or 1, source s, and sink t:
 - vertices $\{0, 1, ..., |w|\} \times Q$, $s = (0, q_0)$ and $t = (|w|, q_f)$

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the min- and max-variant of the \preceq_{sub} -matching problem can be solved in time O(|w|m).

- build $\Sigma \cup \{\varepsilon\}$ -labelled directed product graph $G_{A,w}$ of size O(|w|m) with edge weights of 0 or 1, source s, and sink t:
 - vertices $\{0, 1, ..., |w|\} \times Q$, $s = (0, q_0)$ and $t = (|w|, q_f)$
 - ▶ transition (p, ε, q) and $i \in \{0, ..., |w|\}$: add edge from (i, p) to (i, q) with label ε and weight 0
 - ▶ transition (p, a, q) and $i \in \{1, ..., |w|\}$ with w[i] = a: add edge from (i 1, p) to (i, q) with label a and weight 1 (= taking letter w[i])

Theorem

Given $w \in \Sigma^*$ and ε NFA $A = (Q, \Sigma, q_0, q_f, \delta)$ of size m, the min- and max-variant of the \preceq_{sub} -matching problem can be solved in time O(|w|m).

- build $\Sigma \cup \{\varepsilon\}$ -labelled directed product graph $G_{A,w}$ of size O(|w|m) with edge weights of 0 or 1, source s, and sink t:
 - ightharpoonup vertices $\{0,1,\ldots,|w|\} imes Q$, $s=(0,q_0)$ and $t=(|w|,q_{\mathrm{f}})$
 - ▶ transition (p, ε, q) and $i \in \{0, ..., |w|\}$: add edge from (i, p) to (i, q) with label ε and weight 0
 - ▶ transition (p, a, q) and $i \in \{1, ..., |w|\}$ with w[i] = a: add edge from (i 1, p) to (i, q) with label a and weight 1 (= taking letter w[i])
 - ▶ state $q \in Q$ and $i \in \{1, ..., |w|\}$: add edge from (i 1, q) to (i, q) with label ε and weight 0 (= ignoring letter w[i])

Theorem

If the min-variant of the \leq_{sub} -matching problem can be solved in time O(|w|+m), then we can decide whether a given dense graph G has a triangle in time O(|G|).

Any truly subcubic (in the number of nodes) combinatorial algorithm for triangle detection yields a truly subcubic combinatorial algorithm for Boolean matrix multiplication, which is considered unlikely [Williams, Williams '18].

• transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'
 - ▶ split into left, middle, and right part:

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'
 - split into left, middle, and right part:

- ▶ middle part: edges $(p_i, b, q_i), (q_i, b, r_i), (r_i, b, s_i)$ for every $\{v_i, v_i\} \in E$
- ▶ G has a triangle containing $v_i \iff$ there is a bbb-labelled path from the i-th entry point to the i-th exit point

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'
 - ▶ middle part: edges $(p_i, b, q_j), (q_i, b, r_j), (r_i, b, s_j)$ for every $\{v_i, v_j\} \in E$
 - ▶ G has a triangle containing $v_i \iff$ there is a bbb-labelled path from the i-th entry point to the i-th exit point

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'
 - ▶ middle part: edges $(p_i, b, q_j), (q_i, b, r_j), (r_i, b, s_j)$ for every $\{v_i, v_j\} \in E$
 - ▶ G has a triangle containing $v_i \iff$ there is a bbb-labelled path from the i-th entry point to the i-th exit point
 - ▶ left part: length-(2(n+1)-i) path from s to p_i , where i edges are labelled with a (rest labelled with b)
 - right part: length-(n+1+i) path from s_i to t, where n-i edges are labelled with a (rest labelled with b)

- transform dense graph $G = (\{v_1, \dots, v_n\}, E)$ into NFA M_G :
 - ▶ states $\{p_i, q_i, r_i, s_i \mid 1 \le i \le n\}$, source s, target t
 - ▶ p_i: i-th 'entry point', s_i: i-th 'exit point'
 - ▶ middle part: edges $(p_i, b, q_j), (q_i, b, r_j), (r_i, b, s_j)$ for every $\{v_i, v_j\} \in E$
 - ▶ G has a triangle containing $v_i \iff$ there is a bbb-labelled path from the i-th entry point to the i-th exit point
 - ▶ left part: length-(2(n+1)-i) path from s to p_i , where i edges are labelled with a (rest labelled with b)
 - ▶ right part: length-(n+1+i) path from s_i to t, where n-i edges are labelled with a (rest labelled with b)
- ullet every string accepted by M_G must go through exactly one entry point and exactly one exit point
- an accepted string going through the i-th entry- and j-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (i i) occurrences of a

- an accepted string going through the *i*-th entry- and *j*-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (j i) occurrences of a

- an accepted string going through the *i*-th entry- and *j*-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (j i) occurrences of a
- consider string $w = b^{2(n+1)}bbb(ab^{2(n+1)}bbb)^n$
- query: Is the minimal length of a subsequence of w accepted by M_G equal to N := 3(n+1) + 3?

- an accepted string going through the *i*-th entry- and *j*-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (j i) occurrences of a
- consider string $w = b^{2(n+1)}bbb(ab^{2(n+1)}bbb)^n$
- query: Is the minimal length of a subsequence of w accepted by M_G equal to N := 3(n+1) + 3?
- *N* is a lower bound on the length of accepted subsequences:
 - ▶ let $u \leq_{sub} w$ be accepted using the *i*-th entry and *j*-th exit point
 - u has at most n occurrences of a
 - using (2): $j \ge i$, thus $|u| = 3(n+1) + (j-i) + 3 \ge N$

- an accepted string going through the *i*-th entry- and *j*-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (j i) occurrences of a
- consider string $w = b^{2(n+1)}bbb(ab^{2(n+1)}bbb)^n$
- query: Is the minimal length of a subsequence of w accepted by M_G equal to N := 3(n+1) + 3?
- *N* is a lower bound on the length of accepted subsequences:
 - ▶ let $u \leq_{sub} w$ be accepted using the *i*-th entry and *j*-th exit point
 - u has at most n occurrences of a
 - ▶ using (2): $j \ge i$, thus $|u| = 3(n+1) + (j-i) + 3 \ge N$
- length-N subsequence of w can only be accepted using the same entry- and exit point i, which is only possible if G has a triangle containing v_i

- an accepted string going through the i-th entry- and j-th exit point
 - **1** has length 3(n+1) + (j-i) + 3
 - 2 has n (j i) occurrences of a
- consider string $w = b^{2(n+1)}bbb(ab^{2(n+1)}bbb)^n$
- query: Is the minimal length of a subsequence of w accepted by M_G equal to N := 3(n+1) + 3?
- *N* is a lower bound on the length of accepted subsequences:
 - ▶ let $u \leq_{sub} w$ be accepted using the *i*-th entry and *j*-th exit point
 - u has at most n occurrences of a
 - ▶ using (2): $j \ge i$, thus $|u| = 3(n+1) + (j-i) + 3 \ge N$
- length-N subsequence of w can only be accepted using the same entry- and exit point i, which is only possible if G has a triangle containing v_i
- $|w| + |M_G| = O(n^2 + |G|) = O(|G|)$, since $|G| = \Omega(n^2)$: if we can not decide whether G has a triangle in O(|G|) time, then we cannot solve the min-variant in linear time

Theorem

If the max-variant of the \leq_{sub} -matching problem can be solved in time $O((|w|m)^{1-\epsilon})$ for some $\epsilon > 0$, then the Strong Exponential Time Hypothesis (SETH) fails.

Theorem

If the max-variant of the \leq_{sub} -matching problem can be solved in time $O((|w|m)^{1-\epsilon})$ for some $\epsilon > 0$, then the Strong Exponential Time Hypothesis (SETH) fails.

• [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common subsequence of two strings u and v in time $O((|u||v|)^{1-\epsilon})$ for some $\epsilon > 0$, then SETH fails.

Theorem

If the max-variant of the \leq_{sub} -matching problem can be solved in time $O((|w|m)^{1-\epsilon})$ for some $\epsilon > 0$, then the Strong Exponential Time Hypothesis (SETH) fails.

- [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common subsequence of two strings u and v in time $O((|u||v|)^{1-\epsilon})$ for some $\epsilon > 0$, then SETH fails.
- ullet construct arepsilonNFA $A_{u,sub}$ accepting exactly the subsequences of $u\in \Sigma^*$ (note: $|A_{u,sub}|=|u|$)

Theorem

If the max-variant of the \leq_{sub} -matching problem can be solved in time $O((|w|m)^{1-\epsilon})$ for some $\epsilon > 0$, then the Strong Exponential Time Hypothesis (SETH) fails.

- [Abboud, Backurs, Williams '15]: If we can compute the length of the longest common subsequence of two strings u and v in time $O((|u||v|)^{1-\epsilon})$ for some $\epsilon > 0$, then SETH fails.
- ullet construct arepsilonNFA $A_{u,sub}$ accepting exactly the subsequences of $u\in \Sigma^*$ (note: $|A_{u,sub}|=|u|$)
- solving the max-variant of the \leq_{sub} -matching problem for string v and ε NFA $A_{u,sub}$ amounts to computing the longest common subsequence of u and $v \Longrightarrow$ SETH-conditional lower bound carries over

Overview

- Preliminaries
- \bigcirc The \leq_{sub} -Matching Problem
- 3 The Min- and Max-Variant of the

 ≤_{sub}-Matching Problem
- The Universal ≤_{sub}-Matching Problem

coNP-Completeness

Theorem

Given string $w \in \Sigma^*$ and εNFA A, deciding whether $\Lambda_{\leq_{\text{sub}}}(w) \subseteq L(A)$ is coNP-complete.

• \in coNP: guess subsequence $u \leq_{\text{sub}} w$, check if $u \notin L(A)$

coNP-Completeness

Theorem

Given string $w \in \Sigma^*$ and ε NFA A, deciding whether $\Lambda_{\leq_{\text{sub}}}(w) \subseteq L(A)$ is coNP-complete.

- \in coNP: guess subsequence $u \leq_{\text{sub}} w$, check if $u \notin L(A)$
- coNP-hard:
 - consider 3CNF formula F over n variables
 - ▶ build ε NFA A_F that accepts all $\{0,1\}$ -strings of lengths $k \in \{0,1,\ldots,n-1,n+1,\ldots,2n\}$ and all $\{0,1\}$ -strings of length n that represent non-satisfying assignments of F

coNP-Completeness

Theorem

Given string $w \in \Sigma^*$ and ε NFA A, deciding whether $\Lambda_{\leq_{\text{sub}}}(w) \subseteq L(A)$ is coNP-complete.

- \in coNP: guess subsequence $u \leq_{\text{sub}} w$, check if $u \notin L(A)$
- coNP-hard:
 - consider 3CNF formula F over n variables
 - ▶ build ε NFA A_F that accepts all $\{0,1\}$ -strings of lengths $k \in \{0,1,\ldots,n-1,n+1,\ldots,2n\}$ and all $\{0,1\}$ -strings of length n that represent non-satisfying assignments of F
 - $ightharpoonup \Lambda_{\prec_{\text{sub}}}((01)^n) \subseteq L(A_F) \iff F$ is not satisfiable

Results

1	in	pre	ext/lext	sub	sup
\preceq	O(w m)	O(w m)	O(w m)	O(w +m)	O(w +m)
min	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
max	O(w m)	O(w m)	O(w m)	O(w m)	O(w m)
\forall	$O(w ^2m)$	O(w m)	PSPACE	coNP	PSPACE

2	in/pre	ext/lext	sub	sup
\preceq	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	_	_
min	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O(w +m)$	no $O((w m)^{1-\epsilon})$
max	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O((w m)^{1-\epsilon})$	no $O(w +m)$
	no $O((w m)^{1-\epsilon})$		coNP-hard	PSPACE-hard

Upper bounds ① and (conditional) lower bounds ② for the different problem variants; note that m is the size of the εNFA A

Thank you for your attention!