

Uniform Reliability of Self-Join-Free Conjunctive Queries

Antoine Amarilli¹, Benny Kimelfeld²

March 23, 2021

¹Télécom Paris

²Technion

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q***)**:

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q***)**:
 - Input: a database instance I
 - Output: how many subinstances of I (subset of facts) satisfy Q

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q***)**:
 - Input: a database instance I
 - Output: how many subinstances of I (subset of facts) satisfy Q

Class			Lockdown	Consider the query:
Class Room Date		Date	$Q: \exists c r d \operatorname{Class}(c, r, d) \land \operatorname{Lockdown}(d)$	
CS 1	101	2021-03-26	2021-03-26	
CS 2	101	2021-04-02	2021-04-02	

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q***)**:
 - Input: a database instance I
 - Output: how many subinstances of I (subset of facts) satisfy Q

Classical contract of the co	SS	Lockdown	Consider the query:
Class Room Date		Date	Q : $\exists c r d $ Class $(c, r, d) \land $ Lockdown (d)
CS 1 101 CS 2 101	2021-03-26 2021-04-02	2021-03-26 2021-04-02	The number of subinstances satisfying Q is:

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q***)**:
 - Input: a database instance I
 - Output: how many subinstances of I (subset of facts) satisfy Q

Class			Lockdown	Consider the query:
Class	ass Room Date		Date	Q : $\exists c r d $ Class $(c, r, d) \land $ Lockdown (d) The number of subinstances satisfying Q
CS 1	101	2021-03-26	2021-03-26	is: $0 + 2 + 2 + 3 = 7$
CS 2	101	2021-04-02	2021-04-02	

- Fix a Boolean Conjunctive Query (CQ) Q
- Define the **counting problem UR(***Q*):
 - Input: a database instance I
 - Output: how many subinstances of I (subset of facts) satisfy Q

Class			Lockdown	Consider the query:		
Class	Class Room Date		Date	Q : $\exists c r d $ Class $(c, r, d) \land $ Lockdown (d)		
CS 1	101	2021-03-26	2021-03-26	The number of subinstances satisfying Q is: $0 + 2 + 2 + 3 = 7$		
CS 2	101	2021-04-02	2021-04-02			

- We can always solve UR(Q) by looking at all subinstances (exponential)
- $\rightarrow\,$ When can we achieve a better complexity?

• We think that uniform reliability is a natural question

- We think that uniform reliability is a natural question
- It also connects to other works:

- We think that uniform reliability is a natural question
- It also connects to other works:
 - Query explanations using measures from computational social choice:
 - the **Shapley value** [Livshits et al., 2020]
 - the causal effect [Salimi, 2016]

- We think that uniform reliability is a natural question
- It also connects to other works:
 - Query explanations using measures from computational social choice:
 - the **Shapley value** [Livshits et al., 2020]
 - the causal effect [Salimi, 2016]
 - Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

- We think that uniform reliability is a natural question
- It also connects to other works:
 - Query explanations using measures from computational social choice:
 - the **Shapley value** [Livshits et al., 2020]
 - the causal effect [Salimi, 2016]
 - Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]
- $\rightarrow\,$ Let's review the line of work on probabilistic query evaluation

Uncertain data and tuple-independent databases (TID)

- We consider data in the relational model on which we have uncertainty
- Tuple-independent databases (TID): the simplest probabilistic model

Class				Lockdown		
Class	Room	Date		Date		
CS 1	101	2021-03-26	80%	2021-03-26	20%	
CS 2	101	2021-04-02	70%	2021-04-02	40%	

Uncertain data and tuple-independent databases (TID)

- We consider data in the relational model on which we have uncertainty
- Tuple-independent databases (TID): the simplest probabilistic model

Class				Lockdown	
Class	Room	Date		Date	
CS 1	101	2021-03-26	80%	2021-03-26	20%
CS 2	101	2021-04-02	70%	2021-04-02	40%

- Semantics:
 - Every tuple is annotated with a probability
 - We assume that all tuples are **independent**
 - A TID concisely represents a probability distribution over the subinstances

Uncertain data and tuple-independent databases (TID)

- We consider data in the relational model on which we have uncertainty
- Tuple-independent databases (TID): the simplest probabilistic model

Class				Lockdown	
Class	Room	Date		Date	
CS 1	101	2021-03-26	80%	2021-03-26	20%
CS 2	101	2021-04-02	70%	2021-04-02	40%

- Semantics:
 - Every tuple is annotated with a probability
 - We assume that all tuples are **independent**
 - A TID concisely represents a probability distribution over the subinstances
- ightarrow Uniform reliability amounts to a TID where all facts have probability 1/2

- We consider again **Boolean Conjunctive Queries** (CQs)
 - e.g., $Q : \exists c r d Class(c, r, d) \land Lockdown(d)$

- We consider again **Boolean Conjunctive Queries** (CQs)
 - e.g., $Q : \exists c r d \operatorname{Class}(c, r, d) \land \operatorname{Lockdown}(d)$
- Semantics of Q on a TID: compute the probability that Q is true

Probabilistic query evaluation (PQE)

- We consider again **Boolean Conjunctive Queries** (CQs)
 - e.g., $Q : \exists c r d \operatorname{Class}(c, r, d) \land \operatorname{Lockdown}(d)$
- Semantics of Q on a TID: compute the probability that Q is true
- Formally, problem **PQE(***Q***)** for a fixed CQ *Q*:
 - Input: a TID I
 - Output: the total probability of the subinstances of *I* where *Q* is true

- We consider again **Boolean Conjunctive Queries** (CQs)
 - e.g., $Q : \exists c r d Class(c, r, d) \land Lockdown(d)$
- Semantics of Q on a TID: compute the probability that Q is true
- Formally, problem **PQE(***Q***)** for a fixed CQ *Q*:
 - Input: a TID I
 - Output: the total probability of the subinstances of *I* where *Q* is true
- Again we can solve **PQE(***Q***)** by looking at all subinstances (exponential)

- We consider again **Boolean Conjunctive Queries** (CQs)
 - e.g., $Q : \exists c r d Class(c, r, d) \land Lockdown(d)$
- Semantics of Q on a TID: compute the probability that Q is true
- Formally, problem **PQE(***Q***)** for a fixed CQ *Q*:
 - Input: a TID I
 - Output: the total probability of the subinstances of *I* where *Q* is true
- Again we can solve **PQE(***Q***)** by looking at all subinstances (exponential)
- $\rightarrow\,$ When can we achieve a better complexity?

Existing results

- Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
 - A CQ is **self-join-free** if no relation symbol is repeated
- Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

Existing results

- Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
 - A CQ is **self-join-free** if no relation symbol is repeated
- Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

In this work we stick to the result on SJFCQs:

Theorem [Dalvi and Suciu, 2007]

Let **Q** be a SJFCQ. Then:

- Either **Q** is **hierarchical** and **PQE(Q)** is in **PTIME**
- Or **Q** is **not hierarchical** and **PQE(Q)** is **#P**-hard

Existing results

- Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
 - A CQ is **self-join-free** if no relation symbol is repeated
- Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

In this work we stick to the result on SJFCQs:

Theorem [Dalvi and Suciu, 2007]

Let **Q** be a SJFCQ. Then:

- Either **Q** is **hierarchical** and **PQE(Q)** is in **PTIME**
- Or **Q** is **not hierarchical** and **PQE(Q)** is **#P**-hard

What is this class of hierarchical CQs?

Hierarchical CQs

For a CQ **Q**, write **atoms**(**x**) for the set of atoms where **x** appears

- A CQ is **hierarchical** if for every variables **x** and **y**
 - Either atoms(x) and atoms(y) are disjoint
 - Or one is **included** in the other

Hierarchical CQs

For a CQ **Q**, write **atoms**(**x**) for the set of atoms where **x** appears

- A CQ is **hierarchical** if for every variables **x** and **y**
 - Either atoms(x) and atoms(y) are disjoint
 - Or one is **included** in the other
- A CQ is **non-hierarchical** if there are two variables **x** and **y** such that
 - Some atom contains **both** *x* **and** *y*
 - Some atom contains **x but not y**
 - Some atom contains **y but not x**
 - \rightarrow Simplest example: the *R***-S-T query**: Q_1 : $\exists x \ y \ R(x), S(x, y), T(y)$

Hierarchical CQs

For a CQ **Q**, write **atoms**(**x**) for the set of atoms where **x** appears

- A CQ is **hierarchical** if for every variables **x** and **y**
 - Either atoms(x) and atoms(y) are disjoint
 - $\cdot\,$ Or one is **included** in the other
- A CQ is **non-hierarchical** if there are two variables **x** and **y** such that
 - Some atom contains **both** *x* **and** *y*
 - Some atom contains **x** but not **y**
 - Some atom contains **y** but not **x**
 - \rightarrow Simplest example: the *R***-S-T query**: Q_1 : $\exists x \ y \ R(x), S(x, y), T(y)$
- Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

For a CQ **Q**, write **atoms**(**x**) for the set of atoms where **x** appears

- A CQ is **hierarchical** if for every variables **x** and **y**
 - Either atoms(x) and atoms(y) are disjoint
 - Or one is **included** in the other
- A CQ is **non-hierarchical** if there are two variables **x** and **y** such that
 - Some atom contains **both** *x* **and** *y*
 - Some atom contains **x but not y**
 - Some atom contains **y** but not **x**
 - \rightarrow Simplest example: the *R***-S-T query**: Q_1 : $\exists x \ y \ R(x), S(x, y), T(y)$
- Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? $\exists c r d \text{ Class}(c, r, d) \land \text{Lockdown}(d)$

For a CQ **Q**, write **atoms**(**x**) for the set of atoms where **x** appears

- A CQ is **hierarchical** if for every variables **x** and **y**
 - Either atoms(x) and atoms(y) are disjoint
 - Or one is **included** in the other
- A CQ is **non-hierarchical** if there are two variables **x** and **y** such that
 - Some atom contains **both** *x* **and** *y*
 - Some atom contains **x but not y**
 - Some atom contains **y** but not **x**
 - \rightarrow Simplest example: the **R-S-T query**: Q_1 : $\exists x y R(x), S(x, y), T(y)$
- Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? $\exists c \, r \, d \, \text{Class}(c, r, d) \land \text{Lockdown}(d) \dots$ Yes!

Our results on uniform reliability

Let us return to our problem of **uniform reliability** (UR):

Our results on uniform reliability

Let us return to our problem of **uniform reliability** (UR):

• We only study the problem on SJFCQs (see future work)

Our results on uniform reliability

Let us return to our problem of **uniform reliability** (UR):

- We only study the problem on SJFCQs (see future work)
- For hierarchical SJFCQs, UR is tractable because PQE is tractable

Let us return to our problem of **uniform reliability** (UR):

- We only study the problem on SJFCQs (see future work)
- For hierarchical SJFCQs, UR is tractable because PQE is tractable
- For non-hierarchical SJFCQs, the complexity of UR is unknown
 - The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

Let us return to our problem of **uniform reliability** (UR):

- We only study the problem on SJFCQs (see future work)
- For hierarchical SJFCQs, UR is tractable because PQE is tractable
- For non-hierarchical SJFCQs, the complexity of UR is unknown
 - The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem

Let **Q** be a non-hierarchical SJFCQ. Then **UR**(**Q**) is **#P-hard**.

Let us return to our problem of **uniform reliability** (UR):

- We only study the problem on SJFCQs (see future work)
- For hierarchical SJFCQs, UR is tractable because PQE is tractable
- For non-hierarchical SJFCQs, the complexity of UR is unknown
 - The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem

Let **Q** be a non-hierarchical SJFCQ. Then **UR(Q)** is **#P-hard**.

Rest of the talk: proof sketch of this result

Reducing to *R*-*S*-*T***-type queries**

• An *R-S-T-type query* is a non-hierarchical SJFCQ of the form:

 $R_1(x), \ldots, R_r(x), S_1(x, y), \ldots, S_s(x, y), T_1(y), \ldots, T_t(y)$

for some integers r, s, t > 0

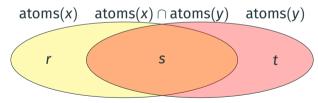
Reducing to *R*-*S*-*T***-type queries**

• An *R-S-T-type query* is a non-hierarchical SJFCQ of the form:

$$R_1(x), \ldots, R_r(x), S_1(x, y), \ldots, S_s(x, y), T_1(y), \ldots, T_t(y)$$

for some integers *r*, *s*, *t* > 0

• Lemma: for any non-hierarchical SJFCQ *Q*, there is an *R-S-T*-type query *Q*' such that UR(*Q*') reduces to UR(*Q*)



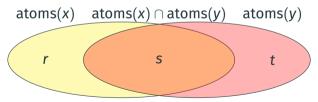
Reducing to *R*-*S*-*T***-type queries**

• An *R-S-T-type query* is a non-hierarchical SJFCQ of the form:

```
R_1(x), \ldots, R_r(x), S_1(x, y), \ldots, S_s(x, y), T_1(y), \ldots, T_t(y)
```

for some integers *r*, *s*, *t* > 0

• Lemma: for any non-hierarchical SJFCQ *Q*, there is an *R-S-T*-type query *Q*' such that UR(*Q*') reduces to UR(*Q*)



• So it suffices to show that UR(Q') is #P-hard for the R-S-T-type queries Q'

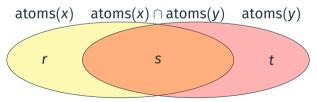
Reducing to *R*-*S*-*T***-type queries**

• An *R-S-T-type query* is a non-hierarchical SJFCQ of the form:

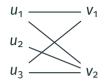
```
R_1(x), \ldots, R_r(x), S_1(x, y), \ldots, S_s(x, y), T_1(y), \ldots, T_t(y)
```

for some integers *r*, *s*, *t* > 0

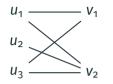
 Lemma: for any non-hierarchical SJFCQ Q, there is an R-S-T-type query Q' such that UR(Q') reduces to UR(Q)



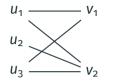
- So it suffices to show that UR(Q') is #P-hard for the *R-S-T*-type queries Q'
- In this talk: we focus for simplicity on Q_1 : $\exists x y R(x), S(x, y), T(y)$



- Independent set of a bipartite graph: subset of its vertices that contains no edge
 - Example: $\{u_2, v_1\}$

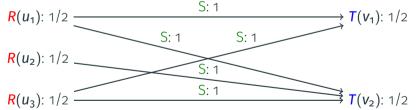


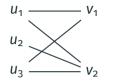
- Independent set of a bipartite graph: subset of its vertices that contains no edge
 - **Example:** $\{u_2, v_1\}$
- It is **#P-hard**, given a bipartite graph, to count its independent sets



- Independent set of a bipartite graph: subset of its vertices that contains no edge
 - Example: $\{u_2, v_1\}$
- It is **#P-hard**, given a bipartite graph, to count its independent sets

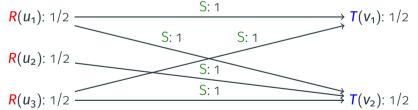
This easily shows the **#P-hardness** of PQE (but not UR!) for $Q_1 : \exists x \ y \ R(x), S(x, y), T(y)$:



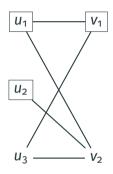


- Independent set of a bipartite graph: subset of its vertices that contains no edge
 - Example: $\{u_2, v_1\}$
- It is **#P-hard**, given a bipartite graph, to count its independent sets

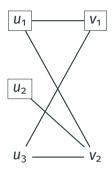
This easily shows the **#P-hardness** of PQE (but not UR!) for $Q_1 : \exists x \ y \ R(x), S(x, y), T(y)$:



We will show how to reduce from counting independent sets to $UR(Q_1)$

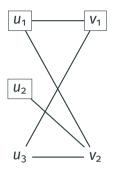


For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:



For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:

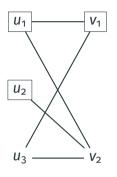
- c(W) the number of edges contained in W
 - Here, c(*W*) = 1



For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:

- c(W) the number of edges contained in W
 - **Here**, c(*W*) = 1
- d(W) (resp., d'(W)) the number of edges having exactly their left (resp., right) endpoint in W

• Here, d(W) = 2 and d'(W) = 1



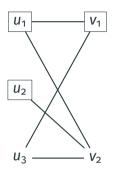
For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:

- c(W) the number of edges **contained** in W
 - **Here**, c(*W*) = 1
- d(W) (resp., d'(W)) the number of edges having exactly their left (resp., right) endpoint in W

• Here, d(W) = 2 and d'(W) = 1

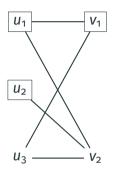
• e(W) the number of edges excluded from W

• **Here**,
$$e(W) = 1$$



For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:

- + c(W) the number of edges **contained** in W
 - **Here**, c(*W*) = 1
- d(W) (resp., d'(W)) the number of edges having exactly their left (resp., right) endpoint in W
 - Here, d(W) = 2 and d'(W) = 1
- e(W) the number of edges excluded from W
 - Here, e(*W*) = 1
- Hard problem: counting independent sets $X = |\{W \subseteq U \cup V \mid c(W) = 0\}|$



For a bipartite graph (U, V, E) and a subset $W \subseteq U \cup V$ of vertices, write:

- + c(W) the number of edges **contained** in W
 - Here, c(W) = 1
- d(W) (resp., d'(W)) the number of edges having exactly their left (resp., right) endpoint in W

• Here, d(W) = 2 and d'(W) = 1

• e(W) the number of edges excluded from W

• **Here**, e(W) = 1

- Hard problem: counting independent sets $X = |\{W \subseteq U \cup V \mid c(W) = 0\}|$
- Harder problem: computing all the values:

 $X_{c,d,d',e} = \big| \{ W \subseteq U \cup V \mid c(W) = c \text{ and } d(W) = d \text{ and } d'(W) = d' \text{ and } e(W) = e \} \big|$

Idea: coding to several copies

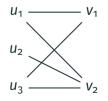
- We want to design a **reduction**:
 - We reduce from (we want): given a bipartite graph G, compute the $X_{c,d,d',e}$
 - We reduce to (we have): given a database instance D, compute $UR(Q_1)$

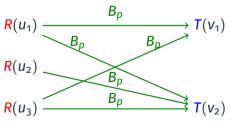
Idea: coding to several copies

- We want to design a **reduction**:
 - We reduce from (we want): given a bipartite graph G, compute the $X_{c,d,d',e}$
 - We reduce to (we have): given a database instance D, compute $UR(Q_1)$
- Idea: code G to a family of instances D_p indexed by p > 0

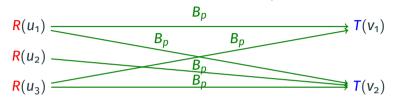
Idea: coding to several copies

- We want to design a **reduction**:
 - We reduce from (we want): given a bipartite graph G, compute the $X_{c,d,d',e}$
 - We reduce to (we have): given a database instance D, compute $UR(Q_1)$
- Idea: code G to a family of instances D_p indexed by p > 0
- Fix a box $B_p(a, b)$ for index p > 0: an instance with two distinguished elements (a, b)
- Code G for index p > o to an instance by:
 - putting an **R**-fact on each **U**-vertex and a **T**-fact on each **V**-vertex
 - coding every edge (u, v) by a copy of the box $B_p(u, v)$

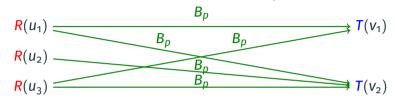




Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1



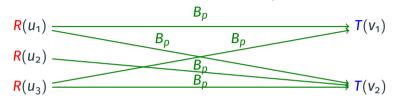
Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1



• We have:

$$N_p = \sum_{W \subseteq V} N_p^W$$

Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1



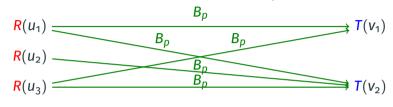
• We have:

$$N_p = \sum_{W \subseteq V} N_p^W$$

where N_p^W is the number of subinstances violating Q_1 when fixing the **R**-facts and **T**-facts to be precisely on **W**

• Now N_p^W only depends on:

Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1

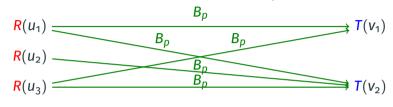


• We have:

 $N_p = \sum_{W \subseteq V} N_p^W$

- Now N_p^W only depends on:
 - The numbers c(W), d(W), d'(W), e(W) of edges contained, dangling, or excluded from W

Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1

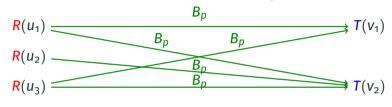


• We have:

 $N_p = \sum_{W \subseteq V} N_p^W$

- Now N_p^W only depends on:
 - The numbers c(W), d(W), d'(W), e(W) of edges contained, dangling, or excluded from W
 - The numbers γ_p , δ_p , δ'_p , η_p of subinstances of the box B_p that violate Q_1 when fixing **R**-facts on **a** and/or **T**-facts on **b**

Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1

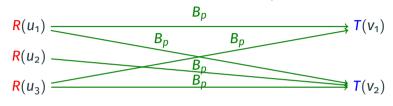


• We have:

$$N_{p} = \sum_{W \subseteq V} N_{p}^{W} = \sum_{W \subseteq V} \gamma_{p}^{c(W)} \delta_{p}^{d(W)} (\delta_{p}')^{d'(W)} \eta_{p}^{e(W)}$$

- Now N_p^W only depends on:
 - The numbers c(W), d(W), d'(W), e(W) of edges contained, dangling, or excluded from W
 - The numbers γ_p , δ_p , δ'_p , η_p of subinstances of the box B_p that violate Q_1 when fixing **R**-facts on **a** and/or **T**-facts on **b**

Take the coding of G for index p, and compute the number N_p of subinstances violating Q_1



• We have:

$$N_{p} = \sum_{W \subseteq V} N_{p}^{W} = \sum_{W \subseteq V} \gamma_{p}^{c(W)} \delta_{p}^{d(W)} (\delta_{p}')^{d'(W)} \eta_{p}^{e(W)} = \sum_{c,d,d',e} X_{c,d,d',e} \times \gamma_{p}^{c} \delta_{p}^{d} (\delta_{p}')^{d'} \eta_{p}^{e(W)}$$

- Now N_p^W only depends on:
 - The numbers c(W), d(W), d'(W), e(W) of edges contained, dangling, or excluded from W
 - The numbers γ_p , δ_p , δ'_p , η_p of subinstances of the box B_p that violate Q_1 when fixing **R**-facts on **a** and/or **T**-facts on **b**

Equation system and conclusion

We have shown the equation:

$$N_{p} = \sum_{c,d,d',e} X_{c,d,d',e} \times \gamma_{p}^{c} \delta_{p}^{d} (\delta_{p}')^{d'} \eta_{p}^{e}$$

where:

- The X_{c,d,d',e} are what we want (to count independent sets)
- The *N_p* are what we **have** (by solving UR(*Q*₁))
- The $\gamma_p^c \delta_p^d (\delta_p')^{d'} \eta_p^e$ are **coefficients** of a matrix **M** depending on the box family B_p

Equation system and conclusion

We have shown the equation:

$$N_{p} = \sum_{c,d,d',e} X_{c,d,d',e} \times \gamma_{p}^{c} \delta_{p}^{d} (\delta_{p}')^{d'} \eta_{p}^{e}$$

where:

- The $X_{c,d,d',e}$ are what we want (to count independent sets)
- The *N_p* are what we **have** (by solving UR(*Q*₁))
- The $\gamma_p^c \delta_p^d (\delta_p')^{d'} \eta_p^e$ are **coefficients** of a matrix **M** depending on the box family B_p

In other words we have:

$$\vec{N} = M\vec{X}$$

Equation system and conclusion

We have shown the equation:

$$N_{p} = \sum_{c,d,d',e} X_{c,d,d',e} \times \gamma_{p}^{c} \delta_{p}^{d} (\delta_{p}')^{d'} \eta_{p}^{e}$$

where:

- The X_{c,d,d',e} are what we want (to count independent sets)
- The *N_p* are what we **have** (by solving UR(*Q*₁))
- The $\gamma_p^c \delta_p^d (\delta_p')^{d'} \eta_p^e$ are **coefficients** of a matrix **M** depending on the box family B_p

In other words we have:

$$\vec{N} = M\vec{X}$$

We find a box family where *M* is **invertible**, so we recover \vec{X} from \vec{N} , showing hardness

Conclusion and future work

- We have shown that **uniform reliability (UR)** for non-hierarchical SJFCQs is **#P-hard**, so it is no easier than PQE
- We also have preliminary results for other PQE restrictions

Conclusion and future work

- We have shown that **uniform reliability (UR)** for non-hierarchical SJFCQs is **#P-hard**, so it is no easier than PQE
- We also have **preliminary results** for other PQE restrictions

Future work directions:

- Can we extend to the UCQ dichotomy, e.g., following [Kenig and Suciu, 2020]?
- What about the case of PQE with a constant probability $\neq 1/2$? or a different constant probability per relation?
- Which connection to **symmetric model counting** [Beame et al., 2015]?

Conclusion and future work

- We have shown that **uniform reliability (UR)** for non-hierarchical SJFCQs is **#P-hard**, so it is no easier than PQE
- We also have **preliminary results** for other PQE restrictions

Future work directions:

- Can we extend to the UCQ dichotomy, e.g., following [Kenig and Suciu, 2020]?
- What about the case of PQE with a constant probability $\neq 1/2$? or a different constant probability per relation?
- Which connection to **symmetric model counting** [Beame et al., 2015]?

Thanks for your attention!

 Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).
 Symmetric weighted first-order model counting. In PODS.

- Dalvi, N. and Suciu, D. (2007).
 Efficient query evaluation on probabilistic databases.
 VLDB Journal, 16(4):523–544.
- Dalvi, N. and Suciu, D. (2012).
 The dichotomy of probabilistic inference for unions of conjunctive queries.
 J. ACM, 59(6).

Kenig, B. and Suciu, D. (2020). A dichotomy for the generalized model counting problem for unions of conjunctive queries. CoRR. abs/2008.00896.

To appear at PODS 2021.

- Livshits, E., Bertossi, L., Kimelfeld, B., and Sebag, M. (2020).
 The Shapley Value of Tuples in Query Answering.
 In ICDT.
- 📔 Salimi, B. (2016).

Quantifying Causal Effects on Query Answering in Databases.

In TaPP.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).Probabilistic Databases.

Synthesis Lectures on Data Management. Morgan & Claypool Publishers.