Open-World Finite Query Answering with Number Restrictions

Antoine Amarilli1,2, Michael Benedikt2

1Télécom ParisTech, Paris, France
2University of Oxford, Oxford, United Kingdom

July 7, 2015
Open-world query answering (QA)

- **Open-world** query answering:
 - Relational instance I (ground facts), correct but incomplete
 - Boolean conjunctive query q
 - Consider all possible completions $J \supseteq I$
 - Is q certain, i.e., holds on all completions? If yes, $I \models_{\text{unr}} q$
Constraints

- Impose constraints on the possible completions
 - Inclusion dependencies: some facts imply more facts:

\[
\forall x d \ Employee(x, d) \Rightarrow \exists y \ Advises(x, y, d)
\]

\[
Employee[1, 2] \subseteq Advises[1, 3]
\]
Impose constraints on the possible completions

- Inclusion dependencies: some facts imply more facts:
 \[\forall x d \ Employee(x, d) \Rightarrow \exists y \ Advises(x, y, d) \]
 \[Employee[1, 2] \subseteq Advises[1, 3] \]
 \[\rightarrow \text{Unary inclusion dependencies (UIDs): one shared position} \]
Constraints

- Impose **constraints** on the possible completions
 - **Inclusion dependencies**: some facts imply more facts:
 \[\forall x d \text{ Employee}(x, d) \Rightarrow \exists y \text{ Advises}(x, y, d) \]
 Employee[1, 2] \subseteq Advises[1, 3]
 - **Unary** inclusion dependencies (UIDs): one shared position
 - **Functional dependencies** (FDs): uniqueness constraints:
 \[\forall xx' y d \text{ Advises}(x, y, d) \land \text{Advises}(x', y, d) \rightarrow x = x' \]
 Advises[2, 3] \rightarrow \text{Advises}[1]
Impose **constraints** on the possible completions

- **Inclusion dependencies:** some facts imply more facts:
 \(\forall x d \ \text{Employee}(x, d) \Rightarrow \exists y \ \text{Advises}(x, y, d) \)
 \(\text{Employee}[1, 2] \subseteq \text{Advises}[1, 3] \)
 \(\rightarrow \) **Unary** inclusion dependencies (UIDs): one shared position

- **Functional dependencies (FDs):** uniqueness constraints:
 \(\forall xx'yd \ \text{Advises}(x, y, d) \land \text{Advises}(x', y, d) \rightarrow x = x' \)
 \(\text{Advises}[2, 3] \rightarrow \text{Advises}[1] \)

 \(\rightarrow \) Consider all \(J \supseteq I \) that **satisfy the constraints**

 \(\rightarrow \) Is \(q \) **certain** on all such completions? If yes, \(I, \Sigma \models_{\text{unr}} q \)
Finite vs infinite

Instance: List of adviser–advisee pairs: Advises\((a, b)\), \ldots

UID: Each advisee advises someone
Advises[2] \subseteq Advises[1]

FD: Each advisee has only one adviser

Query: Are all advisers themselves advised by someone?
Finite vs infinite

Instance: List of adviser–advisee pairs: \(\text{Advises}(a, b), \ldots \)

UID: Each advisee advises someone
\[
\text{Advises}[2] \subseteq \text{Advises}[1]
\]

FD: Each advisee has only one adviser
\[
\text{Advises}[2] \rightarrow \text{Advises}[1]
\]

Query: Are all advisers themselves advised by someone?

- **\(q \) is not certain:**
 \[
 \text{Advises}(a, b), \text{Advises}(b, b_2), \text{Advises}(b_2, b_3), \ldots
 \]

- **\(q \) is certain on all finite completions**
Finite vs infinite

Instance: List of adviser–advisee pairs: Advises\((a, b)\), \ldots

UID: Each advisee advises someone
Advises\([2]\) \subseteq Advises\([1]\)

FD: Each advisee has only one adviser
Advises\([2]\) \rightarrow Advises\([1]\)

Query: Are all advisers themselves advised by someone?

\- \textit{q is not certain:}
\begin{align*}
\text{Advises}(a, b), \text{Advises}(b, b_2), \text{Advises}(b_2, b_3), \ldots
\end{align*}

\- \textit{q is certain on all finite completions}

\rightarrow \text{Finite QA: only finite completions. If yes, } I, \Sigma \models_{\text{fin}} q
Finite vs infinite

Instance: List of adviser–advisee pairs: Advises\((a, b)\), \ldots

UID: Each advisee advises someone

FD: Each advisee has only one adviser

Query: Are all advisers themselves advised by someone?

- \(q\) is not certain:
 Advises\((a, b)\), Advises\((b, b_2)\), Advises\((b_2, b_3)\), \ldots

- \(q\) is certain on all finite completions

→ Finite QA: only finite completions. If yes, \(I, \Sigma \models_{\text{fin}} q\)

→ \(\Sigma\) finitely controllable: \(\forall I \forall q, I, \Sigma \models_{\text{fin}} q\) iff \(I, \Sigma \models_{\text{unr}} q\)
Table of contents

1. Introduction
2. Context and result
3. Proof ideas
4. Conclusion
(Finite) open-world query answering is **undecidable** for IDs and FDs [Calì et al., 2003]
Existing results

- (Finite) open-world query answering is **undecidable** for IDs and FDs [Calì et al., 2003]
- IDs alone are **finitely controllable** [Rosati, 2006]
Existing results

- (Finite) open-world query answering is undecidable for IDs and FDs [Calì et al., 2003]
- IDs alone are finitely controllable [Rosati, 2006]
- Infinite open-world query answering is decidable for UIDs and FDs [Calì et al., 2012] but not finitely controllable (see above; [Rosati, 2006])
(Finite) open-world query answering is undecidable for IDs and FDs [Calì et al., 2003]

IDs alone are finitely controllable [Rosati, 2006]

Infinite open-world query answering is decidable for UIDs and FDs [Calì et al., 2012] but not finitely controllable (see above; [Rosati, 2006])

(Finite) open-world query answering is decidable for IDs and FDs with relations of arity ≤ 2 [Pratt-Hartmann, 2009, Ibáñez-García et al., 2014]
Problem and main result

- Study finite QA for UIDs and FDs on arbitrary signatures
- Is it decidable? What is the complexity?
Problem and main result

- Study **finite QA** for **UIDs and FDs** on arbitrary signatures
- Is it **decidable**? What is the **complexity**?

Theorem

Finite open-world query answering for UIDs and FDs has \textit{PTIME} data complexity and \textit{NP-complete} combined complexity.
Main idea

- Find which UIDs and FDs are implied over finite instances
 → This is PTIME [Cosmadakis et al., 1990]
 → It differs from unrestricted implication

- Finite closure: add all finitely implied dependencies
Main idea

- Find which UIDs and FDs are implied over finite instances
 - This is PTIME [Cosmadakis et al., 1990]
 - It differs from unrestricted implication

- Finite closure: add all finitely implied dependencies
 - Taking the finite closure ensure finite controllability?
Main idea

- Find which UIDs and FDs are implied over finite instances
 -> This is PTIME [Cosmadakis et al., 1990]
 -> It differs from unrestricted implication

- Finite closure: add all finitely implied dependencies
 -> Taking the finite closure ensure finite controllability?

Theorem

For any instance I, conjunctive query q, UIDs and FDs Σ, letting Σ^* be the finite closure of Σ, we have $I, \Sigma \models_{\text{fin}} q$ iff $I, \Sigma^* \models_{\text{unr}} q$.
Table of contents

1. Introduction
2. Context and result
3. Proof ideas
4. Conclusion
Rephrasing the result

1. Assume that the UIDs and FDs Σ are finitely closed
Rephrasing the result

- Assume that the UIDs and FDs Σ are **finitely closed**
- Assume that an infinite completion J satisfies Σ but not q
Assume that the UIDs and FDs Σ are **finitely closed**

Assume that an infinite completion J satisfies Σ but not q

\[\Rightarrow\] Construct a finite completion J' satisfying Σ but not q:

- Start with I
- Follow J and add facts to satisfy the UIDs of Σ...
- ... using finitely many elements (reuse them)
- ... but respecting the FDs of Σ
- ... and without making q inadvertently true
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is **acyclic**
 e.g., $\exists xy \; R(x) S(x, y)$ but not $\exists xyz \; R(x, y) S(y, z) T(z, x)$
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is acyclic
 e.g., $\exists xy \ R(x) S(x, y)$ but not $\exists xyz \ R(x, y) S(y, z) T(z, x)$

4. Assume that there are only unary FDs
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query \(q \) is acyclic
 e.g., \(\exists xy \ R(x) S(x, y) \) but not \(\exists xyz \ R(x, y) S(y, z) T(z, x) \)

4. Assume that there are only unary FDs
 e.g., \(R[1] \rightarrow R[2] \) but not \(R[1, 3] \rightarrow R[2] \)

3. Assume a certain reversibility property on the UIDs and FDs
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:

5. Assume that the query q is **acyclic**
 e.g., $\exists xy \ R(x)\, S(x, y)$ but not $\exists xyz \ R(x, y)\, S(y, z)\, T(z, x)$

4. Assume that there are only **unary FDs**

3. Assume a certain **reversibility property** on the UIDs and FDs

2. Assume we have the **trivial query** \bot
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is acyclic
e.g., $\exists xy \ R(x) S(x, y)$ but not $\exists xyz \ R(x, y) S(y, z) T(z, x)$

4. Assume that there are only unary FDs

3. Assume a certain reversibility property on the UIDs and FDs

2. Assume we have the trivial query \bot

1. Assume that the relations all have arity two
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is acyclic
 e.g., $\exists xy R(x)S(x, y)$ but not $\exists xyz R(x, y)S(y, z)T(z, x)$

4. Assume that there are only unary FDs

3. Assume a certain reversibility property on the UIDs and FDs

2. Assume we have the trivial query \bot

1. Assume that the relations all have arity two

0. Solve the problem!
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:

5. Assume that the query q is **acyclic**
 e.g., $\exists xy \ R(x)S(x, y)$ but not $\exists xyz \ R(x, y)S(y, z)T(z, x)$

4. Assume that there are only **unary FDs**
 e.g., $R[1] \to R[2]$ but not $R[1, 3] \to R[2]$

3. Assume a certain **reversibility property** on the UIDs and FDs

2. Assume we have the **trivial query** \perp

1. Assume that the relations all have **arity two**

0. Solve the problem!
 \rightarrow Exemplified soon
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:

5. Assume that the query q is acyclic
 e.g., $\exists xy R(x) S(x, y)$ but not $\exists xyz R(x, y) S(y, z) T(z, x)$

4. Assume that there are only unary FDs

3. Assume a certain **reversibility property** on the UIDs and FDs

2. Assume we have the **trivial query** \bot

1. Assume that the relations all have **arity two**
 \rightarrow Reuse elements or extend previous case – skipped

0. Solve the problem!
 \rightarrow Exemplified soon
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is acyclic
e.g., $\exists xy \ R(x) \ S(x, y)$ but not $\exists xyz \ R(x, y) \ S(y, z) \ T(z, x)$

4. Assume that there are only unary FDs

3. Assume a certain reversibility property on the UIDs and FDs

2. Assume we have the trivial query \bot
 → Exemplified soon

1. Assume that the relations all have arity two
 → Reuse elements or extend previous case – skipped

0. Solve the problem!
 → Exemplified soon
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:

5. Assume that the query q is acyclic
 e.g., $\exists xy\ R(x)S(x, y)$ but not $\exists xyz\ R(x, y)S(y, z)T(z, x)$

4. Assume that there are only **unary FDs**

3. Assume a certain **reversibility property** on the UIDs and FDs
 \rightarrow Decomposition of UIDs based on [Cosmadakis et al., 1990] – skipped

2. Assume we have the **trivial query** \perp
 \rightarrow Exemplified soon

1. Assume that the relations all have **arity two**
 \rightarrow Reuse elements or extend previous case – skipped

0. Solve the problem!
 \rightarrow Exemplified soon
Constructing the finite completion

Make **assumptions**, we lift them from bottom to top:

5. Assume that the query q is **acyclic**
 e.g., $\exists xy R(x)S(x, y)$ but not $\exists xyz R(x, y)S(y, z)T(z, x)$

4. Assume that there are only **unary FDs**
 \(\rightarrow\) **Recombination** of elements in patterns when reusing – skipped

3. Assume a certain **reversibility property** on the UIDs and FDs
 \(\rightarrow\) **Decomposition** of UIDs based on [Cosmadakis et al., 1990] – skipped

2. Assume we have the **trivial query** \bot
 \(\rightarrow\) **Exemplified soon**

1. Assume that the relations all have **arity two**
 \(\rightarrow\) **Reuse** elements or **extend** previous case – skipped

0. Solve the problem!
 \(\rightarrow\) **Exemplified soon**
Constructing the finite completion

Make assumptions, we lift them from bottom to top:

5. Assume that the query q is acyclic
 e.g., $\exists xy \ R(x) S(x, y)$ but not $\exists xyz \ R(x, y) S(y, z) T(z, x)$
 \rightarrow Product with group of high girth inspired by [Otto, 2002] – skipped

4. Assume that there are only unary FDs
 \rightarrow Recombination of elements in patterns when reusing – skipped

3. Assume a certain reversibility property on the UIDs and FDs
 \rightarrow Decomposition of UIDs based on [Cosmadakis et al., 1990] – skipped

2. Assume we have the trivial query \perp
 \rightarrow Exemplified soon

1. Assume that the relations all have arity two
 \rightarrow Reuse elements or extend previous case – skipped

0. Solve the problem!
 \rightarrow Exemplified soon
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- $\mathbb{R}[2] \subseteq \mathbb{S}[1]$
- $\mathbb{S}[2] \subseteq \mathbb{R}[1]$

UFDs:
- $\mathbb{R}[1] \leftrightarrow \mathbb{R}[2]$
- $\mathbb{S}[1] \leftrightarrow \mathbb{S}[2]$

Diagram:
- Two sets, \mathbb{R} and \mathbb{S}, with arrows indicating the relations between them.
- Nodes labeled a, b, c, d, and e with arrows connecting them in a specific pattern.
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- \(S[2] \subseteq R[1] \)

UFDs:
- \(R[1] \leftrightarrow R[2] \)
- \(S[1] \leftrightarrow S[2] \)
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

![Diagram with nodes R, S, a, b, c, d, e and arrows indicating relationships between them]
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

Diagram:

```
          R
         /  \
        /    \
       a    b
          \
           \
        c --d-- e
          \
           \
        S
```
0. Satisfying UIDs and UFDs in arity-two

UIDs:
- $R[2] \sqsubseteq S[1]$
- $S[2] \sqsubseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

Diagram:
- Nodes: R, S, a, b, c, d, e
- Edges: Arrows indicate relationships between nodes.
2. Adding acyclic queries

UIDs:
R[2] \subseteq S[1]
S[2] \subseteq R[1]
and UFDs...
2. Adding acyclic queries

UIDs:

\[
S[2] \subseteq R[1]
\]

and UFDs...
2. Adding acyclic queries

query:

UIDs:

and UFDs...
2. Adding acyclic queries

query:

UIDs:

and UFDs…
2. Adding acyclic queries

query:

UIDs:

and UFDs...
2. Adding acyclic queries

query:

UIDs:

and UFDs...
Table of contents

1. Introduction
2. Context and result
3. Proof ideas
4. Conclusion
Summary

- **Finite** open-world query answering with:
 - relational instance
 - arbitrary arity signature
 - UIDs and FDs
 - conjunctive query
Summary

- **Finite** open-world query answering with:
 - relational instance
 - arbitrary arity signature
 - UIDs and FDs
 - conjunctive query

→ We have **finite controllability up to finite closure**
Summary

- **Finite** open-world query answering with:
 - relational instance
 - arbitrary arity signature
 -UIDs and FDs
 - conjunctive query

→ We have **finite controllability up to finite closure**

- **Future work:**
 - Simplify the proof
 - More expressive frontier-one logics [Ibáñez-García et al., 2014]
 - Finite controllability and closure for path FDs in arity-two?
Summary

- **Finite** open-world query answering with:
 - relational instance
 - arbitrary arity signature
 - UIDs and FDs
 - conjunctive query

→ We have **finite controllability up to finite closure**

- **Future work:**
 - Simplify the proof
 - More expressive frontier-one logics [Ibáñez-García et al., 2014]
 - Finite controllability and closure for path FDs in arity-two?

Thanks for your attention!

JACM, 37(1).

Otto, M. (2002). Modal and guarded characterisation theorems over finite transition systems. In LICS.

1. Supporting arbitrary arity

When no UFDs:
reuse elements from suitable positions

Must saturate initially to make sure such elements exist

With UFDs:
bijective maps within \longleftrightarrow-classes
1. Supporting arbitrary arity

When no UFDs:
reuse elements from suitable positions
Must saturate initially to make sure such elements exist

With UFDs:
bijective maps within ⇄-classes
1. Supporting arbitrary arity

UIDs:

\[
R[2] \subseteq S[1]
\]

\[
S[2] \subseteq R[1]
\]

UFDs:

\[
R[1] \leftrightarrow R[2]
\]

\[
S[1] \leftrightarrow S[2]
\]
1. Supporting arbitrary arity

UIDs:
- $R[2] \subseteq S[1]
- $S[2] \subseteq R[1]

UFDs:
- $R[1] \leftrightarrow R[2]
- $S[1] \leftrightarrow S[2]

When no UFDs:
- Reuse elements from suitable positions
- Must saturate initially to make sure such elements exist

With UFDs:
- Bijective maps within \leftrightarrow-classes

$4/7$
1. Supporting arbitrary arity

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

When no UFDs:
- Reuse elements from suitable positions
- Must saturate initially to make sure such elements exist

With UFDs:
- Bijective maps within \longleftrightarrow-classes

\[4/7\]
1. Supporting arbitrary arity

UIDs:
- \(S[2] \subseteq R[1] \)

UFDs:
- \(R[1] \leftrightarrow R[2] \)
- \(S[1] \leftrightarrow S[2] \)

When no UFDs:
- Reuse elements from suitable positions
- Must saturate initially to make sure such elements exist

With UFDs:
- Bijective maps within \(\leftrightarrow \)-classes

\(4/7 \)
1. Supporting arbitrary arity

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

- When no UFDs: **reuse** elements from suitable positions
1. Supporting arbitrary arity

UIDs:

- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:

- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

When no UFDs: reuse elements from suitable positions

→ Must saturate initially to make sure such elements exist
1. Supporting arbitrary arity

UIDs:
- $R[2] \subseteq S[1]$
- $S[2] \subseteq R[1]$

UFDs:
- $R[1] \leftrightarrow R[2]$
- $S[1] \leftrightarrow S[2]$

- When no UFDs: **reuse** elements from suitable positions
 - Must **saturate** initially to make sure such elements exist
- With UFDs: **bijective** maps within \leftrightarrow-classes
3. From reversible to arbitrary UIDs and UFDs

```
R
(⊆ ⊆ ⊆ ⊆ ⊆)

S
(⊆)

T
U
(⊆ ⊆ ⊆)
```

UIDs can be decomposed in reversible subsets. The subsets can be solved independently. Relies on the finite implication construction [Cosmadakis et al., 1990].
3. From reversible to arbitrary UIDs and UFDs

UIDs can be decomposed in reversible subsets. The subsets can be solved independently. Relies on the finite implication construction [Cosmadakis et al., 1990].

\[
\begin{align*}
\equiv \quad & \equiv \quad \equiv \\
R & \quad S & \quad T \\
\equiv & \quad \equiv & \quad \equiv
\end{align*}
\]
3. From reversible to arbitrary UIDs and UFDs

UIDs can be decomposed in reversible subsets. The subsets can be solved independently. Relies on the finite implication construction [Cosmadakis et al., 1990].
3. From reversible to arbitrary UIDs and UFDs

UIDs can be decomposed in reversible subsets. The subsets can be solved independently. Relies on the finite implication construction [Cosmadakis et al., 1990].
3. From reversible to arbitrary UIDs and UFDs

UIDs can be decomposed in reversible subsets. The subsets can be solved independently. Relies on the finite implication construction [Cosmadakis et al., 1990].
3. From reversible to arbitrary UIDs and UFDs

- UIDs can be decomposed in reversible subsets
- The subsets can be solved independently
- Relies on the finite implication construction
 [Cosmadakis et al., 1990]
4. From UFDs to FDs

- Create initially many reusable elements
- Reuse them in new combinations

- Dense interpretations lemma: linearly many elements give super-linearly many combinations
4. From UFDs to FDs

UID:

4. From UFDs to FDs

UID:

FD:
\[R[1,3] \rightarrow R[2] \]
4. From UFDs to FDs

UID:

FD:
\[R[1,3] \rightarrow R[2] \]
4. From UFDs to FDs

UID:
$$\text{R}[1,3] \rightarrow \text{R}[2]$$

FD:
$$R[1,3] \rightarrow R[2]$$
4. From UFDs to FDs

UID:

FD:
\[R[1,3] \rightarrow R[2] \]
4. From UFDs to FDs

UID:

FD:
$R[1,3] \rightarrow R[2]$
4. From UFDs to FDs

- Create initially many **reusable elements**
- Reuse them in **new combinations**

UID:

FD:

\[R[1,3] \rightarrow R[2] \]
4. From UFDs to FDs

- Create initially many reusable elements
- Reuse them in new combinations
- Dense interpretations lemma:
 linearly many elements give super-linearly many combinations

UID:

FD:
\[R[1,3] \rightarrow R[2] \]
5. From acyclic queries to arbitrary queries
5. From acyclic queries to arbitrary queries

UID:

\[S[2] \subseteq R[1] \]

5. From acyclic queries to arbitrary queries

UID:

\[S[2] \subseteq R[1] \]
5. From acyclic queries to arbitrary queries

query:

UID:

\[S[2] \subseteq R[1] \]

From acyclic queries to arbitrary queries

UID:

\[S[2] \subseteq R[1] \]

5. From acyclic queries to arbitrary queries

\[S[2] \subseteq R[1] \]

UID:

- Red arrows: Direct dependencies
- Blue arrows: Inferred dependencies
5. From acyclic queries to arbitrary queries

UID:

\[S[2] \subseteq R[1] \]

5. From acyclic queries to arbitrary queries

UID:

- $S[2] \subseteq R[1]$

Product with a group of high girth [Otto, 2002]
Must be tweaked to avoid violating FDs