Edge-Minimum Walk of Modular Length in Polynomial Time

Nicole Wein University of Michigan

Joint work with: Antoine Amarilli

Benoît Groz

Question: Given an unweighted directed graph G with terminals s,t, can we efficiently find an odd-length st-walk with the minimum number of distinct edges?

Not the same as:

- shortest odd *st-path* problem on a directed graph (NP-hard)
- shortest odd *st-walk* problem on a directed graph (poly time)

General Problem: Edge-Minimum Walk of Modular Length

Problem: Given an unweighted directed graph G with terminals s,t, find an **st-walk of length r mod q** which is **edge-minimum** (minimum number of distinct edges).

Main result: Polynomial-time algorithm for constant q. Specifically: n^{O(log q)} · 2^{O(q log² q)}

Generalizations:

- weighted versions
- a multi-terminal version of the problem that also generalizes the Directed Steiner Network problem.

Proof Idea for Special Case: Odd-Length Walk

Goal: Find an edge-minimum odd-length st-walk w in a directed graph.

Obs 1. wlog w contains no even cycles.

Obs 2. wlog w does not contain two odd cycles in succession.

Conclusion: w is either a (1) simple path, or

(2) simple path P_1 + odd cycle C + simple path P_2 .

Proof Idea for Special Case: Odd-Length Walk

Goal: Find an edge-minimum odd-length st-walk w in a directed graph.

odc

Obs 3. wlog P_2 doesn't re-intersect C.

Obs 4. wlog P_2 doesn't contain a "parallel path" with P_1 .

Ρ

Proof Idea for Special Case: Odd-Length Walk

Goal: Find an edge-minimum odd-length st-walk w in a directed graph.

Idea from [Feldman/Ruhl '06, Feldmann/Marx '23] for Directed Steiner Network: Bound the undirected cutwidth of the solution, then use dynamic programming.

A graph has **cutwidth** \leq c if there's an ordering of the vertices so that for every i, there are \leq c edges with one endpoint <i and one endpoint \geq i.

Extending to General r mod q

If w has a cycle of a length co-prime to q, argument is similar to odd case.

Issue: Could be many different cycles with different remainders mod q that intersect in intricate ways.

Question: Could a high-cutwidth (e.g. grid-like) structure emerge?

Answer: No

Structure of proof:

- 1. When w witnesses certain intersection patterns, more remainders become "achievable".
- 2. Bound total number of certain intersection patterns.
- 3. Bound cutwidth.

Open Problems

- 1. Improve running time below $n^{O(\log q)} \cdot 2^{O(q \log q)}$.
- 2. Unexplored problem (we think): Given a number ℓ , find an edge-minimum st-walk of length exactly ℓ , faster than the trivial O(n^{ℓ}) time.
- 3. Intermediate problems between shortest walk and edge-minimum walk.
- 4. Generalizations related to regular path queries.