LL Université

Ranked Enumeration for MSO on Trees via Knowledge Compilation

Antoine Amarilli ${ }^{1}$, Pierre Bourhis ${ }^{234}$, Florent Capelli²5, Mikael Monet ${ }^{234}$,
${ }^{1}$ Telecom Paris, ${ }^{2}$ CNRS, ${ }^{3}$ University of Lille, 4 INRIA Lille, ${ }^{5}$ University of Artois

Querying Trees

Trees as Representation of Data

Trees are a classical data structure to represent data into different contexts.

MSO is the classical language to express Boolean queries over trees. The other classical formalism to express Boolean queries is tree automata.

More Complex Queries over Trees

General MSO queries: MSO with first order free variables returning tuples of nodes

Extension of MSO queries and trees:

- Counting number of solutions
- Queries over probabilistic tree representations
[Cohen et al., 2009]
- Enumeration of solutions for an MSO formula with first order variables
[Bagan, 2006, Kazana and Segoufin, 2013, Amarilli et al., 2017]

Ordering Results of Queries

In SQL, it is classical to order the results using ORDER and to return a limited number of elements with LImit.

How can we efficiently compute queries with such operators?
This problem was formalized as computing top-k results for ranked conjunctive queries and more generally as enumerating results in a specific order [Deep and Koutris, 2019, Tziavelis et al., 2020, Deep et al., 2022, Tziavelis et al., 2022].

What about queries over trees?

Framework to Evaluate Complex Queries on Trees

Reducing the problem over trees to a problem over circuits [Amarilli et al., 2017]:

1. Build a circuit representing the solutions $\varphi(T)$
2. Evaluate the problem through the circuit representation
3. These circuits fall in restricted circuit classes that allow for efficient complex operations

Given a circuit, how to efficiently perform ranked enumeration?

Preliminaries

Assignments

Let T be a binary tree. Let $N(T)$ be the nodes of the tree. Let φ be a MSO query and X be the set of first order free variables of φ.

An assignment is a function from X to $N(T)$. The set of assignments is denoted by $\overline{N(T)^{x}}$

A partial assignment is a partial function from X to $N(T)$. A partial assignment can also be defined as a function from a subset of X to $N(T)$.

Ranking Functions

A ranking function gives a score in S to each partial assignment. Example of subset monotone ranking function:

- A function ν assigning to each node an integer
- For a partial assignment τ in $\overline{N(T)^{\gamma}}$

$$
w(\tau)=\sum_{y \in Y} \nu(\tau(y))
$$

Subset Monotonicity

Definition (Subset Monotonicity [Tziavelis et al., 2022])

A $(N(T), X)$-ranking function w is subset-monotone if for every $Y \subseteq X$ and partial assignments $\tau_{1}, \tau_{2} \in \overline{N(T)^{Y}}$ such that $w\left(\tau_{1}\right) \leq w\left(\tau_{2}\right)$, for every partial assignment $\sigma \in \overline{N(T)^{X \backslash Y}}$ (so disjoint with τ_{1} and τ_{2}), we have $w\left(\sigma \times \tau_{1}\right) \leq w\left(\sigma \times \tau_{2}\right)$.

Problem Statement

Let φ be an MSO query with X its first-order variables. Let T be a binary tree and $N(T)$ its nodes. Let w be a $(N(T), X)$ subset monotone ranking function.

The problem $\operatorname{RankEnum}(\varphi, T)$ is to enumerate the solutions in $\varphi(T)$ in nonincreasing order given by w.

Enumeration Algorithms

Enumeration algorithms are split in two phases

1. Preprocessing phase: Compute a data structure from φ and T and w.
2. Enumeration phase: Compute the next solution following the nonincreasing order induced by w

We measure the data complexity of an enumeration algorithm:

1. Preprocessing time: complexity of the preprocessing phase
2. Delay: worst case complexity of computing the next solution

We use the RAM model

RAM Model

Representation of data using logarithmic-sized words
Arithmetic operations take constant time
Allocation of arrays in constant time
More details in [Grandjean and Jachiet, 2022]

Multi-Valued Circuits

Multi-Valued Circuits

Circuit Restrictions

DNNF:

- \times are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)

Circuit Restrictions

d-DNNF:

- \times are all decomposable: The inputs are independent (= no variable x has a path to two different inputs)
- \uplus are all deterministic: The inputs are mutually exclusive (= no assignments are accepted by
 both gates)

Smoothed

Smooth Circuit

- せ are all smoothed:
the valuations defined by the subcircuits are defined on the same set of variables. To smooth, we need to consider all valuations over the missing variables.

Main Results for Querying circuits

Ranked Enumeration for DNNF

Theorem

For any constant $n \in \mathbb{N}$, we can solve the RankEnum problem on an input smooth multivalued DNNF circuit C on domain D and variables X with $|X|=n$ and a subset-monotone (D, X)-ranking function with no preprocessing and with delay $O(|D| \times|C|+\log (K+1))$, where K is the number of assignments produced so far.

Ranked Enumeration for d-DNNF

Theorem

We can solve the RankEnum problem on an input smooth multivalued d-DNNF circuit C on domain D and variables X with $|X|=n$ and a subset-monotone (D, X)-ranking function with preprocessing linear in $|C|$
and with delay $O(\log (K+1))$, where K is the number of assignments produced so far.

Key Points of the Proof

We do ranked enumeration of partial assignments in \mathbf{C}.
We want to skip the possible long paths of \uplus gates.
We associate to each gate g the following structures:

- an integer i_{g} which counts the number of partial assignments already enumerated
- a priority queue Q_{g} containing some partial assignments not yet enumerated
- a table T_{g} containing the assignments already enumerated in nonincreasing order
- a table R_{g} containing a Boolean indicating if the assignment has already been seen and added to Q_{g} or not

Preprocessing Phase

1. Clean the circuit so that \times gates have exactly two children
2. Compute the number of partial assignments defined at each gate
3. Initialize the priority queue B_{g} used for the initialization
4. Initialize the priority queue Q_{q} storing elements of different forms following the type of the gate
5. Allocate the tables T_{g}, R_{g} and initialize i_{g} at 0

At the End of the Preprocessing Phase

- $i_{g}=0$,
- T_{g} and R_{g} are empty
- in Q_{g} appears
- for a value gate: $(p: w(\tau), d:(g, 1, \tau))$
- for a \uplus-gate: $\left(p: w(\tau), d:\left(g^{\prime}, \mathbf{1}, \tau\right)\right)$ where τ is a partial assignment and g^{\prime} is the descendant gate accepting τ and $\mathbf{1}$ is the rank of τ when enumerated in g^{\prime}.
- for a \times-gate: $\left(p: w\left(\tau_{1} \times \tau_{2}\right), d:\left(1,1, \tau_{1}, \tau_{2}\right)\right)$, where τ_{1} is an assignment of the left child g_{1} and τ_{2} is an assignment of the right child $g_{2} .1$ is the rank of τ_{i} when enumerated from g_{i}.

How to Get the Preprocessing in $O(|T|)$

Key points:

- Arithmetic operations in $O(1)$ (RAM Model)
- Initialisation of tables in constant time (RAM Model)
- Persistent priority queue Q with the following properties
- adding a pair (element, value) in $O(1)$
- giving an maximum pair (element,value) respecting the nonincreasing order over the values in $O(1)$
- union of two priority queues in $O(1)$
- deleting a maximum pair in $O(\log |Q|)$
\rightarrow Brodal Queue [Brodal, 1996]

Enumeration

Implementation of the operator $\operatorname{Get}(i, g)$ which returns the i-th partial assignment at the gate g.

- If $i \leq i_{g}$
- then use the structure T_{g} to find it.
- Otherwise case distinction depending on whether the gate is a \times-gate or a \uplus-gate

$\operatorname{Get}\left(i_{g}+1, g\right)$ for \uplus-gates

- Pop the max element $\left(g^{\prime}, j, \tau\right)$ of Q_{g}
- Add τ to $T_{g}\left(i_{g}+1\right)$
- $\tau^{\prime}=\operatorname{Get}\left(g^{\prime}, j+1\right) ; \operatorname{Add}\left(p: w\left(\tau^{\prime}\right), d:\left(g^{\prime}, j+1, \tau^{\prime}\right)\right)$ in Q_{g}.
- Increment i_{g}
- Output τ

$\operatorname{Get}\left(i_{g}+1, g\right)$ for \times-gates

Let g_{1} and g_{2} be the two children of g.

- Pop the max element $\left(j, m, \tau_{1}, \tau_{2}\right)$ of Q_{g}
- Add $\tau_{1} \times \tau_{2}$ to $T_{g}\left(i_{g}+1\right)$
- $\tau_{1}^{\prime}=\operatorname{Get}\left(g_{1}, j+1\right), \tau_{2}^{\prime}=\operatorname{Get}\left(g_{2}, m+1\right)$
- Check if $\tau_{1}^{\prime} \times \tau_{2}$ or $\tau_{1} \times \tau_{2}^{\prime}$ were already seen by using R_{g}
- If not add them to Q_{g} and update R_{g}
- Increment i_{g}
- Output τ

Complexity Analysis

Number of gates got through the recursive call is linear in the number of variables

At each call of Get, the complexity comes from popping the max element which is in $O\left(\log \left(\left|Q_{g}\right|\right)\right)$

Construction of the Circuit Representing the Answers of a MSO Query

Construction of the Circuit Representing $Q(T)$

Theorem

For any MSO formula φ with capture variables $\alpha_{1}, \ldots, \alpha_{k}$, given a tree T, we can build in $O(|T| \times|A|)$ a smoothed multi-valued d-DNNF capturing exactly the set of tuples $\left\{\left\langle\alpha_{1}: n_{1}, \ldots, \alpha_{k}: n_{k}\right\rangle\right.$ in the output of A on T

This result works via a tree automaton translation of the MSO formula

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Proof idea for trees: circuit construction (details)

- States: $\{\emptyset, \alpha, \beta, \alpha \beta\}$
- Rules: $\{\beta, \emptyset \longrightarrow \beta$, $\beta, \emptyset, \alpha: n \longrightarrow \alpha \beta$ $\cdots\}$

Theorem

For any fixed MSO query $Q\left(x_{1}, \ldots, x_{n}\right)$ with free first-order variables, given as input a tree T and a subset-monotone ranking function w on the partial assignments of x_{1}, \ldots, x_{n} to nodes of T, we can enumerate the answers to Q on T in nonincreasing order of scores according to w with a preprocessing time of $\mathrm{O}(|T|)$ and a delay of $O(\log (K+1))$, where K is the number of answers produced so far enumerated.

Summary and Future Work

Summary

Established an algorithm for Ranked Enumeration of MSO queries over trees

Approach: uses a circuit representation of the solutions as multivalued smooth d-DNNFs

Ranked Enumeration on d-DNNF circuits can be done with preprocessing in linear time in the size of the circuit and with delay $O(\log (k+1))$ where k is the number of assignments already enumerated.

Future Work

New types of queries to consider from databases:

- Direct Access
- Uniform Sampling
- Generalizing the enumeration of weighted MSO queries on words [Bourhis et al., 2021] to trees
-...
Incremental Maintenance of the preprocessing part when the tree is updated

Better understanding of the impact of the RAM Model [Grandjean and Jachiet, 2022]

Future Work

New types of queries to consider from databases:

- Direct Access
- Uniform Sampling
- Generalizing the enumeration of weighted MSO queries on words [Bourhis et al., 2021] to trees
-...
Incremental Maintenance of the preprocessing part when the tree is updated

Better understanding of the impact of the RAM Model [Grandjean and Jachiet, 2022]

Thanks for your attention!

References i

R- Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
圊 Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
(Rourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).
Ranked enumeration of MSO logic on words.
In ICDT.

References ii

囯 Brodal，G．S．（1996）．
Worst－case efficient priority queues．
In SODA．
围 Cohen，S．，Kimelfeld，B．，and Sagiv，Y．（2009）．
Running tree automata on probabilistic XML．
In PODS．
© Deep，S．，Hu，X．，and Koutris，P．（2022）．
Ranked enumeration of join queries with projections．
arXiv preprint arXiv：2201．05566．
回 Deep，S．and Koutris，P．（2019）．
Ranked enumeration of conjunctive query results．
arXiv preprint arXiv：1902．02698．

References iii

(1. Grandjean, E. and Jachiet, L. (2022).

Which arithmetic operations can be performed in constant time in the RAM model with addition?
CoRR, abs/2206.13851.
國 Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL.
Tziavelis, N., Ajwani, D., Gatterbauer, W., Riedewald, M., and Yang, X. (2020).

Optimal algorithms for ranked enumeration of answers to full conjunctive queries.
PVLDB, 13(9).

References iv

R Tziavelis, N., Gatterbauer, W., and Riedewald, M. (2022). Any-k algorithms for enumerating ranked answers to conjunctive queries.
arXiv preprint arXiv:2205.05649.

