Conjunctive Queries on Probabilistic Graphs: The Limits of Approximability

Antoine Amarilli¹

Timothy van Bremen²

Kuldeep S. Meel³

Télécom Paris
 ² National University of Singapore
 ³ University of Toronto

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

When can we get a **fully polynomial-time randomized approximation scheme** (FPRAS) for two-terminal network reliability?

Motivating Question 1: Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

When can we get a **fully polynomial-time randomized approximation scheme** (FPRAS) for two-terminal network reliability?

Today: When the graph is a DAG, we can!

Motivating Question 2: Probabilistic Databases

Add probability labelling π to database D to get a tuple-independent probabilistic database (TID) $H = (D, \pi)$.

	Classes				Mentors		
	Lec	Rm	Time		Lec	Student	
0.5	alice	02.10	10	0.2	alice	david	
0.1	bob	01.5	9	0.5	bob	emma	
0.5	charlie	01.6	10				

Query: is there someone who teaches a class at 10 and mentors David?

 $q = \exists x \exists y. Classes(x, y, 10) \land Mentors(x, david)$

Returns: $q(D) = \text{true} \Pr_H(q) = ?$

Motivating Question 2: Probabilistic Databases

Can we **relax** either of the two conditions on the query above and still always get an FPRAS?

Motivating Question 2: Probabilistic Databases

Can we **relax** either of the two conditions on the query above and still always get an FPRAS?

Today: **No!** (assuming $RP \neq NP$)

Data as Graphs

To answer these motivating questions (among others), we consider the restricted setting of **binary signatures**—i.e., data represented as a **labelled graph**.

WorkedAt		 HasSubsidiary	
Alice	BigCorp	BigCorp	TinyCo
Bob	MegaCo	AmaSoft	SmallCorp
Charlie	AmaSoft		
Charlie	BigCorp		

• Consider **Boolean** (yes/no) queries on graphs

alice WorkedAt bigcorp tinyco charlie WorkedAt amasoft Hassubsidiary bob WorkedAt megaco smallcorp

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?

• e.g.,
$$x \xrightarrow{\text{WorkedAt}} y \xrightarrow{\text{HasSubsidiary}} z$$

- Yes
- CQ: WorkedAt(x, y), HasSub(y, z)

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?
 - e.g., $x \xrightarrow{WorkedAt} y \xrightarrow{HasSubsidiary} z$
 - Yes
 - CQ: WorkedAt(x, y), HasSub(y, z)
- More formally: matches are homomorphisms from a query graph
 - these homomorphisms need not be injective!
 - e.g., $x \xrightarrow{WorkedAt} y \xrightarrow{WorkedAt} z$
 - Yes
 - CQ: WorkedAt(x, y), WorkedAt(z, y)

- Consider Boolean (yes/no) queries on graphs
- We can ask: is there a match of a pattern?
 - e.g., $x \xrightarrow{WorkedAt} y \xrightarrow{HasSubsidiary} z$
 - Yes
 - CQ: WorkedAt(x, y), HasSub(y, z)
- More formally: matches are homomorphisms from a query graph
 - these homomorphisms need not be injective!
 - e.g., $x \xrightarrow{WorkedAt} y \xrightarrow{WorkedAt} z$
 - Yes
 - CQ: WorkedAt(x, y), WorkedAt(z, y)
- Denote that G has a match in H by $G \rightsquigarrow H$

• Probabilistic labelled graphs

- Probabilistic labelled graphs
- Each edge carries an **independent** probability

- Probabilistic labelled graphs
- Each edge carries an **independent** probability
- Each edge exists in the graph with its given probability

- Probabilistic labelled graphs
- Each edge carries an **independent** probability
- Each edge exists in the graph with its given probability
- Vertices always stay fixed

- Probabilistic labelled graphs
- Each edge carries an **independent** probability
- Each edge exists in the graph with its given probability
- Vertices always stay fixed
- Probability distribution on 2^{|H|}
 subgraphs

- Probabilistic labelled graphs
- Each edge carries an independent probability
- Each edge exists in the graph with its given probability
- Vertices always stay fixed
- Probability distribution on 2^{|H|}
 subgraphs
- Special case when all probabilities are 50% → every subgraph is equally likely

Probabilistic Graph Homomorphism

$PHom_{L}(\mathcal{G},\mathcal{H})$ Given:	• labelled (non-probabilistic) "query" graph $G \in G$ • probabilistic labelled "instance" graph $H \in H$
Compute:	probability that a randomly sampled subgraph $H' \subseteq H$ admits a homomorphism from G : $Pr(G \rightsquigarrow H) = \sum_{H' \subseteq H \text{ s.t. } G \rightsquigarrow H'} \prod_{e \in H'} Pr(e) \prod_{e \in H \setminus H'} (1 - Pr(e))$

Observe that the problem is stated in terms of *combined complexity* (both query and instance as input).

Probabilistic Graph Homomorphism

$PHom_{\not\!$	• unlabelled (non-probabilistic) "query" graph $G \in \mathcal{G}$ • probabilistic unlabelled "instance" graph $H \in \mathcal{H}$
Compute:	probability that a randomly sampled subgraph $H' \subseteq H$ admits a homomorphism from G : $Pr(G \rightsquigarrow H) = \sum_{H' \subseteq H \text{ s.t. } G \rightsquigarrow H'} \prod_{e \in H'} Pr(e) \prod_{e \in H \setminus H'} (1 - Pr(e))$

Observe that the problem is stated in terms of *combined complexity* (both query and instance as input).

Graph Classes

Many possible choices for graph classes ${\mathcal G}$ and ${\mathcal H}:$

The class 1WP of one-way paths:

$$a_1 \xrightarrow{R_1} \ldots \xrightarrow{R_{m-1}} a_m$$

The class of two-way paths (2WP) of the form:

 $a_1 - ... - a_m$

with each – being $\xrightarrow{R_i}$ or $\xleftarrow{R_i}$

▶ ...

Previous Work

The complexity of probabilistic graph homomorphism has been studied before for various combinations of graph classes \mathcal{G} (query) and \mathcal{H} (instance).

[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.

Table: Complexity of $PHom_L(\mathcal{G}, \mathcal{H})$.

Table: Complexity of $\mathsf{PHom}_{\mathsf{L}}(\mathcal{G}, \mathcal{H})$.

$\mathcal{G}\downarrow$	$ $ $\mathcal{H} \rightarrow$			$\mathcal{G}\downarrow$	$\mathcal{H} \rightarrow$					
	1WP 2WP	DWT	РΤ	DAG All		1WP	2WP	DWT	РΤ	DAG All
1WP					1WP					
2WP					2WP					
DWT					DWT					
ΡT					PT					

- white () means that the problem lies in P
- dark grey (■) means #P-hardness

Previous Work

The complexity of probabilistic graph homomorphism has been studied before for various combinations of graph classes \mathcal{G} (query) and \mathcal{H} (instance).

[Amarilli, Monet, and Senellart, PODS 2017]

Existing results imply the tables below.

Table: Complexity of $PHom_L(\mathcal{G}, \mathcal{H})$.

Table: Complexity of $\mathsf{PHom}_{\mathsf{L}}(\mathcal{G}, \mathcal{H})$.

- white () means that the problem lies in P
- dark grey (■) means #P-hardness

What about for approximations?

FPRAS for Probabilistic Graph Homomorphism

FPRAS for Probabilistic Graph Homomorphism

Query G:

$$x \stackrel{\text{WorkedAt}}{\longrightarrow} y \stackrel{\text{HasSubsidiary}}{\longrightarrow} z$$

Instance H:

- Transform the instance graph to one in which all probabilities are 50%—the problem now is equivalent to counting subgraphs that admit a homomorphism from G
- The key idea: intensional query evaluation. We build a non-deterministic ordered binary decision diagram (nOBDD) Δ that represents the Boolean provenance of G on H. Satisfying assignments of Δ are in bijection with the subgraphs of H admitting a homomorphism from G
- We can then apply an off-the-shelf FPRAS for counting the satisfying assignments of Δ

[Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]

Crash course: (n)OBDDs

Ordered binary decision diagrams (OBDDs): compact representations of Boolean functions.

 $(x \wedge y) \vee (z \wedge w)$

Crash course: (n)OBDDs

Non-deterministic ordered binary decision diagrams (nOBDDs): even more compact representations of Boolean functions.

 $(x \wedge y) \vee (z \wedge w)$

Crash course: (n)OBDDs

Non-deterministic ordered binary decision diagrams (nOBDDs): even more compact representations of Boolean functions.

 $(x \wedge y) \vee (z \wedge w)$

Theorem

[Arenas, Croquevielle, Jayaram, and Riveros, J. ACM 2021]

Every nOBDD admits an FPRAS for counting its satisfying assignments.

Probabilistic Graph Homomorphism via nOBDDs

Probabilistic Graph Homomorphism via nOBDDs

PHom_L(1WP, DAG) admits an FPRAS.

Refined Perspective

We can also show a number of inapproximability results (not discussed today), conditional on RP \neq NP.

Taken together with our approximability results, we may refine the table earlier:

- white () means that the problem lies in P
- light grey (■) means #P-hardness but existence of an FPRAS
- dark grey (III) means #P-hardness and non-existence of an FPRAS assuming RP \neq NP.

Refined Perspective

We can also show a number of inapproximability results (not discussed today), conditional on RP \neq NP.

Taken together with our approximability results, we may refine the table earlier:

- white () means that the problem lies in P
- light grey (■) means #P-hardness but existence of an FPRAS
- dark grey (III) means #P-hardness and non-existence of an FPRAS assuming RP \neq NP.

We also get **unconditional** circuit lower bounds on the size of Boolean provenance representations in a mildly tractable form (DNNF), for all of the inapproximable pairs.

Application to Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

Application to Operations Research

The two-terminal network reliability problem asks the following:

Given a directed graph with independent edge failure probabilities, and two vertices s and t, determine the probability that s and t are connected.

Applications to verifying reliability of power transmission networks, computer networks, etc.

Theorem

The two-terminal network reliability problem on DAGs admits an FPRAS.

Was an **open problem** specifically posed for DAGs.

[Zenklusen and Laumanns, Networks 2010]

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

Query $G = \longrightarrow \longrightarrow$

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

 $Pr(node 1 and 6 connected) = Pr(G \rightsquigarrow H)$

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

 $Pr(node 1 and 6 connected) \neq Pr(G \rightsquigarrow H)$

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

 $Pr(node 1 and 6 connected) = Pr(subgraph of H admits a homomorphism from G_1 or G_2)$

Consider **computing the probability that nodes 1 and 6 are connected**, where each link fails independently with a given probability.

Queries $G_1 = \longrightarrow \longrightarrow$ and $G_2 = \longrightarrow \longrightarrow$

 $Pr(node 1 and 6 connected) = Pr(subgraph of H admits a homomorphism from G_1 or G_2)$

Conclusion and Future Work

Recap

- Studied the (in)approximability of probabilistic graph homomorphism in combined complexity, and also showed lower bounds on tractable (DNNF) provenance circuit sizes
- Results show that #P-hardness usually implies hardness of approximation, with important exception of one-way path queries on DAGs

Conclusion and Future Work

Recap

- Studied the (in)approximability of probabilistic graph homomorphism in combined complexity, and also showed lower bounds on tractable (DNNF) provenance circuit sizes
- Results show that #P-hardness usually implies hardness of approximation, with important exception of one-way path queries on DAGs

Future work

- Figuring out missing gaps (approximability status of $\mathsf{PHom}_{\not\!\!L}(1\mathsf{WP},\mathsf{AII})$ and $\mathsf{PHom}_{\not\!\!L}(\mathsf{DWT},\mathsf{AII}))$
- Extensions to richer queries and graph classes (e.g., bounded DAG-width, disconnected queries, recursion)
- Lifting to general prob. database setting, i.e., signatures of arbitrary arity

Thank you! Questions?