A Dichotomy for Homomorphism-Closed Queries on Probabilistic Graphs

Antoine Amarilli1 and İsmail İlkan Ceylan2
March 30, 2020

1Télécom Paris
2University of Oxford
In this talk, we manage data represented as a labeled graph.
Uncertain data management

In this talk, we manage data represented as a labeled graph

<table>
<thead>
<tr>
<th>WorksAt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoine</td>
</tr>
<tr>
<td>Antoine</td>
</tr>
<tr>
<td>Benny</td>
</tr>
<tr>
<td>Benny</td>
</tr>
<tr>
<td>İsmail</td>
</tr>
</tbody>
</table>
Uncertain data management

In this talk, we manage data represented as a labeled graph

<table>
<thead>
<tr>
<th>WorksAt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoine</td>
<td>Télécom Paris</td>
</tr>
<tr>
<td>Antoine</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Technion</td>
</tr>
<tr>
<td>İsmail</td>
<td>U. Oxford</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MemberOf</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Télécom Paris</td>
<td>ParisTech</td>
</tr>
<tr>
<td>Télécom Paris</td>
<td>IP Paris</td>
</tr>
<tr>
<td>Paris Sud</td>
<td>IP Paris</td>
</tr>
<tr>
<td>Paris Sud</td>
<td>Paris-Saclay</td>
</tr>
<tr>
<td>Technion</td>
<td>CESAER</td>
</tr>
</tbody>
</table>
Uncertain data management

In this talk, we manage data represented as a labeled graph.

WorksAt

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoine</td>
<td>Télécom Paris</td>
</tr>
<tr>
<td>Antoine</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Technion</td>
</tr>
<tr>
<td>İsmail</td>
<td>U. Oxford</td>
</tr>
</tbody>
</table>

MemberOf

<table>
<thead>
<tr>
<th>Institution</th>
<th>ParisTech</th>
<th>IP Paris</th>
<th>Paris-Saclay</th>
<th>CESAER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Télécom Paris</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paris Sud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paris Sud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>İsmail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U. Oxford</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uncertain data management

In this talk, we manage data represented as a labeled graph.

WorksAt

- Antoine: Télécom Paris
- Antoine: Paris Sud
- Benny: Paris Sud
- Benny: Technion
- İsmail: U. Oxford

MemberOf

- Télécom Paris: ParisTech
- Télécom Paris: IP Paris
- Paris Sud: IP Paris
- Paris Sud: Paris-Saclay
- Technion: CESAER

A. → Télécom Paris → ParisTech
B. → Paris Sud → IP Paris
İ. → U. Oxford → CESAER
In this talk, we manage data represented as a labeled graph.
Uncertain data management

In this talk, we manage data represented as a labeled graph.

WorksAt

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antoine</td>
<td>Télécom Paris</td>
</tr>
<tr>
<td>Antoine</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Paris Sud</td>
</tr>
<tr>
<td>Benny</td>
<td>Technion</td>
</tr>
<tr>
<td>İsmail</td>
<td>U. Oxford</td>
</tr>
</tbody>
</table>

MemberOf

<table>
<thead>
<tr>
<th>Télécom Paris</th>
<th>ParisTech</th>
</tr>
</thead>
<tbody>
<tr>
<td>Télécom Paris</td>
<td>IP Paris</td>
</tr>
<tr>
<td>Paris Sud</td>
<td>IP Paris</td>
</tr>
<tr>
<td>Paris Sud</td>
<td>Paris-Saclay</td>
</tr>
<tr>
<td>Technion</td>
<td>CESAER</td>
</tr>
<tr>
<td>İ.</td>
<td>U. Oxford</td>
</tr>
<tr>
<td></td>
<td>CESAER</td>
</tr>
</tbody>
</table>

→ **Problem:** we are not certain about the true state of the data
Uncertain data model

- Uncertain data model: **TID**, for tuple-independent database
- Each fact (edge) carries a **probability**

A. Télécom Paris → ParisTech

B. Paris Sud → IP Paris

B. Technion → Paris-Saclay

i. U. Oxford → CESAER
Uncertain data model:

- **TID**, for tuple-independent database
- Each fact (edge) carries a probability
- All facts are independent
- Possible world W:
 - What is the probability of this possible world?

$$\Pr(W) = \prod_{F \in W} \Pr(F) \times \prod_{F \notin W} \left(1 - \Pr(F)\right)$$
Uncertain data model

A. 80% → Télécom Paris → ParisTech
 10%

B. Paris Sud → IP Paris
 40%
 80%

Technion → Paris-Saclay
 90%
 50%
 90%

U. Oxford → CESAER
 100%

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
Uncertain data model

• Uncertain data model: TID, for tuple-independent database
• Each fact (edge) carries a probability
• Each fact exists with its given probability
• All facts are independent
• Possible world W: subset of facts

A. 80% → Télécom Paris → ParisTech
 10% →

 90% → Paris Sud → IP Paris
 50% →

 40% → Technion

B. 80% →

 90% → Paris-Saclay
 100% →

i. 100% → U. Oxford → CESAER
Uncertain data model:

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
Uncertain data model:

- Uncertain data model: **TID**, for tuple-independent database
- Each fact (edge) carries a **probability**
- Each fact exists with its given **probability**
- All facts are **independent**
- **Possible world** \(W \): subset of facts
- What is the **probability** of this possible world?

A. → Télécom Paris \(\rightarrow \) ParisTech

B. → Technion
 - → Paris-Saclay
 - → IP Paris

i. → U. Oxford

j. → CESAER
Uncertain data model

- Uncertain data model: **TID**, for tuple-independent database
- Each fact (edge) carries a **probability**
- Each fact exists with its given **probability**
- All facts are **independent**
- **Possible world** W: subset of facts
- What is the **probability** of this possible world?
Uncertain data model

- Uncertain data model: **TID**, for tuple-independent database
- Each fact (edge) carries a **probability**
- Each fact exists with its given **probability**
- All facts are **independent**
- Possible world W: subset of facts
- What is the **probability** of this possible world? **0.03%**
Uncertain data model

- Uncertain data model: TID, for tuple-independent database
- Each fact (edge) carries a probability
- Each fact exists with its given probability
- All facts are independent
- Possible world W: subset of facts
- What is the probability of this possible world? 0.03%

$$\Pr(W) = \left(\prod_{F \in W} \Pr(F) \right) \times \left(\prod_{F \notin W} (1 - \Pr(F)) \right)$$
• **Query**: maps a graph *(without probabilities)* to YES/NO
Queries

- **Query**: maps a graph (**without probabilities**) to YES/NO
- **Conjunctive query (CQ)**: can I find a match of a pattern? e.g., \(x \rightarrow y \rightarrow z \)
Queries

- **Query**: maps a graph (without probabilities) to YES/NO
- **Conjunctive query** (CQ): can I find a match of a pattern? e.g., $x \rightarrow y \rightarrow z$
 - We want a homomorphism from the pattern to the graph (not necessarily injective)

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
- A homomorphism-closed query can be seen as an infinite union of CQs
 - The query is bounded if the union is finite (it is a UCQ), unbounded otherwise
- Allows pretty wild things, e.g., "There is a path whose length is prime"
• **Query:** maps a graph (without probabilities) to YES/NO

• **Conjunctive query (CQ):** can I find a match of a pattern? e.g., \(x \rightarrow y \rightarrow z \)
 → We want a homomorphism from the pattern to the graph (not necessarily injective)

• **Union of conjunctive queries (UCQ):** can I find a match of some pattern?

Intuition about homomorphism-closed queries:
• Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
 • Do not allow for inequalities or negation
 • A homomorphism-closed query can be seen as an infinite union of CQs:
 → The query is bounded if the union is finite (it is a UCQ), unbounded otherwise
 • Allows pretty wild things, e.g., "There is a path whose length is prime"
• Query: maps a graph (without probabilities) to YES/NO

• Conjunctive query (CQ): can I find a match of a pattern? e.g., \(x \rightarrow y \rightarrow z \)
 → We want a homomorphism from the pattern to the graph (not necessarily injective)

• Union of conjunctive queries (UCQ): can I find a match of some pattern?
 → Homomorphism-closed query \(Q \): if \(G \) satisfies \(Q \) and \(G \) has a homomorphism to \(G' \)
 then \(G' \) also satisfies \(Q \)
Queries

- **Query**: maps a graph (*without probabilities*) to YES/NO
- **Conjunctive query (CQ)**: can I find a match of a *pattern*? e.g., $x \rightarrow y \rightarrow z$
 → We want a *homomorphism* from the pattern to the graph (not necessarily *injective*)
- **Union of conjunctive queries (UCQ)**: can I find a match of *some pattern*?
 → **Homomorphism-closed query Q**: if G satisfies Q and G has a homomorphism to G'
 then G' also satisfies Q

Intuition about homomorphism-closed queries:
Queries

- **Query**: maps a graph (without probabilities) to YES/NO
- **Conjunctive query (CQ)**: can I find a match of a pattern? e.g., $x \rightarrow y \rightarrow z$
 → We want a homomorphism from the pattern to the graph (not necessarily injective)
- **Union of conjunctive queries (UCQ)**: can I find a match of some pattern?
 → Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G'
 then G' also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize **CQs** and **UCQs**, but also regular path queries (RPQs), Datalog, etc.
Queries

- **Query**: maps a graph (without probabilities) to YES/NO
- **Conjunctive query (CQ)**: can I find a match of a pattern? e.g., $x \rightarrow y \rightarrow z$ → We want a homomorphism from the pattern to the graph (not necessarily injective)
- **Union of conjunctive queries (UCQ)**: can I find a match of some pattern?
 → Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G' then G' also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize CQs and UCQs, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
Queries

- **Query:** maps a graph (without probabilities) to YES/NO

- **Conjunctive query** (CQ): can I find a match of a pattern? e.g., \(x \rightarrow y \rightarrow z \)

 → We want a **homomorphism** from the pattern to the graph (not necessarily injective)

- **Union of conjunctive queries** (UCQ): can I find a match of some pattern?

 → **Homomorphism-closed query** \(Q \): if \(G \) satisfies \(Q \) and \(G \) has a homomorphism to \(G' \) then \(G' \) also satisfies \(Q \)

Intuition about homomorphism-closed queries:

- Generalize **CQs** and **UCQs**, but also **regular path queries** (RPQs), **Datalog**, etc.

- Do not allow for **inequalities** or **negation**

- A homomorphism-closed query can be seen as an **infinite union of CQs**:

 → The query is **bounded** if the union is finite (it is a UCQ), **unbounded** otherwise
Queries

- **Query**: maps a graph (without probabilities) to YES/NO
- **Conjunctive query (CQ)**: can I find a match of a pattern? e.g., $x \rightarrow y \rightarrow z$
 → We want a homomorphism from the pattern to the graph (not necessarily injective)
- **Union of conjunctive queries (UCQ)**: can I find a match of some pattern?
 → Homomorphism-closed query Q: if G satisfies Q and G has a homomorphism to G'
 then G' also satisfies Q

Intuition about homomorphism-closed queries:

- Generalize **CQs** and **UCQs**, but also regular path queries (RPQs), Datalog, etc.
- Do not allow for inequalities or negation
- A homomorphism-closed query can be seen as an infinite union of CQs:
 → The query is **bounded** if the union is finite (it is a UCQ), **unbounded** otherwise
- Allows pretty wild things, e.g., “There is a path whose length is prime”
Problem statement: Probabilistic query evaluation (PQE)

- We fix a query Q, for instance the CQ: $x \rightarrow y \rightarrow z$
Problem statement: Probabilistic query evaluation (PQE)

- We **fix** a query Q, for instance the CQ: $x \rightarrow y \rightarrow z$
- The **input** is a TID D:

```
A. 80% → Télécom Paris → 90% → ParisTech
10%   90%

Paris Sud → 50% → IP Paris
40%  90%

B. 80% → Technion → Paris-Saclay

i. 100% → U. Oxford → CESAER
```
Problem statement: Probabilistic query evaluation (PQE)

• We **fix** a query Q, for instance the CQ: $x \rightarrow y \rightarrow z$

• The **input** is a TID D:

 A. 80% \rightarrow Télécom Paris → 90% ParisTech
 10% \rightarrow Paris Sud → 50% IP Paris

 B. 80% \rightarrow Technion \rightarrow Paris-Saclay

 i. 100% \rightarrow U. Oxford \rightarrow CESAER

• The **output** is the **total probability** of the worlds which satisfy the query:
Problem statement: Probabilistic query evaluation (PQE)

- We **fix** a query Q, for instance the CQ: $x \rightarrow y \rightarrow z$

- The **input** is a TID D:

- The **output** is the **total probability** of the worlds which satisfy the query:
 - Formally: $\sum_{W \subseteq D, W \models Q} \Pr(W)$
 - **Intuition**: the probability that the query is true
Problem statement: Probabilistic query evaluation (PQE)

• We fix a query Q, for instance the CQ: $x \rightarrow y \rightarrow z$

• The input is a TID D:

• The output is the total probability of the worlds which satisfy the query:
 • Formally: $\sum_{W \subseteq D, W \models Q} \Pr(W)$
 → Intuition: the probability that the query is true

→ What is the complexity of the problem $\text{PQE}(Q)$, depending on the query Q?
Existing results on PQE

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are **safe** and $\text{PQE}(Q)$ is in **PTIME**
- All others are **unsafe** and $\text{PQE}(Q)$ is **#P-hard**
Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are *safe* and $\text{PQE}(Q)$ is in **PTIME**
- All others are *unsafe* and $\text{PQE}(Q)$ is **#P-hard**

- The CQ $x \rightarrow y \rightarrow z$ is *safe*, but the CQ $x \rightarrow y \rightarrow z \rightarrow w$ is *unsafe*
Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are **safe** and $\text{PQE}(Q)$ is in \mathcal{PTIME}
- All others are **unsafe** and $\text{PQE}(Q)$ is $\#P$-hard

- The CQ $x \rightarrow y \rightarrow z$ is **safe**, but the CQ $x \rightarrow y \rightarrow z \rightarrow w$ is **unsafe**

What about **more expressive queries**?
Existing results on PQE

Dichotomy on the **unions of conjunctive queries** (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are **safe** and PQE(Q) is in **PTIME**
- All others are **unsafe** and PQE(Q) is **#P-hard**

- The CQ $x \rightarrow y \rightarrow z$ is **safe**, but the CQ $x \rightarrow y \rightarrow z \rightarrow w$ is **unsafe**

What about more expressive queries?

- Work by [Fink and Olteanu, 2016] about **negation**
Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are **safe** and $\text{PQE}(Q)$ is in PTIME
- All others are **unsafe** and $\text{PQE}(Q)$ is $\#P$-**hard**

- The CQ $x \rightarrow y \rightarrow z$ is **safe**, but the CQ $x \rightarrow y \rightarrow z \rightarrow w$ is **unsafe**

What about **more expressive queries**?

- Work by [Fink and Olteanu, 2016] about **negation**
- No work about **recursive queries** (but no works about RPQs, Datalog, etc.)
Existing results on PQE

Dichotomy on the unions of conjunctive queries (UCQs):

Theorem [Dalvi and Suciu, 2012]

- Some UCQs Q are **safe** and $\text{PQE}(Q)$ is in PTIME
- All others are **unsafe** and $\text{PQE}(Q)$ is $\#P$-hard

- The CQ $x \rightarrow y \rightarrow z$ is **safe**, but the CQ $x \rightarrow y \rightarrow z \rightarrow w$ is **unsafe**

What about more expressive queries?

- Work by [Fink and Olteanu, 2016] about **negation**
- No work about **recursive queries** (but no works about RPQs, Datalog, etc.)
- Only exception: work on **ontology-mediated query answering** [Jung and Lutz, 2012]
Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\text{PQE}(Q)$ is in PTIME
- In all other cases, $\text{PQE}(Q)$ is $\#P$-hard

• Example: the RPQ Q:

 $$
 \exists x (y \land \neg z)
 $$

 It is not equivalent to a UCQ: infinite disjunction $$(i \in \mathbb{N})$$

 Hence, $\text{PQE}(Q)$ is $\#P$-hard

• We do not study the complexity of deciding which case applies

 Depends on how queries are represented
Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\text{PQE}(Q)$ is in PTIME
- In all other cases, $\text{PQE}(Q)$ is $\#P$-hard

- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\text{PQE}(Q)$ is in \text{PTIME}
- In all other cases, $\text{PQE}(Q)$ is \#P-hard

- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: \[
\begin{array}{c}
\rightarrow \\
(\rightarrow)^* \\
\rightarrow
\end{array}
\]
Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a safe UCQ (hence bounded) and $\text{PQE}(Q)$ is in PTIME
- In all other cases, $\text{PQE}(Q)$ is $\#P$-hard

- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\xymatrix{ \rightarrow & \rightarrow \ar[r] & (\rightarrow \rightarrow)^* }$
 - It is not equivalent to a UCQ: infinite disjunction $\xymatrix{ \rightarrow & \rightarrow \ar[r] & (\rightarrow \rightarrow)^i }$ for all $i \in \mathbb{N}$
Our result

We study PQE for homomorphism-closed queries and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a **safe UCQ** (hence **bounded**) and $\text{PQE}(Q)$ is in **PTIME**
- In all other cases, $\text{PQE}(Q)$ is $#\text{P-hard}$

- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: $\rightarrow (\rightarrow)^*$
 - It is **not equivalent to a UCQ**: infinite disjunction $\rightarrow (\rightarrow)^i$ for all $i \in \mathbb{N}$
 - Hence, $\text{PQE}(Q)$ is $#\text{P-hard}$
Our result

We study PQE for **homomorphism-closed queries** and show:

Theorem

For any query Q closed under homomorphisms:

- Either Q is equivalent to a **safe UCQ** (hence **bounded**) and $\text{PQE}(Q)$ is in **PTIME**
- In all other cases, $\text{PQE}(Q)$ is $\#P$-**hard**

- This extends the result of [Jung and Lutz, 2012] and covers RPQs, Datalog, etc.
- Example: the RPQ Q: \[\rightarrow (\rightarrow)^* \]
 - It is **not equivalent to a UCQ**: infinite disjunction \[\rightarrow (\rightarrow)^i \] for all $i \in \mathbb{N}$
 - Hence, $\text{PQE}(Q)$ is $\#P$-**hard**
- We do not study the **complexity of deciding which case applies**
 - Depends on how queries are **represented**
Proof structure
Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and **unbounded**, $\text{PQE}(Q)$ is **#P-hard**
Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and **unbounded**, $\text{PQE}(Q)$ is $\#P$-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

- satisfies Q
- violates Q
Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query \(Q \) closed under homomorphisms and *unbounded*, \(\text{PQE}(Q) \) is \#P-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges \(\rightarrow \rightarrow \rightarrow \) such that:

1. satisfies \(Q \)
2. violates \(Q \)
Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and unbounded, $\text{PQE}(Q)$ is $\#P$-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges $\rightarrow \rightarrow \rightarrow$ such that:

- satisfies Q
- violates Q
Basic idea: finding a tight pattern

The challenging part is to show:

Theorem

For any query Q closed under homomorphisms and *unbounded*, $PQE(Q)$ is \#P-hard

Idea: find a **tight pattern**, i.e., a graph with three distinguished edges such that:

- satisfies Q
- violates Q

Theorem

Any *unbounded* query closed under homomorphisms has a tight pattern
Using tight patterns to show hardness of PQE

- Fix the query Q and the **tight pattern**:

 - satisfies Q
 - violates Q

 ![Diagram](image.png)

Idea: possible worlds at the left have a path that matches Q iff the corresponding possible world of the TID at the right satisfies Q... except we need more from the tight pattern!
Using tight patterns to show hardness of PQE

- Fix the query Q and the **tight pattern**:
 - satisfies Q
 - violates Q
 - but

- We reduce from PQE for the **unsafe** CQ: $Q_o : x \rightarrow y \rightarrow z \rightarrow w$
Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

$$\begin{array}{c}
\text{satisfies } Q \\
\text{but} \\
\text{violates } Q
\end{array}$$

• We reduce from PQE for the unsafe CQ: $Q_0 : x \to y \to z \to w$

is coded as
Using tight patterns to show hardness of PQE

• Fix the query Q and the **tight pattern**:

- satisfies Q
- violates Q

• We reduce from PQE for the **unsafe** CQ: $Q_o : x \rightarrow y \rightarrow z \rightarrow w$

- is coded as

Idea: possible worlds at the **left** have a path that matches Q_o
iff the corresponding possible world of the TID at the **right** satisfies the query Q...
Using tight patterns to show hardness of PQE

- Fix the query Q and the **tight pattern**:

 - satisfies Q
 - violates Q

- We reduce from PQE for the **unsafe** CQ: $Q_o : \ x \rightarrow y \rightarrow z \rightarrow w$

Idea: possible worlds at the **left** have a path that matches Q_o iff the corresponding possible world of the TID at the **right** satisfies the query Q...
Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:

 satisfies Q but violates Q

- We reduce from PQE for the unsafe CQ: $Q_o : x \rightarrow y \rightarrow z \rightarrow w$

 is coded as

Idea: possible worlds at the left have a path that matches Q_o iff the corresponding possible world of the TID at the right satisfies the query Q...
Using tight patterns to show hardness of PQE

- Fix the query Q and the tight pattern:
 - satisfies Q
 - violates Q

- We reduce from PQE for the unsafe CQ: $Q_o : x \rightarrow y \rightarrow z \rightarrow w$

Idea: possible worlds at the left have a path that matches Q_o iff the corresponding possible world of the TID at the right satisfies the query Q... except we need more from the tight pattern!
Using tight patterns to show hardness of PQE

- Fix the query Q and the **tight pattern**:

 - satisfies Q

 - violates Q

- We reduce from PQE for the **unsafe** CQ: $Q_o : x \rightarrow y \rightarrow z \rightarrow w$

 - $a_1' \rightarrow a_1 \rightarrow b_1 \rightarrow b_1'$

 - $a_2' \rightarrow a_2$

 - $a_3' \rightarrow a_3 \rightarrow b_2 \rightarrow b_2'$

 - is coded as

Idea: possible worlds at the **left** have a path that matches Q_o iff the corresponding possible world of the TID at the **right** satisfies the query Q...

... except we need **more** from the tight pattern!
We know that we have a **tight pattern**:

- satisfies Q
- violates Q

Case /one.osf: some iterate violates the query:

- satisfies Q
- violates (i)

→ Reduce from $PQE(Q/zero.osf)$ as we explained

Case /two.osf: all iterates satisfy the query:

- satisfies Q
- violates (i)

→ Call this an iterable pattern $/one.osf/zero.osf//one.osf/two.osf$
Saving the proof

We know that we have a **tight pattern**:

- Satisfies Q
- Violates Q

Consider its **iterates**

\[\text{Case /one.osf:} \]
- Some iterate violates the query:
 - Satisfies Q
 - Violates Q
 \[\rightarrow \] Reduce from $\text{PQE}(Q/\text{zero.osf})$

\[\text{Case /two.osf:} \]
- All iterates satisfy the query:
 - Satisfies Q for all $n \in \mathbb{N}$
 \[\rightarrow \] Call this an iterable pattern $/\text{one.osf}/\text{zero.osf}/\text{two.osf}$
We know that we have a **tight pattern:**

- satisfies Q
- violates Q

Consider its **iterates** for each $n \in \mathbb{N}$:

$$\left(\begin{array}{c} \bullet \\ \rightarrow \\ \bullet \\ \leftarrow \\ \bullet \end{array} \right)^n$$
We know that we have a **tight pattern**:

- satisfies Q
- violates Q

Consider its **iterates** for each $n \in \mathbb{N}$:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet$
- but

→ Reduce from $PQE(\mathit{Q}/\mathit{zero.osf})$ as we explained

→ Call this an iterable pattern $/\mathit{one.osf}/\mathit{zero.osf}/\mathit{one.osf}/\mathit{two.osf}$
Saving the proof

We know that we have a **tight pattern**:

- satisfies Q
- violates Q

Consider its **iterates** for each $n \in \mathbb{N}$:

Case 1: some iterate **violates** the query:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^i \rightarrow \bullet$ satisfies Q
- but $(\bullet \rightarrow \bullet \leftarrow \bullet)^{i+1} \rightarrow \bullet$ violates Q

Case 2: all iterates satisfy the query:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet$ satisfies Q
- for all $n \in \mathbb{N}$
Saving the proof

We know that we have a tight pattern:

- satisfies Q
- violates Q

but

Consider its iterates for each $n \in \mathbb{N}$:

Case 1: some iterate violates the query:

- $(\rightarrow \leftarrow \rightarrow)^i$ satisfies Q
- $(\rightarrow \leftarrow \rightarrow)^{i+1}$ violates Q

\rightarrow Reduce from $\text{PQE}(Q_o)$ as we explained

Case 2: all iterates satisfy the query:

- $(\rightarrow \leftarrow \rightarrow)^n$ satisfies Q
- $(\rightarrow \leftarrow \rightarrow)^{n+1}$ violates Q

\rightarrow Call this an iterable pattern
Saving the proof

We know that we have a tight pattern:

\[\bullet \rightarrow \bullet \] satisfies \(Q \)
\[\bullet \rightarrow \bullet \] violates \(Q \)

but

Consider its iterates for each \(n \in \mathbb{N} \):

\[\left(\bullet \rightarrow \bullet \leftarrow \bullet \right)^n \rightarrow \bullet \] satisfies \(Q \) for all \(n \in \mathbb{N} \)
\[\left(\bullet \rightarrow \bullet \leftarrow \bullet \right)^i \] satisfies \(Q \)
\[\left(\bullet \rightarrow \bullet \leftarrow \bullet \right)^{i+1} \] violates \(Q \)

→ Reduce from \(\text{PQE}(Q_0) \) as we explained

Case 1: some iterate violates the query:

Case 2: all iterates satisfy the query:
Saving the proof

We know that we have a **tight pattern**:

- satisfies Q
- violates Q

Consider its **iterates** for each $n \in \mathbb{N}$:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet$

Case 1: some iterate **violates** the query:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^i \rightarrow \bullet$
 - satisfies Q
 - violates Q

 \rightarrow Reduce from $\text{PQE}(Q_0)$ as we explained

Case 2: all iterates **satisfy** the query:

- $(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet$
 - satisfies Q for all $n \in \mathbb{N}$
 - violates Q

\rightarrow Call this an **iterable pattern**
Using iterable patterns to show hardness of PQE

We have an **iterable pattern**:

\[
\begin{array}{c}
\bullet \rightarrow \bullet \leftarrow \bullet^n \\
\end{array}
\]

satisfies \(Q \) for all \(n \in \mathbb{N} \)

but

\[
\begin{array}{c}
\bullet \rightarrow \bullet \\
\end{array}
\]

violates \(Q \)
Using iterable patterns to show hardness of PQE

We have an iterable pattern:

\[(\bullet \rightarrow \bullet \leftrightarrow \bullet)^n \rightarrow \bullet \]

satisfies \(Q \) for all \(n \in \mathbb{N} \)

but

\[\bullet \rightarrow \bullet \rightarrow \bullet \]

violates \(Q \)

Idea: reduce from the \(\textbf{P-hard} \) problem source-to-target connectivity:

- Input: undirected graph with a source \(s \) and target \(t \), all edges have probability \(\frac{1}{2} \)
- Output: what is the probability that the source and target are connected?
Using iterable patterns to show hardness of PQE

We have an iterable pattern: \((\bullet \to \bullet \leftrightarrow \bullet)^n \to \bullet\) satisfies \(Q\) for all \(n \in \mathbb{N}\) but \(\bullet \leftrightarrow \bullet \to \bullet\) violates \(Q\).

Idea: reduce from the \#P-hard problem *source-to-target connectivity*:

- **Input:** undirected graph with a *source* \(s\) and *target* \(t\), all edges have probability \(1/2\)
- **Output:** what is the *probability* that the source and target are *connected*?

\[\begin{array}{c}
\text{s} \\
\downarrow^{1/2} \\
\text{u} \\
\downarrow^{1/2} \\
\text{t}
\end{array}\]
Using iterable patterns to show hardness of PQE

We have an **iterable pattern**:

\[(\bullet \rightarrow \bullet \leftrightarrow \bullet)^n \rightarrow \bullet\]

satisfies \(Q\) for all \(n \in \mathbb{N}\) but

\[
\begin{align*}
\bullet &\quad \bullet \\
\text{violates } Q
\end{align*}
\]

Idea: reduce from the **#P-hard** problem **source-to-target connectivity**:

- **Input:** undirected graph with a source \(s\) and target \(t\), all edges have probability \(1/2\)
- **Output:** what is the **probability** that the source and target are **connected**?

\[
\begin{align*}
s &\quad 1/2 & u &\quad 1/2 & t \\
&\quad 1/2 & &\quad 1/2 &
\end{align*}
\]

is coded as
Using iterable patterns to show hardness of PQE

We have an iterable pattern:

$$\underbrace{(\bullet \rightarrow \bullet \leftarrow \bullet)^n}_s \quad \text{satisfies } Q \quad \text{for all } n \in \mathbb{N}$$

but

$$\underbrace{\bullet \quad \bullet \quad \bullet}_n \quad \text{violates } Q$$

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source \(s\) and target \(t\), all edges have probability \(1/2\)
- Output: what is the probability that the source and target are connected?

\[
\begin{array}{c}
\text{s} \\
\text{1/2} \\
\text{u} \\
\text{1/2} \\
\text{t} \\
\text{1/2}
\end{array}
\]

is coded as

\[
\begin{array}{c}
\text{1/2} \\
\text{1/2} \\
\text{1/2}
\end{array}
\]
Using iterable patterns to show hardness of PQE

We have an iterable pattern:

\[(\bullet \rightarrow \bullet \leftarrow \bullet)^n \rightarrow \bullet\]

satisfies Q for all $n \in \mathbb{N}$

but

\[\bullet \rightarrow \bullet \leftarrow \bullet\]

violates Q

Idea: reduce from the \textbf{#P-hard} problem \textit{source-to-target connectivity}:

- Input: undirected graph with a source s and target t, all edges have probability $1/2$
- Output: what is the probability that the source and target are connected?

\[\begin{array}{c}
s \quad 1/2 \quad u \quad 1/2 \\
\quad 1/2 \quad t
\end{array}\]

is coded as

\[\begin{array}{c}
\bullet \rightarrow \bullet \leftarrow \bullet \\
1/2 \\
\bullet \rightarrow \bullet \leftarrow \bullet
\end{array}\]

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right.
Using iterable patterns to show hardness of PQE

We have an iterable pattern:

\[
\left(\bullet \rightarrow \bullet \leftarrow \bullet \right)^n \rightarrow \bullet
\]

satisfies \(Q \) for all \(n \in \mathbb{N} \)

but

\[
\text{violates } Q
\]

Idea: reduce from the \#P-hard problem source-to-target connectivity:

- Input: undirected graph with a source \(s \) and target \(t \), all edges have probability \(1/2 \)
- Output: what is the probability that the source and target are connected?

\[
\begin{array}{c}
\text{s} \\
\hline
u \\
\hline
\text{t}
\end{array}
\]

is coded as

Idea: There is a path connecting \(s \) and \(t \) in a possible world of the graph at the left if and only if the query \(Q \) is satisfied in the corresponding possible world of the TID at the right.
Using iterable patterns to show hardness of PQE

We have an iterable pattern:

$$\left(\bullet \rightarrow \bullet \leftarrow \bullet \right)^n \rightarrow \bullet$$

satisfies Q for all $n \in \mathbb{N}$

but

 violates Q

Idea: reduce from the \mathbb{P}-hard problem source-to-target connectivity:

- Input: undirected graph with a source s and target t, all edges have probability $1/2$
- Output: what is the probability that the source and target are connected?

\[u \]

\[s \]

\[t \]

is coded as

Idea: There is a path connecting s and t in a possible world of the graph at the left iff the query Q is satisfied in the corresponding possible world of the TID at the right.
Conclusion and open problems
Conclusion and open problems

- Our result: \(\text{PQE}(Q) \) is \#P-hard for any query \(Q \) closed under homomorphisms unless it is equivalent to a safe UCQ
 - Dichotomy for probabilistic query evaluation over homomorphism-closed queries
 - Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

\[\text{Dichotomy for probabilistic query evaluation over homomorphism-closed queries} \]

- Open problems:
 - The result only applies to graphs, not higher-arity databases
 - We conjecture that the same result holds for higher-arity queries and TIDs
 - Instance transformations are harder to visualize and do not seem to work as-is
 - Does the result still hold for unweighted \(\text{PQE}, \) where all probabilities are one/two?
 - \(\text{PQE} \) for non-hierarchical self-join-free CQs was recently shown to be \#P-hard in this sense
 - [Amarilli and Kimelfeld, two zero]
 - Similar techniques may adapt for our work, but not to the unsafe UCQs...

Thanks for your attention!
Conclusion and open problems

• Our result: \(\text{PQE}(Q) \) is \#P-hard for any query \(Q \) closed under homomorphisms unless it is equivalent to a safe UCQ
 → Dichotomy for probabilistic query evaluation over \text{homomorphism-closed} queries
 → Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

• Open problems:
 • The result only applies to graphs, not higher-arity databases
Conclusion and open problems

• Our result: \(\text{PQE}(Q) \) is \#P-hard for any query \(Q \) closed under homomorphisms unless it is equivalent to a safe UCQ
 → Dichotomy for probabilistic query evaluation over \text{homomorphism-closed} queries
 → Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.
 (unless they are equivalent to a safe UCQ)

• Open problems:
 • The result only applies to \textbf{graphs}, not higher-arity databases
 • We \textit{conjecture} that the same result holds for higher-arity queries and TIDs
 • But instance transformations are \textbf{harder to visualize} and do not seem to work as-is
Our result: \(\text{PQE}(Q) \) is \#P-hard for any query \(Q \) closed under homomorphisms unless it is equivalent to a safe UCQ

\[
\begin{align*}
\rightarrow & \quad \text{Dichotomy for probabilistic query evaluation over homomorphism-closed queries} \\
\rightarrow & \quad \text{Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.} \\
& \quad \text{unless they are equivalent to a safe UCQ}
\end{align*}
\]

Open problems:

- The result only applies to graphs, not higher-arity databases
 - We conjecture that the same result holds for higher-arity queries and TIDs
 - But instance transformations are harder to visualize and do not seem to work as-is

- Does the result still hold for unweighted PQE, where all probabilities are \(1/2 \)?
Conclusion and open problems

- Our result: \(\text{PQE}(Q) \) is \#P-hard for any query \(Q \) closed under homomorphisms unless it is equivalent to a safe UCQ
 - Dichotomy for probabilistic query evaluation over \textit{homomorphism-closed} queries
 - Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc. (unless they are equivalent to a safe UCQ)

- Open problems:
 - The result only applies to graphs, not higher-arity databases
 - We \textit{conjecture} that the same result holds for higher-arity queries and TIDs
 - But instance transformations are \textit{harder to visualize} and do not seem to work as-is
 - Does the result still hold for \textit{unweighted} PQE, where all probabilities are \(1/2 \)?
 - PQE for \textit{non-hierarchical self-join-free} CQs was recently shown to be \#P-hard in this sense [Amarilli and Kimelfeld, 2020]
 - Similar techniques \textit{may adapt} for our work, but not to the unsafe UCQs...
Conclusion and open problems

- Our result: $\text{PQE}(Q)$ is \textbf{#P-hard} for any query Q closed under homomorphisms unless it is equivalent to a safe UCQ
 - Dichotomy for probabilistic query evaluation over \textit{homomorphism-closed} queries
 - Implies intractability for RPQs, Datalog queries, ontology-mediated queries, etc.
 (unless they are equivalent to a safe UCQ)

- \textbf{Open problems:}
 - The result only applies to graphs, not higher-arity databases
 - We conjecture that the same result holds for higher-arity queries and TIDs
 - But instance transformations are harder to visualize and do not seem to work as-is
 - Does the result still hold for \textit{unweighted} PQE, where all probabilities are $1/2$?
 - PQE for \textit{non-hierarchical self-join-free CQs} was recently shown to be \textbf{#P-hard} in this sense
 [Amarilli and Kimelfeld, 2020]
 - Similar techniques \textit{may adapt} for our work, but not to the unsafe UCQs...

Thanks for your attention!
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:

![Diagram]

If Q becomes false at one step, then we have found a tight pattern. Otherwise, we have found a contradiction:

- The disconnection process terminates
- At the end of the process, we obtain a union of stars D'
- It is homomorphically equivalent to a constant-sized D'' satisfying Q
- D'' has a homomorphism back to D
- This contradicts the minimality of the large D
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:

 ![Diagram showing the process of disconnecting edges in a minimal model](diagram.png)

 - If Q becomes false at one step, then we have found a tight pattern
 - Otherwise, we have found a contradiction:
 - The disconnection process terminates
 - At the end of the process, we obtain a union of stars D'
 - It is homomorphically equivalent to a constant-sized D'' satisfying Q
 - D'' has a homomorphism back to D
 - This contradicts the minimality of the large D
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:

 ![Diagram showing the disconnection process](image)

- If Q becomes false at one step, then we have found a **tight pattern**
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models.
- Take a large minimal model D and **disconnect its edges**:

 ![Diagram](image)

 - If Q becomes false at one step, then we have found a **tight pattern**.
 - Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**.
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models.
- Take a large minimal model D and **disconnect its edges**:

![Diagram showing the process of disconnecting edges and obtaining a union of stars]

- If Q becomes false at one step, then we have found a **tight pattern**.
- Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**.
 - At the end of the process, we obtain a **union of stars** D'.
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models.
- Take a large minimal model D and **disconnect its edges**:

![Disconnected graph example]

- If Q becomes false at one step, then we have found a **tight pattern**.
- Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**.
 - At the end of the process, we obtain a **union of stars** D'.
 - It is **homomorphically equivalent** to a constant-sized D'' satisfying Q.
Why can we always find tight patterns?

- Unbounded queries have **arbitrarily large** minimal models
- Take a large minimal model D and **disconnect its edges**:

 ![Diagram]

 - If Q becomes false at one step, then we have found a **tight pattern**
 - Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**
 - At the end of the process, we obtain a **union of stars** D'
 - It is **homomorphically equivalent** to a constant-sized D'' satisfying Q
 - D'' has a **homomorphism** back to D
Why can we always find tight patterns?

- Unbounded queries have *arbitrarily large* minimal models
- Take a large minimal model D and *disconnect its edges*:

- If Q becomes false at one step, then we have found a **tight pattern**
- Otherwise, we have found a **contradiction**:
 - The disconnection process **terminates**
 - At the end of the process, we obtain a **union of stars** D'
 - It is **homomorphically equivalent** to a constant-sized D'' satisfying Q
 - D'' has a **homomorphism** back to D
 - This contradicts the **minimality** of the large D
How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q : x \rightarrow y \rightarrow z \rightarrow w$
How to show \#P-hardness for PQE

How to show the \textbf{\#P-hardness} of PQE for the \textit{unsafe} query $Q : x \rightarrow y \rightarrow z \rightarrow w$

- Reduce from the problem of \textit{counting satisfying valuations} of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
How to show \#P-hardness for PQE

How to show the **\#P-hardness** of PQE for the **unsafe** query $Q : x \rightarrow y \rightarrow z \rightarrow w$

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already **\#P-hard** for so-called **PP2DNF formulas**:
How to show \(\#P \)-hardness for PQE

How to show the \(\#P \)-hardness of PQE for the unsafe query \(Q : x \rightarrow y \rightarrow z \rightarrow w \)

- Reduce from the problem of \textit{counting satisfying valuations} of a Boolean formula
 - e.g., given \((x \lor y) \land z\), compute that it has 3 satisfying valuations
- This problem is already \(\#P \)-hard for so-called \texttt{PP2DNF} formulas:
 - \textbf{Positive} (no negation) and \textbf{Partitioned variables}: \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \)
How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q : x \rightarrow y \rightarrow z \rightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - 2-DNF: disjunction of clauses like $X_i \land Y_j$
How to show \(\#P \)-hardness for PQE

How to show the \(\#P \)-hardness of PQE for the unsafe query \(Q: x \rightarrow y \rightarrow z \rightarrow w \)

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given \((x \lor y) \land z\), compute that it has 3 satisfying valuations
- This problem is already \(\#P \)-hard for so-called PP2DNF formulas:
 - Positive (no negation) and Partitioned variables: \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \)
 - 2-DNF: disjunction of clauses like \(X_i \land Y_j \)
- Example: \(\phi: (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2) \)
How to show \#P-hardness for PQE

How to show the **\#P-hardness** of PQE for the unsafe query \(Q : x \rightarrow y \rightarrow z \rightarrow w \)

- Reduce from the problem of **counting satisfying valuations** of a Boolean formula
 - e.g., given \((x \lor y) \land z \), compute that it has 3 satisfying valuations
- This problem is already **\#P-hard** for so-called **PP2DNF formulas**:
 - Positive (no negation) and **Partitioned variables**: \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \)
 - 2-DNF: disjunction of clauses like \(X_i \land Y_j \)

- Example: \(\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2) \)

- Example:
 - \(a'_1 \rightarrow a_1 \)
 - \(a'_2 \rightarrow a_2 \)
 - \(a'_3 \rightarrow a_3 \)
How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q : x \rightarrow y \rightarrow z \rightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - 2-DNF: disjunction of clauses like $X_i \land Y_j$

- Example: $\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

$$\begin{align*}
a'_1 & \xrightarrow{1/2} a_1 \\
\color{red}{a'_2} & \xrightarrow{1/2} a_2 \\
\color{red}{a'_3} & \xrightarrow{1/2} a_3 \\
\end{align*} \quad \quad \quad \quad \quad \quad
\begin{align*}
\color{red}{b'_1} & \xrightarrow{1/2} b_1 \\
b_2 & \xrightarrow{1/2} b_2 \\
\end{align*}$$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q
How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query \(Q : x \rightarrow y \rightarrow z \rightarrow w \)

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given \((x \lor y) \land z\), compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
 - Positive (no negation) and Partitioned variables: \(X_1, \ldots, X_n \) and \(Y_1, \ldots, Y_m \)
 - 2-DNF: disjunction of clauses like \(X_i \land Y_j \)

- Example: \(\phi : (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2) \)
How to show \#P-hardness for PQE

How to show the \#P-hardness of PQE for the unsafe query $Q: x \rightarrow y \rightarrow z \rightarrow w$

- Reduce from the problem of counting satisfying valuations of a Boolean formula
 - e.g., given $(x \lor y) \land z$, compute that it has 3 satisfying valuations
- This problem is already \#P-hard for so-called PP2DNF formulas:
 - Positive (no negation) and Partitioned variables: X_1, \ldots, X_n and Y_1, \ldots, Y_m
 - 2-DNF: disjunction of clauses like $X_i \land Y_j$
- Example: $\phi: (X_1 \land Y_1) \lor (X_1 \land Y_2) \lor (X_2 \land Y_2) \lor (X_3 \land Y_1) \lor (X_3 \land Y_2)$

Idea: Satisfying valuations of ϕ correspond to possible worlds with a match of Q

Ontology-based access to probabilistic data with OWL QL.