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Constrained Topological Sorting

Fix an alphabet: eg, ¥ = {a, b} e

Fix a language: e.g, L = (ab)*

We study constrained topological sorting: ° 0 °

- Input: directed acyclic graph (DAG)

with vertices labeled with Q e
- Output: is there a topological sort

that falls in L?

« Question: when is this problem tractable?
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[Possible answers| | Algebraic language theory?! |

» Which a-posteriori motivation did we invent for the problem?

— Scheduling with constraints!  — Verification for concurrent code!
— Computational biology! — Blockchain! (joke)

e But why do we actually care?

— Natural problem and apparently nothing was known about it! /
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Formal problem statement

 Fix a regular language L on an finite alphabet &

 Constrained topological sort problem CTS(L

- Input: a DAG G with vertices labeled by | etters of (b) @ (b)
- Output: is there a topological sort of G such that
the sequence of vertex labels is a word of L ® @

* Special case: the constrained shuffle problem CSh(L):

- Input: a set of words wy, ..., w, of X* %
@

- Output: is there a shuffle of w,, ..., w, whichisin L

e This is like CTS but the input DAG is an union of paths

— Question: What is the complexity of CTS(L) and CSh(L),
depending on the fixed language L?
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Conjecture
For every regular language L, exactly one of the following holds:

e L has [some nice property] and CTS(L) is in NL (V)
« L has [some nasty property] and CTS(L) is NP-hard -

Here's what we actually know:

» CTS and CSh are NP-hard for some languages, including (ab)*
« They are in NL for some language families (monomials, groups)
» Some languages are tractable for seemingly unrelated reasons

— Very mysterious landscape! (to us)
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Existing Hardness Result

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 345-358 (1984)

On the Com

n th nlexity of lterated Shuffle*®
L LN S A ALY A A BN R AV R A 1w

A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?
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A ,
MANFRED K. WarMuTH' AND DAvVID HAUSSLER

Department of Computer Science,
University of Colorado, Boulder, Colorado 80309

It is demonstrated that the following problems are NP complete:

(1) Given words w and w,, w,,..., w,, is w in the shuffle of w , w,,..., w,?

.. but the target is a word which is provided as input!
— Does not directly apply for us, because we fix the target language
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« To determine if the shuffle of aab and bb contains ababb ..
solve the CSh-problem for  aab and bb and ABABB
— CSh((aA + bB)*) is NP-hard and the same holds for CTS

 Similar technique: CSh((ab)*) is NP-hard

e Custom reduction technique to show NP-hardness
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e  Say we want to solve CTS for (ab)* (NP-hard)
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 Take an instance G for (ab)*, with 2n vertices
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Say we want to solve CTS for (ab)* (NP-hard)
Say we know how to solve CTS for (abc)*
Take an instance G for (ab)*, with 2n vertices
Add the path P: (bcac)”

A topsort of GU P achieving (abc)*
gives a topsort of G achieving (ab)*

Conversely, any topsort of G achieving (ab)*
extends to a topsort of G + P achieving (abc)*

Hence, CTS((abc)*) is NP-hard

8/24



Formalizing the reduction

Definition
A language L shuffle-reduces to a language L’ if, given any n in unary,
we can compute in PTIME a word P; having the following property:

9/24



Formalizing the reduction

Definition

A language L shuffle-reduces to a language L’ if, given any n in unary,
we can compute in PTIME a word P; having the following property:
for any word w of length n, we have w € L

iff the shuffle of w and P; contains a word of L'.

9/24



Formalizing the reduction

Definition

A language L shuffle-reduces to a language L’ if, given any n in unary,
we can compute in PTIME a word P; having the following property:
for any word w of length n, we have w € L

iff the shuffle of w and P; contains a word of L'.

Theorem
If L shuffle-reduces to L’ then:

» CSh(L) reduces in PTIME to CSh(L’)
e CTS(L) reduces in PTIME to CTS(L")

9/24
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e The reduction shows hardness for:

- (ab + b)* (also simpler argument)
- (aa + bb)* with P,; = (ab)’
- u* if u contains two different letters

 Conjecture: if F is finite then CTS(F*) is NP-hard
unless it contains a power of each of its letters

- Idea: reason about consumption rates of letters?
- Not even complete for F* languages, as (aa + bb)* is NP-hard
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Tractability for Monomials

* Monomial: language of the form A} a; AS a, --- A, an A,
where a,,...,ap € Zand A, ..., Ap 1 C X
* Union of monomials: union of finitely many such languages

- Example: pattern matching X* word1 X* + ¥* word2 **
- Logical interpretation: languages definable in X,[<]

Theorem
For any union of monomials L, the problem CTS(L) is in NL
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Proof Idea for Monomials

» Tractable languages are clearly closed under union
so it suffices to consider a monomial: A} a, A3 a, --- Aj, an Aj,
where a,,...,ap € Zand A, ..., Ap 1 C X

» We can guess the positions of the individual q;
« Check that the other vertices can fit in the A (uses NL = co-NL)

- Check that the descendants of a, are all in Apy4

- Find the vertices that must be enumerated before aj,
- The ancestors of the g;
- The ancestors of vertices with a letter not in Ap.4

- Inductively solve the problem for these vertices and
Ara, Al a, - A

n

12/24
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The Algebraic Approach Fails

Can we just study algebraically the tractable languages? Not really...

» Not closed under intersection — | —
\

» Not closed under complement \ (/) l

» Not closed under inverse morphism

* Not closed under concatenation
(not in paper, only known for CTS)

e For CSh: not closed under quotient

13/24
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Side Remark: CTS and CSh are Different

Consider the language L = bX* + aaX* + (ab)*

e CTS(L) is NP-hard because (ab)~'L = (ab)*

e CSh(L) is in NL: trivial if there is more than one word

Hence, some languages are tractable for CSh and hard for CTS
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there are at most k input words ws, ..., w, for a constant k € N

— Need k counters to remember the current position in each word,
plus automaton state

e CTS(L) isinin NL for any regular language L if

the input DAG G has width < k for constant k € N (@)
- Width: size of the largest antichain B @ ®
(subset of pairwise incomparable vertices)
— Partition G in k chains (Dilworth’s theorem), O @

and conclude by NL algorithm

— These results are making an additional assumption, but...
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* Fix ¥ = {a, b}, take any regular language L and constant kR € N,
we know that CTS is in NL for L + ¥*(ak + bF)x*

- If the input DAG has width < 2R, use the result for bounded width

- Otherwise we can achieve a® or bk with a large antichain
* Asimilar technique shows that (ab)* + X*aaXx* is tractable

— Does it suffice to bound the width of all letters but one?

— Unknown for L + X*a*T* with arbitrary Land k> 20 “\_(*V)_["
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An Annoying Open Problem

» Fix the alphabet ¥ = {a, b}
a . . )
/<>k e Assume that the input DAG has a-width 1, i.e,
there is a total order on the a-labeled elements
@l\ * Easy greedy PTIME algorithm for CTS((ab)*):
/@ - If we want an a, take the next one (no choice)
@)‘ - If we want a b, take an available b-vertex
whose first a-descendant is as high as possible
(idea: consume the most blocking b’s)
\tCD\ » Should generalizes to CTS(L) for any L... right?!
N\ _ _
® \ (V)

Open problem
Fix ¥ = {a,b} and an arbitrary regular language L. Given a DAG
without two incomparable a’s, can you solve CTS(L)?

17/24
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e Group language: the underlying monoid is a finite group
— Automata where each letter acts bijectively

* District group monomial: language G; @, --- G an Gpiy

where a,,...,a, € ¥ and Ga, ..., Gy are group languages
on subsets of the alphabet X

Theorem
For any union L of district group monomials, CSh(L) is in NL

— Only for CSh; complexity for CTS is unknown! (V) [
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Proof Structure for Groups

By far the most technical proof of the paper
From district group monomials to group languages:
- Guess the vertices where the a; are mapped
- Guess (in succession) how each input word is split
e For groups: distinguish the rare and frequent letters of ©
- Rare letters are in constantly many strings: NL algorithm on them
- Frequent letters are in enough strings to generate anything
— Key (CSh): find an antichain with all frequent letters many times
e Two main challenges:
- Even on frequent letters, we can only achieve all group elements
up to commutative information
— E.g,inagroup G x (Z/27) with generators of the form (g;, 1),
a large odd number of generators will never achieve (g, 0)
— Antichain lemma: Constantly many elements suffice to achieve
anything in the spanned subgroup up to “commutative information”
- When doing the NL algorithm on rare letters, constant bound on
the number of frequent letter insertions 10/
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Tractability Based on All Sorts of Strange Reasons

* (aa+ b)* isin NL for CSh:
- Ad-hoc greedy algorithm: consume string with most odd a blocks
- Complexity open for CTS! \_(V)_/~
- Complexity open for (a® + b)* for k > 2! "\ _(V)_"
- What about similar languages like (aa + bb 4 ab)*? \_(Y)_I~

* (caa)*d(cbb)*dx* + X*ccx* is in NL for CSh but NP-hard for CTS

- Tractability argument: another ad hoc greedy algorithm
- Hardness argument: from k-clique encoded to a bipartite graph
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Prelude to the Kind of Dichotomy

« We were aiming for a dichotomy, but... \_(Y)_~
e Let's try to make the problem simpler

» |dea: If we don't fix a target language but a language “family”
then we can hope for a coarser dichotomy

* We can restrict to “families” closed under algebraic operations
and go back to the algebraic approach

21/24
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A Kind of Dichotomy

 Fix a semiautomaton S = (Q, X, §) with Q the set of states,
with X a finite alphabet, and with ¢ the transitions.

 |dea: we will give in the input a specification, i.e,
a set {(ir, F1), ..., (i Fe) } with (i;, F;) € Q x 29
- We specify the initial and final states (= closure by quotient)
- We can toggle the final states (= closure by complement)
- We will do a conjunction over the (i;, F;) (= closure by intersection)
* Semiautomaton Constrained topological sort problem CTS(S):
+ Input:
- a DAG G with vertices labeled by letters of X,
- a specification of S, i.e, {(ir, F1), . .., (i, Fr)} with (ij, F;) € Q x 22
- OQutput: is there a topological sort of G such that
the sequence of vertex labels is accepted by the automaton
(Q,%,6,ij,F) forall1<j <k
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Theorem
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holds:
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A Kind of Dichotomy (2)

Theorem

For every (OIitGiYél semiautomaton S, exactly one of the following
holds:

* The transition semigroup of S belongs to DO and CSh(S) is in NL
» The transition semigroup of S is not in DS and CSh(S) is NP-hard

» DA s a classic variety of semigroups

e Counterfree is equivalent to being first-order definable and
“not containing any groups”

* DO, DS are much less well understood varieties of semigroups

23/24
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Summary and Future Work

Language
(ab)*

Monomialg
Groups, di

bX* + aaX

L+ x*(ak ==

(ab)* + X
L+ X*akx
(aa + bb)*
(aa + b)*
(ak + b)*

Informations

Recherches

Enseignement

Production logicielle

CSh (shuffle) CTS (top. sort)

Topological Sorting under Regular
Constraints

By Antoine Amarili and Charles Paperman.

“This page presents the consrained & i p , an
some of our resul d P Itis a complement to our
paper, which wil be presented at ICALP' m

Problem definitions

Fuxan sphaber . An A-DAG i et ayclc graph G whereesch vt i bcled by
aletter of A. A topological sort of G s a linear ordering of the vertices that respects the
edges of the DAG, Le., for every ) o1 &, e vrcx i enameted etone . The
topological sort achicves the word of A* formed by concatenating the labels of the vertices in
the order where they are enumerated.

Fix a language L C A", The constrained topological sort problem for L, written CTS[L]
asks, given an A-DAG G, whether there is a topological sort of G' that achieves a word of L.

One rolem vaant i e et sting e he nput DAG i an 4*-DAG, where
ihe vericsar Labeed by a word f A, a opological or acieves the word bined
by concatenating the labels o et ool ling cach vertex cannot be
inerlsvedwith anying le. However i age e sty focus on the sigleleer
setings, e, 4D

Our current main results on the CTS-problem are presented in our paper. We show that
CTS[L] s in NL for some regular languages L, and is NP-hard for some other regular
languages.

Main dichotomy conjecture: For every regular language L, either CTS|L] is in NL or
CTS[L) is NP-hard.

Restrictions on the input DAG

‘When the input DAG G is an union of paths, the problem is called constrained shuffle
problem (CSh), because  topological sort of G corresponds to an interleaving of the srings
represented by the paths.

We can consider the problem where the input DAG has bounded heigh, where the height of
DAG is defined as the length of the longest directed path.

‘We can consider the problem where the input DAG has bounded width, where the width of a
DAG is the size of is largest antichain,i.c., subset of pairwise incomparable vertices. In the
case of the CSh problem, the wikth is the number of paths

IP-hard

in NL
(V)

IP-hard

in NL
in NL
(V)

IP-hard
(V)
(V)

Essentially all other languages...

(V)

(W)
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Monomials Aay - - - ApanA; in NL in NL
Groups, district group monomials in NL (V)
b¥* + aaXx* + (ab)* in NL NP-hard
L+ X*(af + bF)z* in NL in NL
(ab)* + ¥*a’x* in NL in NL
L+ T*akx* () ()
(aa + bb)*, (ab + a)* NP-hard NP-hard
(aa + b)* in NL (W)
(ak + b)* (W) ()
Essentially all other languages... (V) ()

Thanks for your attention! 24124
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