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Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer
networks, etc.

When can we get a fully polynomial-time randomized approximation scheme
(FPRAS) for two-terminal network reliability?

Today: When the graph is a DAG, we can!
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Motivating Question 2: Probabilistic Databases

Add probability labelling π to database D to get a tuple-independent probabilistic
database (TID) H = (D, π).

Classes

Lec Rm Time

0.5 alice 02.10 10

0.1 bob 01.5 9

0.5 charlie 01.6 10

Mentors

Lec Student

0.2 alice david

0.5 bob emma

Query: is there someone who teaches a class at 10 and mentors David?

q = ∃x∃y .Classes(x , y , 10) ∧Mentors(x , david)

Returns: q(D) = true PrH(q) = ?
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Motivating Question 2: Probabilistic Databases

Theorem [van Bremen and Meel, PODS 2023]

Let q be a Boolean conjunctive query that:

• has bounded hypertree width

• is self-join-free
• e.g., ∃xy .R(x) ∧ S(x, y) ✓ ∃xy .R(x, y) ∧ R(y , z) ✗

Then q can be tractably approximated (FPRAS) in combined complexity on
any TID.

Can we relax either of the two conditions on the query above and still always get an
FPRAS?

Today: No! (assuming RP ̸= NP)
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Data as Graphs

To answer these motivating questions (among others), we consider the restricted
setting of binary signatures—i.e., data represented as a labelled graph.

WorkedAt

Alice BigCorp

Bob MegaCo

Charlie AmaSoft

Charlie BigCorp

HasSubsidiary

BigCorp TinyCo

AmaSoft SmallCorp

alice

charlie

bob

bigcorp

amasoft

megaco

tinyco

smallcorp

WorkedAt

WorkedAt

WorkedAt

Work
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t

HasSubsidiary

HasSubsidiary
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Querying Graphs

alice

charlie

bob

bigcorp

amasoft

megaco

tinyco

smallcorp

WorkedAt

WorkedAt

WorkedAt

Work
edA

t

HasSubsidiary

HasSubsidiary

• Consider Boolean (yes/no) queries
on graphs

• We can ask: is there a match of a
pattern?

• e.g., x
WorkedAt−→ y

HasSubsidiary−→ z

• Yes

• CQ: WorkedAt(x, y),HasSub(y, z)

• More formally: matches are
homomorphisms from a query graph

• these homomorphisms need not be
injective!

• e.g., x
WorkedAt−→ y

WorkedAt←− z

• Yes

• CQ: WorkedAt(x, y),WorkedAt(z, y)

• Denote that G has a match in H by
G ⇝ H
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Uncertain Data

alice

charlie

bob

bigcorp

amasoft

megaco

tinyco

smallcorp

80%

60%

100%

30%

80%

90%

• Probabilistic labelled graphs

• Each edge carries an independent
probability

• Each edge exists in the graph with
its given probability

• Vertices always stay fixed

• Probability distribution on 2|H|

subgraphs

• Special case when all probabilities
are 50% → every subgraph is
equally likely
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Probabilistic Graph Homomorphism

PHomL(G,H)

Given:
• labelled (non-probabilistic) “query” graph G ∈ G
• probabilistic labelled “instance” graph H ∈ H

Compute: probability that a randomly sampled subgraph H′ ⊆ H admits
a homomorphism from G :

Pr(G ⇝ H) =
∑

H′⊆H s.t. G⇝H′

∏
e∈H′

Pr(e)
∏

e∈H\H′
(1− Pr(e))

Observe that the problem is stated in terms of combined complexity (both query and
instance as input).
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Probabilistic Graph Homomorphism

PHom̸L(G,H)

Given:
• unlabelled (non-probabilistic) “query” graph G ∈ G
• probabilistic unlabelled “instance” graph H ∈ H
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Graph Classes

Many possible choices for graph classes G and H:

▶ The class 1WP of one-way paths:

a1
R1−−→ . . .

Rm−1−−−−→ am

▶ The class of two-way paths (2WP) of the form:

a1 − . . . − am

with each − being
Ri−→ or

Ri←−

▶ . . .
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Previous Work

The complexity of probabilistic graph homomorphism has been studied before for
various combinations of graph classes G (query) and H (instance).
[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.

Table: Complexity of PHomL(G,H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP
2WP
DWT
PT

Table: Complexity of PHom̸L(G,H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP
2WP
DWT
PT

• white ( ) means that the problem lies in P

• dark grey ( ) means #P-hardness

What about for approximations?
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FPRAS for Probabilistic Graph Homomorphism

FPRAS for PHomL(G,H)/PHom̸L(G,H)

Given:
• (non-probabilistic) “query” graph G ∈ G
• probabilistic “instance” graph H ∈ H
• ϵ, δ > 0

Compute: a quantity t such that

Pr [(1− ϵ) Pr(G ⇝ H) ≤ t ≤ (1 + ϵ) Pr(G ⇝ H)] ≥ 1− δ

in time polynomial in |G |, |H|, ϵ−1, and δ−1
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FPRAS for Probabilistic Graph Homomorphism

Query G :

x
WorkedAt−→ y

HasSubsidiary−→ z

Instance H:

alice

charlie

bigcorp tinyco
50%

50%

50%

• Transform the instance graph to one
in which all probabilities are
50%—the problem now is equivalent
to counting subgraphs that admit a
homomorphism from G

• The key idea: intensional query
evaluation. We build a
non-deterministic ordered binary
decision diagram (nOBDD) ∆ that
represents the Boolean provenance
of G on H. Satisfying assignments
of ∆ are in bijection with the
subgraphs of H admitting a
homomorphism from G

• We can then apply an off-the-shelf
FPRAS for counting the satisfying
assignments of ∆
[Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]
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Crash course: (n)OBDDs

Ordered binary decision diagrams (OBDDs): compact representations of Boolean
functions.

(x ∧ y) ∨ (z ∧ w)

x

y

z

w

0 1

Theorem [Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]

Every nOBDD admits an FPRAS for counting its satisfying assignments.
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Probabilistic Graph Homomorphism via nOBDDs

Query:

x
WorkedAt−→ y

HasSubsidiary−→ z

Instance:

alice

charlie

bigcorp tinyco
50%

50%

50%

∨

alice
WorkedAt−→ bigcorp

bigcorp
HasSubsidiary−→ tinyco

0 1

charlie
WorkedAt−→ bigcorp

Theorem

PHomL(1WP,DAG) admits an FPRAS.
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Refined Perspective

We can also show a number of inapproximability results (not discussed today),
conditional on RP ̸= NP.

Taken together with our approximability results, we may refine the table earlier:

Table: Complexity of PHomL(G,H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP
2WP
DWT
PT

Table: Complexity of PHom̸L(G,H).

G ↓ H →
1WP 2WP DWT PT DAG All

1WP ?
2WP
DWT ?
PT

• white ( ) means that the problem lies in P

• light grey ( ) means #P-hardness but existence of an FPRAS

• dark grey ( ) means #P-hardness and non-existence of an FPRAS assuming
RP ̸= NP.

We also get unconditional circuit lower bounds on the size of Boolean provenance
representations in a mildly tractable form (DNNF), for all of the inapproximable pairs.
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Application to Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two
vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer
networks, etc.

Theorem

The two-terminal network reliability problem on DAGs admits an FPRAS.

Was an open problem specifically posed for DAGs. [Zenklusen and Laumanns, Networks 2010]
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Network Reliability: Example 1

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

1 2 3

4 5 6

50% 40%

10% 20%

50% 70% 50%

Instance H =

Query G = −→−→−→

Pr(node 1 and 6 connected) = Pr(G ⇝ H)
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Network Reliability: Example 2

Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

1 2 3

4 5 6

50% 40%

10% 20%

30%
50% 70% 70%

Instance H =

Query G = −→−→−→

Pr(node 1 and 6 connected) ̸= Pr(G ⇝ H)
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1 2 3

4 5 6

50% 40%

10% 20%

30%
50% 70% 70%
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Consider computing the probability that nodes 1 and 6 are connected, where each
link fails independently with a given probability.

1 2 3

4 5 6

50% 40%
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Instance H =

Queries G1 = −→−→−→ and G2 = −→−→

Pr(node 1 and 6 connected) = Pr(subgraph of H admits a homomorphism from G1 or G2)

∨

nOBDD for G1 on H nOBDD for G2 on H
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Conclusion and Future Work

Recap

• Studied the (in)approximability of probabilistic graph homomorphism in
combined complexity, and also showed lower bounds on tractable (DNNF)
provenance circuit sizes

• Results show that #P-hardness usually implies hardness of approximation, with
important exception of one-way path queries on DAGs

Future work

• Figuring out missing gaps (approximability status of PHom̸L(1WP,All) and
PHom̸L(DWT,All))

• Extensions to richer queries and graph classes (e.g., bounded DAG-width,
disconnected queries, recursion)

• Lifting to general prob. database setting, i.e., signatures of arbitrary arity

Thank you! Questions?
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