Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

Antoine Amarilli ${ }^{1} \quad$ Timothy van Bremen ${ }^{2} \quad$ Kuldeep S. Meel ${ }^{3}$
1 Télécom Paris
${ }^{2}$ National University of Singapore
${ }^{3}$ University of Toronto

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.
Applications to verifying reliability of power transmission networks, computer networks, etc.

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.
Applications to verifying reliability of power transmission networks, computer networks, etc.

When can we get a fully polynomial-time randomized approximation scheme (FPRAS) for two-terminal network reliability?

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.
Applications to verifying reliability of power transmission networks, computer networks, etc.

When can we get a fully polynomial-time randomized approximation scheme (FPRAS) for two-terminal network reliability?

Today: When the graph is a DAG, we can!

Motivating Question 2: Probabilistic Databases

Add probability labelling π to database D to get a tuple-independent probabilistic database (TID) $H=(D, \pi)$.

Classes

	Lec	Rm	Time
0.5	alice	02.10	10
0.1	bob	01.5	9
0.5	charlie	01.6	10

Mentors

	Lec	Student
0.2	alice	david
0.5	bob	emma

Query: is there someone who teaches a class at 10 and mentors David?

$$
q=\exists x \exists y \cdot \operatorname{Classes}(x, y, 10) \wedge \text { Mentors }(x, \text { david })
$$

Returns: $q(D)=$ true $\operatorname{Pr}_{H}(q)=$?

Motivating Question 2: Probabilistic Databases

Theorem

Let q be a Boolean conjunctive query that:

- has bounded hypertree width
- is self-join-free
- e.g., $\exists x y \cdot R(x) \wedge S(x, y) \checkmark \quad \exists x y \cdot R(x, y) \wedge R(y, z) x$

Then q can be tractably approximated (FPRAS) in combined complexity on any TID.

Can we relax either of the two conditions on the query above and still always get an FPRAS?

Motivating Question 2: Probabilistic Databases

Theorem

Let q be a Boolean conjunctive query that:

- has bounded hypertree width
- is self-join-free
- e.g., $\exists x y \cdot R(x) \wedge S(x, y) \checkmark \quad \exists x y \cdot R(x, y) \wedge R(y, z) x$

Then q can be tractably approximated (FPRAS) in combined complexity on any TID.

Can we relax either of the two conditions on the query above and still always get an FPRAS?

Today: No! (assuming RP $\neq \mathrm{NP}$)

Data as Graphs

To answer these motivating questions (among others), we consider the restricted setting of binary signatures-i.e., data represented as a labelled graph.

WorkedAt		HasSubsidiary	
			BigCorp
Alice	BigCorp	TinyCo	
Bob	MegaCo		AmaSoft
Charlie	AmaSoft		
Charlie	BigCorp		

Querying Graphs

- Consider Boolean (yes/no) queries on graphs

Querying Graphs

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?
- e.g., $x \xrightarrow{\text { WorkedAt }} y \xrightarrow{\text { HasSubsidiary }} \boldsymbol{z}$
- Yes
- CQ: WorkedAt $(x, y), \operatorname{HasSub}(y, z)$

Querying Graphs

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?
- e.g., $x \xrightarrow{\text { WorkedAt }} y \xrightarrow{\text { HasSubsidiary }} z$
- Yes
- CQ: WorkedAt $(x, y), \operatorname{HasSub}(y, z)$
- More formally: matches are homomorphisms from a query graph
- these homomorphisms need not be injective!
- e.g., $x \xrightarrow{\text { WorkedAt }} y \underset{\text { Worked }_{\leftarrow}}{z}$
- Yes
- CQ: WorkedAt (x, y), WorkedAt (z, y)

Querying Graphs

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?
- e.g., $x \xrightarrow{\text { WorkedAt }} y \xrightarrow{\text { HasSubsidiary }} z$
- Yes
- CQ: WorkedAt $(x, y), \operatorname{HasSub}(y, z)$
- More formally: matches are homomorphisms from a query graph
- these homomorphisms need not be injective!
- e.g., $x \xrightarrow{\text { WorkedAt }} y \underset{\text { Worked }_{\leftarrow}}{z}$
- Yes
- CQ: WorkedAt (x, y), WorkedAt (z, y)
- Denote that G has a match in H by $G \rightsquigarrow H$

Uncertain Data

- Probabilistic labelled graphs

Uncertain Data

- Probabilistic labelled graphs
- Each edge carries an independent probability

Uncertain Data

- Probabilistic labelled graphs
- Each edge carries an independent probability

- Each edge exists in the graph with its given probability

Uncertain Data

- Probabilistic labelled graphs
- Each edge carries an independent probability

- Each edge exists in the graph with its given probability
- Vertices always stay fixed

Uncertain Data

- Probabilistic labelled graphs
- Each edge carries an independent probability

- Each edge exists in the graph with its given probability
- Vertices always stay fixed
- Probability distribution on $2^{|H|}$ subgraphs

Uncertain Data

- Probabilistic labelled graphs
- Each edge carries an independent probability

- Each edge exists in the graph with its given probability
- Vertices always stay fixed
- Probability distribution on $2^{|H|}$ subgraphs
- Special case when all probabilities are $50 \% \rightarrow$ every subgraph is equally likely

Probabilistic Graph Homomorphism

$\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H})$

Given:

- labelled (non-probabilistic) "query" graph $G \in \mathcal{G}$
- probabilistic labelled "instance" graph $H \in \mathcal{H}$

Compute: probability that a randomly sampled subgraph $H^{\prime} \subseteq H$ admits a homomorphism from G :

$$
\operatorname{Pr}(G \rightsquigarrow H)=\sum_{H^{\prime} \subseteq H \text { s.t. } G \rightsquigarrow H^{\prime}} \prod_{e \in H^{\prime}} \operatorname{Pr}(e) \prod_{e \in H \backslash H^{\prime}}(1-\operatorname{Pr}(e))
$$

Observe that the problem is stated in terms of combined complexity (both query and instance as input).

Probabilistic Graph Homomorphism

$\operatorname{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$

Given:

- unlabelled (non-probabilistic) "query" graph $G \in \mathcal{G}$
- probabilistic unlabelled "instance" graph $H \in \mathcal{H}$

Compute: probability that a randomly sampled subgraph $H^{\prime} \subseteq H$ admits a homomorphism from G :

$$
\operatorname{Pr}(G \rightsquigarrow H)=\sum_{H^{\prime} \subseteq H \text { s.t. } G \rightsquigarrow H^{\prime}} \prod_{e \in H^{\prime}} \operatorname{Pr}(e) \prod_{e \in H \backslash H^{\prime}}(1-\operatorname{Pr}(e))
$$

Observe that the problem is stated in terms of combined complexity (both query and instance as input).

Graph Classes

Many possible choices for graph classes \mathcal{G} and \mathcal{H} :

- The class 1WP of one-way paths:

$$
a_{1} \xrightarrow{R_{1}} \ldots \xrightarrow{R_{m-1}} a_{m}
$$

- The class of two-way paths (2WP) of the form:

$$
a_{1}-\ldots-a_{m}
$$

with each - being $\xrightarrow{R_{i}}$ or $\stackrel{R_{i}}{\leftarrow}$

- \ldots

Previous Work

The complexity of probabilistic graph homomorphism has been studied before for various combinations of graph classes \mathcal{G} (query) and \mathcal{H} (instance).
[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.
Table: Complexity of $\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H})$ Table: Complexity of $\mathrm{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$.

$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$				$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$				
	1WP 2WP	DWT	PT	DAG All		1WP	2WP	DWT	PT	DAG All
1WP					1WP					
2WP					2WP					
DWT					DWT					
PT					PT					

- white () means that the problem lies in P
- dark grey (\square) means \#P-hardness

Previous Work

The complexity of probabilistic graph homomorphism has been studied before for various combinations of graph classes \mathcal{G} (query) and \mathcal{H} (instance).
[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.
Table: Complexity of $\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H})$ Table: Complexity of $\mathrm{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$.

$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$				$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$				
	1WP 2WP	DWT	PT	DAG All		1WP	2WP	DWT	PT	DAG All
1WP					1WP					
2WP					2WP					
DWT					DWT					
PT					PT					

- white () means that the problem lies in P
- dark grey (\square) means \#P-hardness

What about for approximations?

FPRAS for Probabilistic Graph Homomorphism

FPRAS for $\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H}) / \operatorname{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$

Given:

- (non-probabilistic) "query" graph $G \in \mathcal{G}$
- probabilistic "instance" graph $H \in \mathcal{H}$
- $\epsilon, \delta>0$

Compute: a quantity t such that

$$
\operatorname{Pr}[(1-\epsilon) \operatorname{Pr}(G \rightsquigarrow H) \leq t \leq(1+\epsilon) \operatorname{Pr}(G \rightsquigarrow H)] \geq 1-\delta
$$

in time polynomial in $|G|,|H|, \epsilon^{-1}$, and δ^{-1}

FPRAS for Probabilistic Graph Homomorphism

Query G:

$$
x \xrightarrow{\text { WorkedAt }} y \xrightarrow{\text { HasSubsidiary }} \boldsymbol{z}
$$

Instance H :

- Transform the instance graph to one in which all probabilities are 50%-the problem now is equivalent to counting subgraphs that admit a homomorphism from G
- The key idea: intensional query evaluation. We build a non-deterministic ordered binary decision diagram (nOBDD) Δ that represents the Boolean provenance of G on H. Satisfying assignments of Δ are in bijection with the subgraphs of H admitting a homomorphism from G
- We can then apply an off-the-shelf FPRAS for counting the satisfying assignments of Δ
[Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]

Crash course: (n)OBDDs

Ordered binary decision diagrams (OBDDs): compact representations of Boolean functions.

$$
(x \wedge y) \vee(z \wedge w)
$$

Crash course: (n)OBDDs

Non-deterministic ordered binary decision diagrams (nOBDDs): even more compact representations of Boolean functions.

$$
(x \wedge y) \vee(z \wedge w)
$$

Crash course: (n)OBDDs

Non-deterministic ordered binary decision diagrams (nOBDDs): even more compact representations of Boolean functions.

$$
(x \wedge y) \vee(z \wedge w)
$$

Theorem

Every nOBDD admits an FPRAS for counting its satisfying assignments.

Probabilistic Graph Homomorphism via nOBDDs

Probabilistic Graph Homomorphism via nOBDDs

Theorem

PHom ${ }_{\mathrm{L}}$ (1WP, DAG) admits an FPRAS.

Refined Perspective

We can also show a number of inapproximability results (not discussed today), conditional on RP $\neq \mathrm{NP}$.

Taken together with our approximability results, we may refine the table earlier:

Table: Complexity of $\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H})$ Table: Complexity of $\operatorname{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$.

$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$					$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$					
	1WP 2WP	DWT	PT	DAG	All		1WP	2WP	DWT	PT	DAG	All
1WP						1WP						?
2WP						2WP						
DWT						DWT						$?$
PT						PT						

- white () means that the problem lies in P
- light grey (\square) means \#P-hardness but existence of an FPRAS
- dark grey (\square) means \#P-hardness and non-existence of an FPRAS assuming $R P \neq N P$.

Refined Perspective

We can also show a number of inapproximability results (not discussed today), conditional on RP $\neq \mathrm{NP}$.

Taken together with our approximability results, we may refine the table earlier:

Table: Complexity of $\operatorname{PHom}_{\mathrm{L}}(\mathcal{G}, \mathcal{H})$ Table: Complexity of $\operatorname{PHom}_{\nless}(\mathcal{G}, \mathcal{H})$.

$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$					$\mathcal{G} \downarrow$	$\mathcal{H} \rightarrow$					
	1WP 2WP	DWT	PT	DAG	All		1WP	2WP	DWT	PT	DAG	All
1WP						1WP						?
2WP						2WP						
DWT						DWT						?
PT						PT						

- white () means that the problem lies in P
- light grey (\square) means \#P-hardness but existence of an FPRAS
- dark grey (\square) means \#P-hardness and non-existence of an FPRAS assuming $R P \neq N P$.

We also get unconditional circuit lower bounds on the size of Boolean provenance representations in a mildly tractable form (DNNF), for all of the inapproximable pairs.

Application to Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

Application to Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

Theorem

The two-terminal network reliability problem on DAGs admits an FPRAS.

Was an open problem specifically posed for DAGs.

Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

Instance $H=$

Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

Instance $H=$

Query $G=\longrightarrow \longrightarrow \longrightarrow$

Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

Instance $H=$

Query $G=\longrightarrow \longrightarrow \longrightarrow$

$$
\operatorname{Pr}(\text { node } 1 \text { and } 6 \text { connected })=\operatorname{Pr}(G \rightsquigarrow H)
$$

Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

$$
\text { Query } G=\longrightarrow \longrightarrow \longrightarrow
$$

$\operatorname{Pr}($ node 1 and 6 connected $) \neq \operatorname{Pr}(G \rightsquigarrow H)$

Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

Instance $H=$

Queries $G_{1}=\longrightarrow \longrightarrow \longrightarrow$ and $G_{2}=\longrightarrow \longrightarrow$
$\operatorname{Pr}($ node 1 and 6 connected $)=\operatorname{Pr}\left(\right.$ subgraph of H admits a homomorphism from G_{1} or $\left.G_{2}\right)$

Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each link fails independently with a given probability.

Queries $G_{1}=\longrightarrow \longrightarrow \longrightarrow$ and $G_{2}=\longrightarrow \longrightarrow$
$\operatorname{Pr}($ node 1 and 6 connected $)=\operatorname{Pr}\left(\right.$ subgraph of H admits a homomorphism from G_{1} or $\left.G_{2}\right)$

Conclusion and Future Work

Recap

- Studied the (in)approximability of probabilistic graph homomorphism in combined complexity, and also showed lower bounds on tractable (DNNF) provenance circuit sizes
- Results show that \#P-hardness usually implies hardness of approximation, with important exception of one-way path queries on DAGs

Conclusion and Future Work

Recap

- Studied the (in)approximability of probabilistic graph homomorphism in combined complexity, and also showed lower bounds on tractable (DNNF) provenance circuit sizes
- Results show that \#P-hardness usually implies hardness of approximation, with important exception of one-way path queries on DAGs

Future work

- Figuring out missing gaps (approximability status of $\mathrm{PHom}_{火}(1 \mathrm{WP}$, All) and PHom $_{k}$ (DWT, All))
- Extensions to richer queries and graph classes (e.g., bounded DAG-width, disconnected queries, recursion)
- Lifting to general prob. database setting, i.e., signatures of arbitrary arity

Thank you! Questions?

