Combining Existential Rules and Description Logics

Antoine Amarilli^{1,2}, Michael Benedikt²

1: Télécom ParisTech; Institut Mines-Télécom; CNRS LTCI; Paris, France 2: University of Oxford; Oxford, United Kingdom

Open-World Query Answering (QA) or query containment, or query entailment...

Instance *I*: set of ground facts (or A-box) **Example:** parent(Joe)

Constraints Σ : logical rules (or T-box) **Example:** $\forall p \text{ parent}(p) \rightarrow \exists c \text{ child}(p, c)$

Boolean conjunctive query q **Example:** $\exists c child(Joe, c)$

QA problem: given I, Σ, q :

Two families of decidable constraint languages for $\boldsymbol{\Sigma}$	
Rich description logics	Frontier-guarded existential rules
Emp ⊑ CEO ⊔ (∃Mgr⁻.Emp)	$ \forall pwv \operatorname{Accept}(p, w, v) \\ \rightarrow \exists f \operatorname{Trip}(p, v, f) $
Rich constraints <i>Can express disjunction, disjointness, etc.</i>	Poor constraints Conjunction and implication only

• for all **completions** $J \supseteq I$ • such that J satisfies Σ does J always satisfy q? *i.e.:* • is there a **counterexample** $J \supseteq I$ satisfying Σ but not q? • does $I \wedge \Sigma$ entail q? • is q **certain** given I and Σ ?

Problem statement: Can QA be decidable when allowing both rich description logics and existential rules? decidable destructive when QA for rules in class C and for rich DLs is **Terminology:** A rule class C is non-destructive undecidable

Rule languages

• Rich description logics (rich DLs): anything expressible in **GC²**

(two-variable guarded first-order logic with counting quantifiers)

Positive results: head-non-looping FR[1]

- Non-looping FR[1] is non-destructive:
- \rightarrow QA for this class + rich DLs **reduces** to QA for rich DLs

Idea: shred R(a, b, c) to $R_1(f, a) R_2(f, b) R_3(f, c)$ in I and q Use rich DLs to impose well-formedness constraints on the signature / O **Lemma:** can inductively **rewrite** non-looping FR[1] to DL constraints **Example:** $\forall ux \ U(u), \ T(u, x), \ S(x) \rightarrow \exists yz \ T(x, y), \ U(y), \ R(x, x, z, z)$ shreds to $(\exists T^-.U) \sqcap S \sqsubseteq (\exists T.U) \sqcap (\exists (R_1^- \sqcap R_2^-).(\exists (R_3 \sqcap R_4).\top))$

2

• Existential rules (TGDs): $\forall xy \, \varphi(x, \, y) \rightarrow \exists z \, \psi(x, \, z)$

where **x**, **y**, **z** are disjoint sets of variables and ϕ (body) and ψ (head) are conjunctions of atoms

• Frontier-one (FR[1]): **x** is a singleton

i.e., only one variable shared between body and head

• Non-looping: no bad cycle • Berge cycle:

distinct atoms and variables $A_1, x_1, ..., A_n, x_n$ such that x_i occurs in A_i and A_{i+1} for all *i*

→ **Bad cycle**: Berge cycle where n>2 or some A_i has arity >2

Examples: R(x, y) S(y, z) T(z, y) or A(x, x, y) R(x, y)

• Head-non-looping: no bad cycle in head atoms

W'

 Head-non-looping FR[1] is non-destructive \rightarrow reduces to QA for non-looping + rich DLs

Idea: head-non-looping FR[1] can be treeified to non-looping (consider all possible variable identifications and matches to I) **Unravelling:** any counterexample $J \supseteq I$ can be made cycle-free → Lemma: replacing rules by their treeification is sound

Positive results: functional dependencies (FDs)

FDs generalize Funct(•) to arbitrary arity relations: 3 $\forall xy R(x_1 x_2 x_3), R(y_1 y_2 y_3), x_1 = y_1, x_2 = y_2 \rightarrow x_3 = y_3$ **Example:** Talk[speaker,session] **determines** Talk[title]

Negative results

• Frontier-two FR[2] is destructive

In fact frontier-two **inclusion dependencies** (ID[2]) are sufficient (only one atom in head and body, no repeated variables) **Problem:** entailment of Funct() and ID[2] is undecidable

 \rightarrow Must restrict to **frontier-one** FR[1]

• Frontier-one FR[1] is destructive

Problem: the existence of **cycles** can be asserted $\forall x \ \varphi(x) \rightarrow \exists yzw \ R(x \ y) \ D(x \ z) \ R(z \ w) \ D(y \ w) \quad (x \ x)$ and Funct(*R*) Funct(*D*) yields a grid

 \rightarrow Must impose non-looping (2)

• QA with just FR[1] rules and FDs is **undecidable**

but decidable with **non-conflicting condition**:

- all FR[1] rules are **single-head** and hence **head-non-looping** • for each $\forall x \ \varphi(x) \rightarrow \exists y \ R(\underline{x}, y_1, \underline{x}, y_2, ...)$, head positions with **frontier variable** are • not a **strict superset** of an FD determiner (= left-hand-side of an FD) • if **equal** to a determiner, all variables in **y** occur only once
- \rightarrow What about QA for rules, **FDs**, and rich DLs?

• Single-head FR[1] and non-conflicting FDs are **non-destructive**

Idea: modify unravelling to ensure FDs are **respected**

(when unravelling high-arity facts, distinguish variables based on FD determiners)

 \rightarrow The non-conflicting condition ensures that such changes cannot **violate** the rules