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Query evaluation

Central problem in database theory and practice: query evaluation
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Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query
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Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity
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Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers
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Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩
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Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results
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Roadmap of the talk

Results on enumeration for query evaluation, especially via factorized representations

• Conjunctive queries (CQs) and extensions:
• Yannakakis’s algorithm for acyclic and free-connex conjunctive queries
• Lower bounds for non-free-connex conjunctive queries without self-joins
• Extensions: CQs with self joins, unions of CQs

• Other settings: Queries defined by automata / monadic second-order logic
• Efficient enumeration on trees
• Efficient enumeration on text
• Other settings

• Other tasks: ranked enumeration, direct access, incremental maintenance, etc.
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Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)
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Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)
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Join trees for acyclic CQs

Fact: a CQ is acyclic iff it has a join tree:

• The vertices are the atoms of the query

• For each variable, its occurrences form a connected subtree
• (For experts: width-1 generalized hypertree decomposition of the Gaifman hypergraph)

Take the query: Q(w, x, y, z) : Follows(w, x) ∧ Subscribed(x, y) ∧ Follows(y, z)

Subscribed(x, y)

Follows(w, x) Follows(y, z)

12/34



Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result
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→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result
13/34



Factorized representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union
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∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/34



Factorized representations [Olteanu and Závodnỳ, 2015]
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Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/34
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Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time
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Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩
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Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z)

Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations
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Lower bounds for CQ enumeration

What about enumeration for non-free-connex CQs? Let us assume:

• The query is minimized: can always be done without loss of generality
• The query is without self joins: uses only each relation name once

→ Q(x, y, z) : Follows(x, y)∧ Subscribed(y, z) but not Q(x, y, z) : Follows(x, y)∧ Follows(y, z)

Then conditional lower bounds are known:
Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])
Let Q be a self-join free CQ enumerable with linear preprocessing and constant delay:

• If Q is not acyclic, then for some k we can detect k-hypercliques in linear time
→ for k = 3: we can find triangles in undirected graphs in linear time

• If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n2)

→ we can even do it on sparse matrices

19/34
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Lower bounds for CQ enumeration
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What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]
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What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]
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Introduction: From CQs/UCQs to automata

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

• Now: review enumeration results for MSO, in terms of factorized representations
(not necessarily normal or deterministic)
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MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

?
Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”
Equivalent formalism: tree automata

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
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Results for MSO on trees

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can reprove this via factorized representations:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed bottom-up deterministic tree automaton A with “captures”, given a tree T,
we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Note that the d-representation is no longer normal, but we show with some effort:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed schema S = (x1, . . . , xk), the tuples of a deterministic d-representation
with schema S can be enumerated with linear preprocessing and constant delay
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Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)
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Results for nondeterministic document spanners

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19; see also PODS’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

• Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• To make the algorithm polynomial in the (nondeterministic) automaton, we need
efficient enumeration for a certain kind of non-deterministic d-representations
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Other enumeration settings

Efficient enumeration is now being studied in many settings in data management
(sometimes with weaker guarantees than linear preprocessing and constant delay):

• For regular path queries [Martens and Trautner, 2018, David et al., 2024]

• For compressed structures:
• Compressed trees [Lohrey and Schmid, 2024]
• SLP-compressed documents [Schmid and Schweikardt, 2021, Muñoz and Riveros, 2023]

• For visibly pushdown languages [Muñoz and Riveros, 2022]

• For context-free languages with annotations [Peterfreund, 2021], [A., Jachiet, Muñoz,
Riveros, 2023]

There are also software implementations [Riveros et al., 2023]
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Introduction: From enumeration to more general tasks

Sometimes, we want more than enumerating query results in an unspecified order:

Ranked access

Direct access Ranked enumeration

Counting Enumeration

(Adapted from [Carmeli, 2023])

• Direct access: getting the i-th answer

• Counting the answers

• Ranked enumeration: enumerating in a
prescribed order

• Ranked access: getting the i-th tuple in a
prescribed order

Another question: maintain an enumeration structure under updates to the data
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Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]

• Characterization of optimal preprocessing time for polylog direct access
[Bringmann et al., 2022]

• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]
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Incremental maintenance of enumeration structures

• Say the input data is often modified; we restart the enumeration after each update

• Can we avoid re-running the preprocessing phase from scratch?

For self-join-free CQs:

• Notion of q-hierarchical CQs that admit linear preprocessing and constant delay
enumeration and constant-time updates; lower bounds [Berkholz et al., 2017]

• Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

• On words, linear preprocessing and constant delay enumeration is possible under
insert/delete updates [Niewerth and Segoufin, 2018]

• On trees, linear preprocessing and constant delay enumeration is possible under
substitution updates [A., Bourhis, Mengel, 2018] and possibly more
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Summary and future work

• We have seen enumeration algorithms to produce query answers in streaming
→ Ideally, we want linear preprocessing and constant delay

• Modular approach: compute a factorized representation of the results

• Tractable enumeration is possible for free-connex CQs and for MSO queries on trees

• Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

• Enumerating diverse / representative solutions?

• Understanding the tradeoff between preprocessing time, memory, and delay?

• Understanding how the update complexity depends on the specific query posed?

• Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Thanks for your attention!
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