
Ranked Enumeration for MSO on Trees via
Knowledge Compilation

Antoine Amarilli 1, Pierre Bourhis 234, Florent Capelli25, Mikael Monet234,

1Telecom Paris, 2CNRS, 3University of Lille, 4INRIA Lille, 5University of Artois

1/29

Querying Trees

Trees as Representation of Data

Trees are a classical data structure to represent data into different
contexts.

<body>1

<section>3

<p>5

76

<h2>4

<div>2

MSO is the classical language to express Boolean queries over trees.
The other classical formalism to express Boolean queries is tree
automata.

2/29

More Complex Queries over Trees

General MSO queries: MSO with first order free variables returning
tuples of nodes

Extension of MSO queries and trees:

• Counting number of solutions

• Queries over probabilistic tree representations
[Cohen et al., 2009]

• Enumeration of solutions for an MSO formula with first order
variables
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017]

3/29

Ordering Results of Queries

In SQL, it is classical to order the results using ORDER and to return a
limited number of elements with LIMIT.

How can we efficiently compute queries with such operators?

This problem was formalized as computing top-k results for ranked
conjunctive queries and more generally as enumerating results in a
specific order [Deep and Koutris, 2019, Tziavelis et al., 2020,
Deep et al., 2022, Tziavelis et al., 2022].

What about queries over trees?

4/29

Framework to Evaluate Complex Queries on Trees

Reducing the problem over trees to a problem over circuits
[Amarilli et al., 2017]:

1. Build a circuit representing the solutions φ(T)
2. Evaluate the problem through the circuit representation
3. These circuits fall in restricted circuit classes

that allow for efficient complex operations

Given a circuit, how to efficiently perform ranked enumeration?

5/29

Preliminaries

Assignments

Let T be a binary tree. Let N(T) be the nodes of the tree. Let φ be a
MSO query and X be the set of first order free variables of φ.

An assignment is a function from X to N(T). The set of assignments is
denoted by N(T)X

A partial assignment is a partial function from X to N(T). A partial
assignment can also be defined as a function from a subset of X to
N(T).

6/29

Ranking Functions

A ranking function gives a score in S to each partial assignment.

Example of subset monotone ranking function:

• A function ν assigning to each node an integer

• For a partial assignment τ in N(T)Y

w(τ) =
∑
y∈Y

ν(τ(y))

7/29

Subset Monotonicity

Definition (Subset Monotonicity [Tziavelis et al., 2022])
A (N(T), X)-ranking function w is subset-monotone if for every Y ⊆ X
and partial assignments τ1, τ2 ∈ N(T)Y such that w(τ1) ≤ w(τ2), for
every partial assignment σ ∈ N(T)X\Y (so disjoint with τ1 and τ2), we
have w(σ × τ1) ≤ w(σ × τ2).

8/29

Problem Statement

Let φ be an MSO query with X its first-order variables. Let T be a
binary tree and N(T) its nodes. Let w be a (N(T), X) subset monotone
ranking function.

The problem RankEnum(φ, T) is to enumerate the solutions in φ(T) in
nonincreasing order given by w.

9/29

Enumeration Algorithms

Enumeration algorithms are split in two phases

1. Preprocessing phase: Compute a data structure from φ and T
and w.

2. Enumeration phase: Compute the next solution following the
nonincreasing order induced by w

We measure the data complexity of an enumeration algorithm:

1. Preprocessing time: complexity of the preprocessing phase
2. Delay: worst case complexity of computing the next solution

We use the RAM model

10/29

RAM Model

Representation of data using logarithmic-sized words

Arithmetic operations take constant time

Allocation of arrays in constant time

More details in [Grandjean and Jachiet, 2022]

11/29

Multi-Valued Circuits

Multi-Valued Circuits

⊎

⟨x :4⟩

⟨x :2⟩

×

⟨y :4⟩

• Directed acyclic graph of gates

• Output gate:

• Value gates:
⟨x :4⟩

,

• Internal gates: ⊎ ×

12/29

Circuit Restrictions

d-

DNNF:

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

• ⊎ are all deterministic:
The inputs are mutually exclusive
(= no assignments are accepted by
both gates)

⊎

×

⟨x :4⟩ ×

⟨y :5⟩ ⟨z :6⟩

××

⟨y :4⟩

×

⟨w : 7⟩ ⟨x :8⟩

13/29

Circuit Restrictions

d-DNNF:

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two
different inputs)

• ⊎ are all deterministic:
The inputs are mutually exclusive
(= no assignments are accepted by
both gates)

⊎

×

⟨x :4⟩ ×

⟨y :5⟩ ⟨z :6⟩

××

⟨y :4⟩

×

⟨w : 7⟩ ⟨x :8⟩

13/29

Smoothed

Smooth Circuit

• ⊎ are all smoothed:

the valuations defined by the subcircuits are defined on the same set
of variables. To smooth, we need to consider all valuations over the
missing variables.

14/29

Main Results for Querying circuits

Ranked Enumeration for DNNF

Theorem
For any constant n ∈ N, we can solve the RankEnum problem on an
input smooth multivalued DNNF circuit C on domain D and variables
X with |X| = n and a subset-monotone (D, X)-ranking function with
no preprocessing and with delay O(|D| × |C|+ log(K + 1)), where K is
the number of assignments produced so far.

15/29

Ranked Enumeration for d-DNNF

Theorem
We can solve the RankEnum problem on an input smooth multivalued
d-DNNF circuit C on domain D and variables X with |X| = n and a
subset-monotone (D, X)-ranking function with preprocessing linear
in |C|
and with delay O(log(K + 1)), where K is the number of assignments
produced so far.

16/29

Key Points of the Proof

We do ranked enumeration of partial assignments in C.

We want to skip the possible long paths of ⊎ gates.

We associate to each gate g the following structures:

• an integer ig which counts the number of partial assignments
already enumerated

• a priority queue Qg containing some partial assignments not yet
enumerated

• a table Tg containing the assignments already enumerated in
nonincreasing order

• a table Rg containing a Boolean indicating if the assignment has
already been seen and added to Qg or not

17/29

Preprocessing Phase

1. Clean the circuit so that × gates have exactly two children
2. Compute the number of partial assignments defined at each gate
3. Initialize the priority queue Bg used for the initialization
4. Initialize the priority queue Qq storing elements of different

forms following the type of the gate
5. Allocate the tables Tg, Rg and initialize ig at 0

18/29

At the End of the Preprocessing Phase

• ig = 0,

• Tg and Rg are empty

• in Qg appears
• for a value gate: (p : w(τ), d : (g, 1, τ))
• for a ⊎-gate: (p : w(τ), d : (g′, 1, τ)) where τ is a partial

assignment and g′ is the descendant gate accepting τ and 1 is the
rank of τ when enumerated in g′.

• for a ×-gate: (p : w(τ1 × τ2), d : (1, 1, τ1, τ2)), where τ1 is an
assignment of the left child g1 and τ2 is an assignment of the right
child g2. 1 is the rank of τi when enumerated from gi.

19/29

How to Get the Preprocessing in O(|T|)

Key points:

• Arithmetic operations in O(1) (RAM Model)

• Initialisation of tables in constant time (RAM Model)

• Persistent priority queue Q with the following properties
• adding a pair (element, value) in O(1)
• giving an maximum pair (element,value) respecting the

nonincreasing order over the values in O(1)
• union of two priority queues in O(1)
• deleting a maximum pair in O(log |Q|)

→ Brodal Queue [Brodal, 1996]

20/29

Enumeration

Implementation of the operator Get(i,g) which returns the i-th
partial assignment at the gate g.

• If i ≤ ig
• then use the structure Tg to find it.
• Otherwise case distinction depending on whether the gate is a
×-gate or a ⊎-gate

21/29

Get(ig + 1,g) for ⊎-gates

• Pop the max element (g′, j, τ) of Qg

• Add τ to Tg(ig + 1)

• τ ′ = Get(g′, j+ 1); Add (p : w(τ ′),d : (g′, j+ 1, τ ′)) in Qg.

• Increment ig

• Output τ

22/29

Get(ig + 1,g) for ×-gates

Let g1 and g2 be the two children of g.

• Pop the max element (j,m, τ1, τ2) of Qg

• Add τ1 × τ2 to Tg(ig + 1)

• τ ′1 = Get(g1, j+ 1), τ ′2 = Get(g2,m+ 1)
• Check if τ ′1 × τ2 or τ1 × τ ′2 were already seen by using Rg
• If not add them to Qg and update Rg

• Increment ig

• Output τ

23/29

Complexity Analysis

Number of gates got through the recursive call is linear in the number
of variables

At each call of Get, the complexity comes from popping the max
element which is in O(log(|Qg|))

24/29

Construction of the Circuit
Representing the Answers of a MSO
Query

Construction of the Circuit Representing Q(T)

Theorem
For any MSO formula φ with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a smoothed multi-valued
d-DNNF capturing exactly the set of tuples {⟨α1 : n1, . . . , αk : nk⟩ in
the output of A on T

This result works via a tree automaton translation of the MSO formula

25/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×
×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×
×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×
×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×
×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×

×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×

×

26/29

Proof idea for trees: circuit construction (details)

• Automaton: “Select all node pairs (α, β)”

• States: {∅, α, β, αβ}

• Rules: {β, ∅ −→ β,

β, ∅, α : n −→ αβ

· · · }

n

⟨α :n⟩

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

⊎ ⊎ ⊎ ⊎
∅ α β αβ

×
×

26/29

Theorem
For any fixed MSO query Q(x1, . . . , xn) with free first-order variables,
given as input a tree T and a subset-monotone ranking function w
on the partial assignments of x1, . . . , xn to nodes of T, we can
enumerate the answers to Q on T in nonincreasing order of scores
according to w with a preprocessing time of O(|T|) and a delay of
O(log(K + 1)), where K is the number of answers produced so far
enumerated.

27/29

Summary and Future Work

Summary

Established an algorithm for Ranked Enumeration of MSO queries
over trees

Approach: uses a circuit representation of the solutions as
multivalued smooth d-DNNFs

Ranked Enumeration on d-DNNF circuits can be done with
preprocessing in linear time in the size of the circuit and with delay
O(log(k+ 1)) where k is the number of assignments already
enumerated.

28/29

Future Work

New types of queries to consider from databases:

• Direct Access

• Uniform Sampling

• Generalizing the enumeration of weighted MSO queries on words
[Bourhis et al., 2021] to trees

• · · ·

Incremental Maintenance of the preprocessing part when the tree is
updated

Better understanding of the impact of the RAM Model
[Grandjean and Jachiet, 2022]

Thanks for your attention!

29/29

Future Work

New types of queries to consider from databases:

• Direct Access

• Uniform Sampling

• Generalizing the enumeration of weighted MSO queries on words
[Bourhis et al., 2021] to trees

• · · ·

Incremental Maintenance of the preprocessing part when the tree is
updated

Better understanding of the impact of the RAM Model
[Grandjean and Jachiet, 2022]

Thanks for your attention!

29/29

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Bourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).
Ranked enumeration of MSO logic on words.
In ICDT.

https://arxiv.org/abs/1702.05589

References ii

Brodal, G. S. (1996).
Worst-case efficient priority queues.
In SODA.
Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic XML.
In PODS.
Deep, S., Hu, X., and Koutris, P. (2022).
Ranked enumeration of join queries with projections.
arXiv preprint arXiv:2201.05566.

Deep, S. and Koutris, P. (2019).
Ranked enumeration of conjunctive query results.
arXiv preprint arXiv:1902.02698.

References iii

Grandjean, E. and Jachiet, L. (2022).
Which arithmetic operations can be performed in constant time
in the RAM model with addition?
CoRR, abs/2206.13851.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL.
Tziavelis, N., Ajwani, D., Gatterbauer, W., Riedewald, M., and Yang, X.
(2020).
Optimal algorithms for ranked enumeration of answers to full
conjunctive queries.
PVLDB, 13(9).

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iv

Tziavelis, N., Gatterbauer, W., and Riedewald, M. (2022).
Any-k algorithms for enumerating ranked answers to
conjunctive queries.
arXiv preprint arXiv:2205.05649.

	Querying Trees
	Preliminaries
	Multi-Valued Circuits
	Main Results for Querying circuits
	Construction of the Circuit Representing the Answers of a MSO Query
	Summary and Future Work
	Appendix

