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Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer
networks, etc.
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Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer

networks, etc.

When can we get a fully polynomial-time randomized approximation scheme
(FPRAS) for two-terminal network reliability?

Today: When the graph is a DAG, we can!

Slide 2/ 19



Motivating Question 2: Probabilistic Databases

Add probability labelling 7 to database D to get a tuple-independent probabilistic
database (TID) H = (D, «).

Classes Mentors
Lec ‘ Rm ‘ Time Lec Student
0.5 alice 02.10 10 0.2 alice david

0.1 bob 01.5 9 0.5 bob emma
0.5 charlie 01.6 10

Query: is there someone who teaches a class at 10 and mentors David?

q = 3x3y.Classes(x, y, 10) A Mentors(x, david)

Returns: ¢fB}=t=ue Pry(q) =7

Slide 3/ 19



Motivating Question 2: Probabilistic Databases

Theorem [van Bremen and Meel, PODS 2023]
Let g be a Boolean conjunctive query that:

e has bounded hypertree width

e is self-join-free

e eg., dxy.R(x) A S(x,y) v/ Ixy.R(x,y) A R(y,z) X
Then g can be tractably approximated (FPRAS) in combined complexity on
any TID.

Can we relax either of the two conditions on the query above and still always get an
FPRAS?
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Motivating Question 2: Probabilistic Databases

Theorem [van Bremen and Meel, PODS 2023]
Let g be a Boolean conjunctive query that:

e has bounded hypertree width

e is self-join-free

e eg., dxy.R(x) A S(x,y) v/ Ixy.R(x,y) A R(y,z) X
Then g can be tractably approximated (FPRAS) in combined complexity on
any TID.

Can we relax either of the two conditions on the query above and still always get an
FPRAS?

Today: No! (assuming RP # NP)
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Data as Graphs

To answer these motivating questions (among others), we consider the restricted
setting of binary signatures—i.e., data represented as a labelled graph.

WorkedAt
Alice BigCorp
Bob MegaCo
Charlie | AmaSoft
Charlie BigCorp
. WorkedAt | .
alice bigcorp
\No(\‘*?‘ép&
. " WorkedAt
charlie amasoft
WorkedAt
bob ————> megaco

BigCorp TinyCo
AmaSoft | SmallCorp
tinyco
smallcorp
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Querying Graphs
e Consider Boolean (yes/no) queries
on graphs

. WorkedAt | . HasSubsidiary
alice bigcorp tinyco

Ny
NG
N

. WorkedAt
charlie ——— amasoft ,,
s

7.
b8/t

WorkedAt N
bob ————— megaco smallcorp
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Querying Graphs
e Consider Boolean (yes/no) queries
on graphs

e We can ask: is there a match of a

pattern?
WorkedAt HasSubsidiar
e eg,x — y Sz
e Yes
. WorkedAt | . HasSubsidiary
alice bigcorp tinyco o CQ: WorkedAt(x, y), HasSub(y, z)

P\.
e

. WorkedAt
charlie — amasoft ,,
s,

Gt
b,
47
s
N2

WorkedAt h
bob ———— megaco smallcorp
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Querying Graphs

e Consider Boolean (yes/no) queries
on graphs

e We can ask: is there a match of a
pattern?

WorkedAt HasSubsidia
e eg,x — Yy \

e Yes
) WorkedAt . HasSubsidiary
alice bigcorp tinyco o CQ: WorkedAt(x, y), HasSub(y, )
P\.
e
e More formally: matches are
. WorkedAt h h, f h
charlie ——— amasoft ,, omomorphisms from a query grap
oss.
b
1’ e these homomorphisms need not be
WorkedAt P vel
bob ————— megaco smallcorp injectivel
WorkedAt WorkedAt
e eg,. X — y +— z
e Yes

o CQ: WorkedAt(x, y), WorkedAt(z, y)
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Querying Graphs

e Consider Boolean (yes/no) queries
on graphs

e We can ask: is there a match of a

pattern?
WorkedAt _HasSubsidia
e eg., X — y 4
e Yes
. WorkedAt | . HasSubsidiary
alice bigcorp tinyco o CQ: WorkedAt(x, y), HasSub(y, z)
P\.
e
e More formally: matches are
. WorkedAt .
charlie ——— amasoft ,, homomorphisms from a query graph
%3,
1 e these homomorphisms need not be
WorkedAt .. ol
bob ———— megaco smallcorp injective!
WorkedAt WorkedAt
e eg,x — y i z
o Yes

o CQ: WorkedAt(x, y), WorkedAt(z, y)

e Denote that G has a match in H by
G~H
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Uncertain Data

. 80% . 80% .
alice bigcorp tinyco

. 100%
charlie — amasoft
~_%0¢
\

60% -

bob ——— megaco smallcorp

e Probabilistic labelled graphs
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Uncertain Data

e Probabilistic labelled graphs

e Each edge carries an independent
probability

80% . 80% .
alice bigcorp tinyco

. 100%
charlie — amasoft
0,
- N
60%
bob ———> Mmegaco smallcorp
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Uncertain Data

. 80% .
alice — bigcorp

. 100%
charlie — amasoft

60%
bob ————— megaco

tinyco

smallcorp

e Probabilistic labelled graphs

e Each edge carries an independent
probability

e Each edge exists in the graph with
its given probability
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Uncertain Data

. 80% .
alice — bigcorp

. 100%
charlie — amasoft

60%
bob ————— megaco

tinyco

smallcorp

Probabilistic labelled graphs

Each edge carries an independent
probability

Each edge exists in the graph with
its given probability

Vertices always stay fixed

o Probability distribution on 2/
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Uncertain Data

. 80% .
alice — bigcorp

ofo

20

. 100%
charlie — amasoft

60%
bob ————— megaco

tinyco

smallcorp

Probabilistic labelled graphs

Each edge carries an independent
probability

Each edge exists in the graph with
its given probability

Vertices always stay fixed

o Probability distribution on 2!H!

subgraphs
Special case when all probabilities

are 50% — every subgraph is
equally likely
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Probabilistic Graph Homomorphism

PHom\ (G, H)

Given:

Compute:

e labelled (non-probabilistic) “query” graph G € G
e probabilistic labelled “instance” graph H € ‘H

probability that a randomly sampled subgraph H’ C H admits
a homomorphism from G:

Pr(G ~ H) = > [P ] a—Pre)

H'CH st. G~H’ eeH’ e€H\H’

Observe that the problem is stated in terms of combined complexity (both query and

instance as input).
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Probabilistic Graph Homomorphism

PHomy/(G, #)
Given:
e unlabelled (non-probabilistic) “query” graph G € G
e probabilistic unlabelled “instance” graph H € H
Compute: probability that a randomly sampled subgraph H’ C H admits

a homomorphism from G:

Pr(G ~ H) = Z HPr e) H (1—Pr(e))

H'CH s.t. G~~H’ e€H’ ecH\H’

Observe that the problem is stated in terms of combined complexity (both query and
instance as input).
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Graph Classes

Many possible choices for graph classes G and H:

» The class 1WP of one-way paths:
Ry Rm—1
a—...— am
» The class of two-way paths (2WP) of the form:

a — ... — am

. . R; R;
with each — being — or +—
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Previous Work

The complexity of probabilistic graph homomorphism has been studied before for

various combinations of graph classes G (query) and H (instance).
[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.

Table: Complexity of PHom( (G, H). Table: Complexity of PHomy(G, H).
gl H— Gl H—
1IWP 2WP DWT PT DAG All 1IWP 2WP DWT PT DAG All
1WP 1WP
2WP 2WP
DWT DWT
PT PT

e white () means that the problem lies in P
e dark grey (M) means #P-hardness
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Previous Work

The complexity of probabilistic graph homomorphism has been studied before for

various combinations of graph classes G (query) and H (instance).
[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.

Table: Complexity of PHom( (G, H). Table: Complexity of PHomy(G, H).
gl H— Gl H—
1IWP 2WP DWT PT DAG All 1IWP 2WP DWT PT DAG All
1WP 1WP
2WP 2WP
DWT DWT
PT PT

e white () means that the problem lies in P
e dark grey (M) means #P-hardness

What about for approximations?
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FPRAS for Probabilistic Graph Homomorphism

FPRAS for PHom| (G, #)/PHomy(G, H)

Given:
e (non-probabilistic) “query” graph G € G
e probabilistic “instance” graph H € ‘H
ec,0>0

Compute: a quantity t such that

Pri(1—¢)Pr(G~H)<t<(1+¢€)Pr(G~H)]>1-6

in time polynomial in |G|, |H|, ¢=%, and 61
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FPRAS for Probabilistic Graph Homomorphism

Query G:
WorkedAt HasSubsidiary
X — y > z
Instance H:
. 50% . 50% .
alice bigcorp tinyco
y’
charlie

e Transform the instance graph to one

in which all probabilities are
50%—the problem now is equivalent
to counting subgraphs that admit a
homomorphism from G

The key idea: intensional query
evaluation. We build a
non-deterministic ordered binary
decision diagram (nOBDD) A that
represents the Boolean provenance
of G on H. Satisfying assignments
of A are in bijection with the
subgraphs of H admitting a
homomorphism from G

e We can then apply an off-the-shelf

FPRAS for counting the satisfying
assignments of A

[Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]
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Crash course: (n)OBDDs

Ordered binary decision diagrams (OBDDs): compact representations of Boolean
functions.

(xAy)V(zAw)
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Crash course: (n)OBDDs

Non-deterministic ordered binary decision diagrams (nOBDDs): even more compact
representations of Boolean functions.

(xAy)V(zAw)

Theorem [Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]

Every nOBDD admits an FPRAS for counting its satisfying assignments.
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Probabilistic Graph Homomorphism via nOBDDs

Query:
WorkedAt HasSubsidiary
X — 'y — 'z

Instance:

tinyco

bigcorp

charlie

alice

alice

WorkedAt

WorkedAt . .
charlie  —" bigcorp

—" bigcorp

1
1

// . HasSubsidiary .
\ / bigcorp  —  tinyco
/

-’
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Probabilistic Graph Homomorphism via nOBDDs

Query:
WorkedAt HasSubsidiary
X —y — Zz . WorkedAt, . . WorkedAt, .
alice — bigcorp charlie  —" bigcorp
Instance: !
1
I
. 50% . 50% . \
alice bigcorp tinyco \
oo \ // . HasSubsidiary
y \ // bigcorp >~ tinyco
\ / P
charlie
Theorem
PHom (IWP, DAG) admits an FPRAS.
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Refined Perspective

We can also show a number of inapproximability results (not discussed today),
conditional on RP # NP.

Taken together with our approximability results, we may refine the table earlier:

Table: Complexity of PHom (G, H). Table: Complexity of PHomy(G, H).
gl H— gl H—
1IWP 2WP DWT PT DAG All 1IWP 2WP DWT PT DAG All
1WP 1WP ?
2wP 2wP —
DWT DWT ?
PT PT —

e white () means that the problem lies in P
e light grey () means #P-hardness but existence of an FPRAS

e dark grey (M) means #P-hardness and non-existence of an FPRAS assuming

RP # NP.
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Refined Perspective

We can also show a number of inapproximability results (not discussed today),
conditional on RP # NP.

Taken together with our approximability results, we may refine the table earlier:

Table: Complexity of PHom (G, H). Table: Complexity of PHomy(G, H).
gl H— Gl H —
1IWP 2WP DWT PT DAG All 1IWP 2WP DWT PT DAG All
1WP 1WP ?
2wP 2wP —
DWT DWT ?
PT PT —

e white () means that the problem lies in P
e light grey () means #P-hardness but existence of an FPRAS

e dark grey (M) means #P-hardness and non-existence of an FPRAS assuming

RP # NP.

We also get unconditional circuit lower bounds on the size of Boolean provenance
representations in a mildly tractable form (DNNF), for all of the inapproximable pairs.
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Application to Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer
networks, etc.
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Application to Operations Research

The two-terminal network reliability problem asks the following:
Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer
networks, etc.

Theorem
The two-terminal network reliability problem on DAGs admits an FPRAS.

Was an open problem specifically posed for DAGs. [Zenklusen and Laumanns, Networks 2010]
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Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each

link fails independently with a given probability.

Instance H =
50% 40%
1——m>2—+——— 3
50%\ \70% 50%\
10% 20%
4 ——>5——>6
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Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

Instance H =
50% 40%
1——m>2—+——— 3
50%\ \70% 50%\
10% 20%
4 ——>5——>6

Query G = ———

Pr(node 1 and 6 connected) = Pr(G ~» H)
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Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

Instance H =

50% 40%
1————»2—"—»3
30%
50% 70% 70%
10% 20%
4 ——>5——> 6

Query G = ————

Pr(node 1 and 6 connected) # Pr(G ~ H)
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Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

Instance H =
50% 40%
1——2————3
30%
50% 70% 70%
10% 20%
4 ———>5——>6

Queries G = ——— and G, = ——

Pr(node 1 and 6 connected) = Pr(subgraph of H admits a homomorphism from G or Gy)
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Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

Instance H =
50% 40%
1————>2—+——>3
30%
50% 70% 70%
10% 20%
44— >»5—>6

Queries Gy = —s———— and Gp = ——

Pr(node 1 and 6 connected) = Pr(subgraph of H admits a homomorphism from G; or G>)

i

‘nOBDD for G; on H‘ ‘ nOBDD for G, on H

Slide 18/ 19



Conclusion and Future Work

Recap

e Studied the (in)approximability of probabilistic graph homomorphism in
combined complexity, and also showed lower bounds on tractable (DNNF)
provenance circuit sizes

e Results show that #P-hardness usually implies hardness of approximation, with
important exception of one-way path queries on DAGs
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Conclusion and Future Work

Recap

e Studied the (in)approximability of probabilistic graph homomorphism in
combined complexity, and also showed lower bounds on tractable (DNNF)
provenance circuit sizes

e Results show that #P-hardness usually implies hardness of approximation, with

important exception of one-way path queries on DAGs
Future work
e Figuring out missing gaps (approximability status of PHomy(1WP, All) and
PHomy(DWT, All))

o Extensions to richer queries and graph classes (e.g., bounded DAG-width,
disconnected queries, recursion)

e Lifting to general prob. database setting, i.e., signatures of arbitrary arity
Thank you! Questions?
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