
Uniform Reliability of Self-Join-Free Conjunctive Queries

Antoine Amarilli1, Benny Kimelfeld2

March 23, 2021
1Télécom Paris

2Technion

1/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is:

0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Uniform reliability

We study the uniform reliability (UR) problem for relational databases:

• Fix a Boolean Conjunctive Query (CQ) Q
• Define the counting problem UR(Q):

• Input: a database instance I
• Output: how many subinstances of I (subset of facts) satisfy Q

Class

Class Room Date

CS 1 101 2021-03-26
CS 2 101 2021-04-02

Lockdown

Date

2021-03-26
2021-04-02

Consider the query:
Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)
The number of subinstances satisfying Q
is: 0 + 2 + 2 + 3 = 7

• We can always solve UR(Q) by looking at all subinstances (exponential)
→ When can we achieve a better complexity?

2/15

Motivation and connections

• We think that uniform reliability is a natural question

• It also connects to other works:
• Query explanations using measures from computational social choice:

• the Shapley value [Livshits et al., 2020]
• the causal e�ect [Salimi, 2016]

• Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

→ Let’s review the line of work on probabilistic query evaluation

3/15

Motivation and connections

• We think that uniform reliability is a natural question

• It also connects to other works:

• Query explanations using measures from computational social choice:
• the Shapley value [Livshits et al., 2020]
• the causal e�ect [Salimi, 2016]

• Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

→ Let’s review the line of work on probabilistic query evaluation

3/15

Motivation and connections

• We think that uniform reliability is a natural question

• It also connects to other works:
• Query explanations using measures from computational social choice:

• the Shapley value [Livshits et al., 2020]
• the causal e�ect [Salimi, 2016]

• Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

→ Let’s review the line of work on probabilistic query evaluation

3/15

Motivation and connections

• We think that uniform reliability is a natural question

• It also connects to other works:
• Query explanations using measures from computational social choice:

• the Shapley value [Livshits et al., 2020]
• the causal e�ect [Salimi, 2016]

• Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

→ Let’s review the line of work on probabilistic query evaluation

3/15

Motivation and connections

• We think that uniform reliability is a natural question

• It also connects to other works:
• Query explanations using measures from computational social choice:

• the Shapley value [Livshits et al., 2020]
• the causal e�ect [Salimi, 2016]

• Probabilistic query evaluation on tuple-independent databases [Suciu et al., 2011]

→ Let’s review the line of work on probabilistic query evaluation

3/15

Uncertain data and tuple-independent databases (TID)

• We consider data in the relational model on which we have uncertainty

• Tuple-independent databases (TID): the simplest probabilistic model

Class

Class Room Date

CS 1 101 2021-03-26 80%
CS 2 101 2021-04-02 70%

Lockdown

Date

2021-03-26 20%
2021-04-02 40%

• Semantics:
• Every tuple is annotated with a probability
• We assume that all tuples are independent
• A TID concisely represents a probability distribution over the subinstances

→ Uniform reliability amounts to a TID where all facts have probability 1/2

4/15

Uncertain data and tuple-independent databases (TID)

• We consider data in the relational model on which we have uncertainty

• Tuple-independent databases (TID): the simplest probabilistic model

Class

Class Room Date

CS 1 101 2021-03-26 80%
CS 2 101 2021-04-02 70%

Lockdown

Date

2021-03-26 20%
2021-04-02 40%

• Semantics:
• Every tuple is annotated with a probability
• We assume that all tuples are independent
• A TID concisely represents a probability distribution over the subinstances

→ Uniform reliability amounts to a TID where all facts have probability 1/2

4/15

Uncertain data and tuple-independent databases (TID)

• We consider data in the relational model on which we have uncertainty

• Tuple-independent databases (TID): the simplest probabilistic model

Class

Class Room Date

CS 1 101 2021-03-26 80%
CS 2 101 2021-04-02 70%

Lockdown

Date

2021-03-26 20%
2021-04-02 40%

• Semantics:
• Every tuple is annotated with a probability
• We assume that all tuples are independent
• A TID concisely represents a probability distribution over the subinstances

→ Uniform reliability amounts to a TID where all facts have probability 1/2
4/15

Probabilistic query evaluation (PQE)

• We consider again Boolean Conjunctive Queries (CQs)
• e.g., Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

• Semantics of Q on a TID: compute the probability that Q is true

• Formally, problem PQE(Q) for a fixed CQ Q:
• Input: a TID I
• Output: the total probability of the subinstances of I where Q is true

• Again we can solve PQE(Q) by looking at all subinstances (exponential)

→ When can we achieve a better complexity?

5/15

Probabilistic query evaluation (PQE)

• We consider again Boolean Conjunctive Queries (CQs)
• e.g., Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

• Semantics of Q on a TID: compute the probability that Q is true

• Formally, problem PQE(Q) for a fixed CQ Q:
• Input: a TID I
• Output: the total probability of the subinstances of I where Q is true

• Again we can solve PQE(Q) by looking at all subinstances (exponential)

→ When can we achieve a better complexity?

5/15

Probabilistic query evaluation (PQE)

• We consider again Boolean Conjunctive Queries (CQs)
• e.g., Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

• Semantics of Q on a TID: compute the probability that Q is true

• Formally, problem PQE(Q) for a fixed CQ Q:
• Input: a TID I
• Output: the total probability of the subinstances of I where Q is true

• Again we can solve PQE(Q) by looking at all subinstances (exponential)

→ When can we achieve a better complexity?

5/15

Probabilistic query evaluation (PQE)

• We consider again Boolean Conjunctive Queries (CQs)
• e.g., Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

• Semantics of Q on a TID: compute the probability that Q is true

• Formally, problem PQE(Q) for a fixed CQ Q:
• Input: a TID I
• Output: the total probability of the subinstances of I where Q is true

• Again we can solve PQE(Q) by looking at all subinstances (exponential)

→ When can we achieve a better complexity?

5/15

Probabilistic query evaluation (PQE)

• We consider again Boolean Conjunctive Queries (CQs)
• e.g., Q : ∃c r d Class(c, r,d) ∧ Lockdown(d)

• Semantics of Q on a TID: compute the probability that Q is true

• Formally, problem PQE(Q) for a fixed CQ Q:
• Input: a TID I
• Output: the total probability of the subinstances of I where Q is true

• Again we can solve PQE(Q) by looking at all subinstances (exponential)

→ When can we achieve a better complexity?

5/15

Existing results

• Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
• A CQ is self-join-free if no relation symbol is repeated

• Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

In this work we stick to the result on SJFCQs:

Theorem [Dalvi and Suciu, 2007]

Let Q be a SJFCQ. Then:

• Either Q is hierarchical and PQE(Q) is in PTIME

• Or Q is not hierarchical and PQE(Q) is #P-hard

What is this class of hierarchical CQs?

6/15

Existing results

• Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
• A CQ is self-join-free if no relation symbol is repeated

• Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

In this work we stick to the result on SJFCQs:

Theorem [Dalvi and Suciu, 2007]

Let Q be a SJFCQ. Then:

• Either Q is hierarchical and PQE(Q) is in PTIME

• Or Q is not hierarchical and PQE(Q) is #P-hard

What is this class of hierarchical CQs?

6/15

Existing results

• Complexity of PQE shown in [Dalvi and Suciu, 2007] for self-join-free CQs (SJFCQs)
• A CQ is self-join-free if no relation symbol is repeated

• Later extended to unions of conjunctive queries [Dalvi and Suciu, 2012]

In this work we stick to the result on SJFCQs:

Theorem [Dalvi and Suciu, 2007]

Let Q be a SJFCQ. Then:

• Either Q is hierarchical and PQE(Q) is in PTIME

• Or Q is not hierarchical and PQE(Q) is #P-hard

What is this class of hierarchical CQs?
6/15

Hierarchical CQs

For a CQ Q, write atoms(x) for the set of atoms where x appears

• A CQ is hierarchical if for every variables x and y
• Either atoms(x) and atoms(y) are disjoint
• Or one is included in the other

• A CQ is non-hierarchical if there are two variables x and y such that
• Some atom contains both x and y
• Some atom contains x but not y
• Some atom contains y but not x
→ Simplest example: the R-S-T query: Q1 : ∃x y R(x), S(x, y), T(y)

• Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? ∃c r d Class(c, r,d) ∧ Lockdown(d) ... Yes!

7/15

Hierarchical CQs

For a CQ Q, write atoms(x) for the set of atoms where x appears

• A CQ is hierarchical if for every variables x and y
• Either atoms(x) and atoms(y) are disjoint
• Or one is included in the other

• A CQ is non-hierarchical if there are two variables x and y such that
• Some atom contains both x and y
• Some atom contains x but not y
• Some atom contains y but not x
→ Simplest example: the R-S-T query: Q1 : ∃x y R(x), S(x, y), T(y)

• Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? ∃c r d Class(c, r,d) ∧ Lockdown(d) ... Yes!

7/15

Hierarchical CQs

For a CQ Q, write atoms(x) for the set of atoms where x appears

• A CQ is hierarchical if for every variables x and y
• Either atoms(x) and atoms(y) are disjoint
• Or one is included in the other

• A CQ is non-hierarchical if there are two variables x and y such that
• Some atom contains both x and y
• Some atom contains x but not y
• Some atom contains y but not x
→ Simplest example: the R-S-T query: Q1 : ∃x y R(x), S(x, y), T(y)

• Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? ∃c r d Class(c, r,d) ∧ Lockdown(d) ... Yes!

7/15

Hierarchical CQs

For a CQ Q, write atoms(x) for the set of atoms where x appears

• A CQ is hierarchical if for every variables x and y
• Either atoms(x) and atoms(y) are disjoint
• Or one is included in the other

• A CQ is non-hierarchical if there are two variables x and y such that
• Some atom contains both x and y
• Some atom contains x but not y
• Some atom contains y but not x
→ Simplest example: the R-S-T query: Q1 : ∃x y R(x), S(x, y), T(y)

• Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? ∃c r d Class(c, r,d) ∧ Lockdown(d)

... Yes!

7/15

Hierarchical CQs

For a CQ Q, write atoms(x) for the set of atoms where x appears

• A CQ is hierarchical if for every variables x and y
• Either atoms(x) and atoms(y) are disjoint
• Or one is included in the other

• A CQ is non-hierarchical if there are two variables x and y such that
• Some atom contains both x and y
• Some atom contains x but not y
• Some atom contains y but not x
→ Simplest example: the R-S-T query: Q1 : ∃x y R(x), S(x, y), T(y)

• Intuition for arity-2 queries: the hierarchical CQs are unions of star-shaped patterns

Exercise: Is our example CQ hierarchical? ∃c r d Class(c, r,d) ∧ Lockdown(d) ... Yes!
7/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result

8/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result

8/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result

8/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result

8/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result

8/15

Our results on uniform reliability

Let us return to our problem of uniform reliability (UR):

• We only study the problem on SJFCQs (see future work)

• For hierarchical SJFCQs, UR is tractable because PQE is tractable

• For non-hierarchical SJFCQs, the complexity of UR is unknown
• The hardness proof of PQE (see later) crucially uses probabilities 1/2 and 1

We settle the complexity of UR for SJFCQs by showing:

Theorem
Let Q be a non-hierarchical SJFCQ. Then UR(Q) is #P-hard.

Rest of the talk: proof sketch of this result
8/15

Reducing to R-S-T-type queries

• An R-S-T-type query is a non-hierarchical SJFCQ of the form:

R1(x), . . . ,Rr(x), S1(x, y), . . . , Ss(x, y), T1(y), . . . , Tt(y)

for some integers r, s, t > 0

• Lemma: for any non-hierarchical SJFCQ Q, there is an R-S-T-type query Q′ such that
UR(Q′) reduces to UR(Q)

atoms(x) atoms(x) ∩ atoms(y) atoms(y)

r s t

• So it su�ces to show that UR(Q′) is #P-hard for the R-S-T-type queries Q′

• In this talk: we focus for simplicity on Q1 : ∃x y R(x), S(x, y), T(y)

9/15

Reducing to R-S-T-type queries

• An R-S-T-type query is a non-hierarchical SJFCQ of the form:

R1(x), . . . ,Rr(x), S1(x, y), . . . , Ss(x, y), T1(y), . . . , Tt(y)

for some integers r, s, t > 0

• Lemma: for any non-hierarchical SJFCQ Q, there is an R-S-T-type query Q′ such that
UR(Q′) reduces to UR(Q)

atoms(x) atoms(x) ∩ atoms(y) atoms(y)

r s t

• So it su�ces to show that UR(Q′) is #P-hard for the R-S-T-type queries Q′

• In this talk: we focus for simplicity on Q1 : ∃x y R(x), S(x, y), T(y)

9/15

Reducing to R-S-T-type queries

• An R-S-T-type query is a non-hierarchical SJFCQ of the form:

R1(x), . . . ,Rr(x), S1(x, y), . . . , Ss(x, y), T1(y), . . . , Tt(y)

for some integers r, s, t > 0

• Lemma: for any non-hierarchical SJFCQ Q, there is an R-S-T-type query Q′ such that
UR(Q′) reduces to UR(Q)

atoms(x) atoms(x) ∩ atoms(y) atoms(y)

r s t

• So it su�ces to show that UR(Q′) is #P-hard for the R-S-T-type queries Q′

• In this talk: we focus for simplicity on Q1 : ∃x y R(x), S(x, y), T(y)

9/15

Reducing to R-S-T-type queries

• An R-S-T-type query is a non-hierarchical SJFCQ of the form:

R1(x), . . . ,Rr(x), S1(x, y), . . . , Ss(x, y), T1(y), . . . , Tt(y)

for some integers r, s, t > 0

• Lemma: for any non-hierarchical SJFCQ Q, there is an R-S-T-type query Q′ such that
UR(Q′) reduces to UR(Q)

atoms(x) atoms(x) ∩ atoms(y) atoms(y)

r s t

• So it su�ces to show that UR(Q′) is #P-hard for the R-S-T-type queries Q′

• In this talk: we focus for simplicity on Q1 : ∃x y R(x), S(x, y), T(y)
9/15

Hard problem: counting independent sets of bipartite graphs

u1

u2

u3

v1

v2

• Independent set of a bipartite graph: subset of its vertices that
contains no edge

• Example: {u2, v1}

• It is #P-hard, given a bipartite graph, to count its independent sets

This easily shows the #P-hardness of PQE (but not UR!) for Q1 : ∃x y R(x), S(x, y), T(y):
R(u1): 1/2

R(u2): 1/2

R(u3): 1/2

T(v1): 1/2

T(v2): 1/2

S: 1

S: 1

S: 1

S: 1

S: 1

We will show how to reduce from counting independent sets to UR(Q1)

10/15

Hard problem: counting independent sets of bipartite graphs

u1

u2

u3

v1

v2

• Independent set of a bipartite graph: subset of its vertices that
contains no edge

• Example: {u2, v1}

• It is #P-hard, given a bipartite graph, to count its independent sets

This easily shows the #P-hardness of PQE (but not UR!) for Q1 : ∃x y R(x), S(x, y), T(y):
R(u1): 1/2

R(u2): 1/2

R(u3): 1/2

T(v1): 1/2

T(v2): 1/2

S: 1

S: 1

S: 1

S: 1

S: 1

We will show how to reduce from counting independent sets to UR(Q1)

10/15

Hard problem: counting independent sets of bipartite graphs

u1

u2

u3

v1

v2

• Independent set of a bipartite graph: subset of its vertices that
contains no edge

• Example: {u2, v1}

• It is #P-hard, given a bipartite graph, to count its independent sets

This easily shows the #P-hardness of PQE (but not UR!) for Q1 : ∃x y R(x), S(x, y), T(y):
R(u1): 1/2

R(u2): 1/2

R(u3): 1/2

T(v1): 1/2

T(v2): 1/2

S: 1

S: 1

S: 1

S: 1

S: 1

We will show how to reduce from counting independent sets to UR(Q1)

10/15

Hard problem: counting independent sets of bipartite graphs

u1

u2

u3

v1

v2

• Independent set of a bipartite graph: subset of its vertices that
contains no edge

• Example: {u2, v1}

• It is #P-hard, given a bipartite graph, to count its independent sets

This easily shows the #P-hardness of PQE (but not UR!) for Q1 : ∃x y R(x), S(x, y), T(y):
R(u1): 1/2

R(u2): 1/2

R(u3): 1/2

T(v1): 1/2

T(v2): 1/2

S: 1

S: 1

S: 1

S: 1

S: 1

We will show how to reduce from counting independent sets to UR(Q1)
10/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣

11/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣

11/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣

11/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣

11/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣

11/15

Idea: parameterizing the count

u1

u2

u3

v1

v2

For a bipartite graph (U, V, E) and a subset W ⊆ U∪ V of vertices, write:

• c(W) the number of edges contained in W
• Here, c(W) = 1

• d(W) (resp., d′(W)) the number of edges having exactly
their left (resp., right) endpoint in W

• Here, d(W) = 2 and d′(W) = 1

• e(W) the number of edges excluded from W
• Here, e(W) = 1

• Hard problem: counting independent sets X = |{W ⊆ U ∪ V | c(W) = 0}|

• Harder problem: computing all the values:

Xc,d,d′,e =
∣∣{W ⊆ U ∪ V | c(W) = c and d(W) = d and d′(W) = d′ and e(W) = e}

∣∣
11/15

Idea: coding to several copies

• We want to design a reduction:
• We reduce from (we want): given a bipartite graph G, compute the Xc,d,d′,e
• We reduce to (we have): given a database instance D, compute UR(Q1)

• Idea: code G to a family of instances Dp indexed by p > 0
• Fix a box Bp(a,b) for index p > 0: an instance with two distinguished elements (a,b)
• Code G for index p > 0 to an instance by:

• putting an R-fact on each U-vertex and a T-fact on each V-vertex
• coding every edge (u, v) by a copy of the box Bp(u, v)

u1

u2

u3

v1

v2

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp

Bp

Bp

Bp

Bp

12/15

Idea: coding to several copies

• We want to design a reduction:
• We reduce from (we want): given a bipartite graph G, compute the Xc,d,d′,e
• We reduce to (we have): given a database instance D, compute UR(Q1)

• Idea: code G to a family of instances Dp indexed by p > 0

• Fix a box Bp(a,b) for index p > 0: an instance with two distinguished elements (a,b)
• Code G for index p > 0 to an instance by:

• putting an R-fact on each U-vertex and a T-fact on each V-vertex
• coding every edge (u, v) by a copy of the box Bp(u, v)

u1

u2

u3

v1

v2

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp

Bp

Bp

Bp

Bp

12/15

Idea: coding to several copies

• We want to design a reduction:
• We reduce from (we want): given a bipartite graph G, compute the Xc,d,d′,e
• We reduce to (we have): given a database instance D, compute UR(Q1)

• Idea: code G to a family of instances Dp indexed by p > 0
• Fix a box Bp(a,b) for index p > 0: an instance with two distinguished elements (a,b)
• Code G for index p > 0 to an instance by:

• putting an R-fact on each U-vertex and a T-fact on each V-vertex
• coding every edge (u, v) by a copy of the box Bp(u, v)

u1

u2

u3

v1

v2

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp

Bp

Bp

Bp

Bp

12/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp

• We have:

Np =
∑
W⊆V

NWp

=
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b

13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp

=
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W

• Now NWp only depends on:
• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b

13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp

=
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b

13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp

=
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W

• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b

13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp

=
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b 13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp =
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p

=
∑

c,d,d′,e
Xc,d,d′,e × γcpδdp(δ′p)d

′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b 13/15

Getting an equation system

Take the coding of G for index p, and compute the number Np of subinstances violating Q1

R(u1)

R(u2)

R(u3)

T(v1)

T(v2)

Bp
Bp

Bp

Bp

Bp
• We have:

Np =
∑
W⊆V

NWp =
∑
W⊆V

γ
c(W)
p δ

d(W)
p (δ′p)

d′(W)η
e(W)
p =

∑
c,d,d′,e

Xc,d,d′,e × γcpδdp(δ′p)d
′
ηep

where NWp is the number of subinstances violating Q1 when fixing the R-facts and
T-facts to be precisely on W
• Now NWp only depends on:

• The numbers c(W),d(W),d′(W), e(W) of edges contained, dangling, or excluded from W
• The numbers γp, δp, δ′p, ηp of subinstances of the box Bp that violate Q1

when fixing R-facts on a and/or T-facts on b 13/15

Equation system and conclusion

We have shown the equation:

Np =
∑

c,d,d′,e
Xc,d,d′,e × γcpδdp(δ′p)d

′
ηep

where:

• The Xc,d,d′,e are what we want (to count independent sets)

• The Np are what we have (by solving UR(Q1))

• The γcpδdp(δ′p)d
′
ηep are coe�cients of a matrix M depending on the box family Bp

In other words we have:
~N = M~X

We find a box family where M is invertible, so we recover ~X from ~N, showing hardness

14/15

Equation system and conclusion

We have shown the equation:

Np =
∑

c,d,d′,e
Xc,d,d′,e × γcpδdp(δ′p)d

′
ηep

where:

• The Xc,d,d′,e are what we want (to count independent sets)

• The Np are what we have (by solving UR(Q1))

• The γcpδdp(δ′p)d
′
ηep are coe�cients of a matrix M depending on the box family Bp

In other words we have:
~N = M~X

We find a box family where M is invertible, so we recover ~X from ~N, showing hardness

14/15

Equation system and conclusion

We have shown the equation:

Np =
∑

c,d,d′,e
Xc,d,d′,e × γcpδdp(δ′p)d

′
ηep

where:

• The Xc,d,d′,e are what we want (to count independent sets)

• The Np are what we have (by solving UR(Q1))

• The γcpδdp(δ′p)d
′
ηep are coe�cients of a matrix M depending on the box family Bp

In other words we have:
~N = M~X

We find a box family where M is invertible, so we recover ~X from ~N, showing hardness
14/15

Conclusion and future work

• We have shown that uniform reliability (UR) for non-hierarchical SJFCQs is #P-hard,
so it is no easier than PQE

• We also have preliminary results for other PQE restrictions

Future work directions:

• Can we extend to the UCQ dichotomy, e.g., following [Kenig and Suciu, 2020]?

• What about the case of PQE with a constant probability 6= 1/2?
or a di�erent constant probability per relation?

• Which connection to symmetric model counting [Beame et al., 2015]?

Thanks for your attention!

15/15

Conclusion and future work

• We have shown that uniform reliability (UR) for non-hierarchical SJFCQs is #P-hard,
so it is no easier than PQE

• We also have preliminary results for other PQE restrictions

Future work directions:

• Can we extend to the UCQ dichotomy, e.g., following [Kenig and Suciu, 2020]?

• What about the case of PQE with a constant probability 6= 1/2?
or a di�erent constant probability per relation?

• Which connection to symmetric model counting [Beame et al., 2015]?

Thanks for your attention!

15/15

Conclusion and future work

• We have shown that uniform reliability (UR) for non-hierarchical SJFCQs is #P-hard,
so it is no easier than PQE

• We also have preliminary results for other PQE restrictions

Future work directions:

• Can we extend to the UCQ dichotomy, e.g., following [Kenig and Suciu, 2020]?

• What about the case of PQE with a constant probability 6= 1/2?
or a di�erent constant probability per relation?

• Which connection to symmetric model counting [Beame et al., 2015]?

Thanks for your attention!
15/15

References i

Beame, P., Van den Broeck, G., Gribko�, E., and Suciu, D. (2015).
Symmetric weighted first-order model counting.
In PODS.
Dalvi, N. and Suciu, D. (2007).
E�cient query evaluation on probabilistic databases.
VLDB Journal, 16(4):523–544.
Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).

https://arxiv.org/abs/1412.1505
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

References ii

Kenig, B. and Suciu, D. (2020).
A dichotomy for the generalized model counting problem for unions of conjunctive
queries.
CoRR, abs/2008.00896.
To appear at PODS 2021.

Livshits, E., Bertossi, L., Kimelfeld, B., and Sebag, M. (2020).
The Shapley Value of Tuples in Query Answering.
In ICDT.
Salimi, B. (2016).
Quantifying Causal E�ects on Query Answering in Databases.
In TaPP.

https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/1904.08679
https://arxiv.org/abs/1603.02705

References iii

Suciu, D., Olteanu, D., Ré, C., and Koch, C. (2011).
Probabilistic Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

	Appendix

