Combining Existential Rules and Description Logics

Antoine Amarilli 1,2 , Michael Benedikt 2

¹Télécom ParisTech, Paris, France

 $^2 {\sf University}$ of Oxford, Oxford, United Kingdom

July 28, 2015

Open-world query answering (QA)

Open-world query answering:

- We are given:
 - Relational instance I (ground facts)
 - \bigwedge Logical constraints Σ
 - Boolean conjunctive query q

Open-world query answering (QA)

Open-world query answering:

- We are given:
 - Relational instance I (ground facts)
 - \bigwedge Logical constraints Σ
 - Boolean conjunctive query q
- We ask:
 - Consider all possible completions $J \supseteq I$
 - $\bullet\,$ Restrict to those that satisfy the constraints $\Sigma\,$
 - \rightarrow Is q certain among them?

Open-world query answering (QA)

Open-world query answering: - query entailment or containment

- We are given:
 - Relational instance *I* (ground facts) A-Box
 - \bigwedge Logical constraints Σ T-Box
 - Boolean conjunctive query q
- We ask:
 - Consider all possible completions $J \supseteq I$
 - $\bullet\,$ Restrict to those that satisfy the constraints $\Sigma\,$
 - \rightarrow Is q certain among them?

Rich description logics (DLs) Frontier-guarded existential rules

Rich description logics (DLs) Frontier-guarded existential rules

 $\mathsf{Emp} \sqsubseteq \mathsf{CEO} \sqcup (\exists \mathsf{Mgr}^-.\mathsf{Emp}) \qquad \forall pwv \operatorname{Acpt}(p, w, v) \to \exists f \operatorname{Trip}(p, f, v)$

 $\rightarrow\,$ QA is decidable for either language

Can we have the best of both worlds?

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules

Can we have the best of both worlds?

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

Can we have the best of both worlds?

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

We show:

Can we have the best of both worlds?

- QA is decidable for rich DLs (i.e., expressible in GC², guarded two-variable first-order logic with counting)
- QA is decidable for frontier-guarded existential rules
- \rightarrow Is QA decidable for rich DLs + some classes of rules?

We show:

- QA is undecidable for rich DLs and frontier-guarded rules
- QA with rich DLs is decidable for some new rule classes
- Functional dependencies can be added under some conditions

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem: inclusion dependencies + Funct = ID/FD implication

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem: inclusion dependencies + Funct = ID/FD implication

 \rightarrow Frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem: inclusion dependencies + Funct = ID/FD implication

 \rightarrow Frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$

Theorem

QA is undecidable for rich DLs and frontier-one rules

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem: inclusion dependencies + Funct = ID/FD implication

 \rightarrow Frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$

Theorem

QA is *undecidable* for rich *DLs* and frontier-one rules

Problem: cycles in rules + Funct = grid

Theorem

QA is undecidable for rich DLs and frontier-guarded rules

Problem: inclusion dependencies + Funct = ID/FD implication

 \rightarrow Frontier-one rules: $\forall x \mathbf{y} \ \phi(\mathbf{x}, \mathbf{y}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}, \mathbf{z})$

Theorem

QA is undecidable for rich DLs and frontier-one rules

Problem: cycles in rules + Funct = grid

- \rightarrow Non-looping rules: prohibit cycles
 - R(x, y) S(y, z) T(z, x)
 - R(x, y, z) S(x, y, z)

Non-looping frontier-one rules: no cycles in body and in head

Non-looping frontier-one rules: no cycles in body and in head

 \rightarrow We can shred them to DL rules

Theorem

Non-looping frontier-one rules: no cycles in body and in head

 \rightarrow We can shred them to DL rules

Theorem

QA is decidable for non-looping frontier-one rules + rich DLs

Head-non-looping frontier-one rules: no cycles in head

Non-looping frontier-one rules: no cycles in body and in head

 \rightarrow We can shred them to DL rules

Theorem

QA is decidable for non-looping frontier-one rules + rich DLs

Head-non-looping frontier-one rules: no cycles in head

 $\rightarrow\,$ We can treeify the rules, soundness by unravelling the models

Theorem

Theorem

Theorem

- We want to add:
 - Functional dependencies (FDs) on arbitrary predicates: Talk[*speaker*, *session*] determines Talk[*title*]

Theorem

- We want to add:
 - Functional dependencies (FDs) on arbitrary predicates: Talk[*speaker*, *session*] determines Talk[*title*]
- FDs plus single-head frontier-one rules already undecidable
 - \rightarrow Must impose the non-conflicting condition

Theorem

QA is decidable for head-non-looping frontier-one rules + rich DLs

- We want to add:
 - Functional dependencies (FDs) on arbitrary predicates: Talk[*speaker*, *session*] determines Talk[*title*]
- FDs plus single-head frontier-one rules already undecidable
 - \rightarrow Must impose the non-conflicting condition

Theorem

Decidable QA for:

- Rich DL constraints
- Single-head frontier-one rules
- Non-conflicting FDs

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads
- $\rightarrow\,$ QA is decidable for head-non-looping frontier-one + rich DLs
- \rightarrow Can add non-conflicting FDs

- Open-world query answering (QA) under:
 - Rich DL constraints
 - Existential rules
- For which rule classes is QA decidable with rich DLs?
- \rightarrow Must restrict to frontier-one rules
- \rightarrow Must prohibit cycles in rule heads
- $\rightarrow\,$ QA is decidable for head-non-looping frontier-one + rich DLs
- $\rightarrow\,$ Can add non-conflicting FDs

Thanks for your attention! More details: see poster 76