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» Boolean query to test a property of the tree

Example tree Example query
<body> .
/ \ Is there an h2 header and an image
) . that are in the same section?
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<h2> Example answer
/ \ —YES
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— Theorem: For monadic second-order (MSO) queries, we can

check if the query is true or not in linear time in the input tree



Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

2/19



Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree

<body>4
N
<div>, <section>;
N
<h2>, <p>s

/N

<img>e  <img>;

2/19



Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s

/N

<img>e  <img>;

2/19



Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s5 Example answer

/N S {(w.6), (7))

<img>e  <img>;

2/19



Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s5 Example answer

/N S {(w.6), (7))

<img>e  <img>;

— Corollary: For each possible tuple, we can check in linear time

if it is an answer to the query 219



Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)
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Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate answers one after the other
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Enumeration
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Theorem (Bagan’06; Kazana & Segoufin'13) 1

We can enumerate the answers of any MSO query {<4 6), (4 7)}
with preprocessing linear in the input tree

and constant delay between each answer Results
4119
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Relabelings

<b0dy>1
s >/ <\ cions » We focus on relabeling updates:
1iv section
’ / \3 change the label of a node
<h2>, <p>s * Example: relabel node 7 to <video>

/ <},ide(» e The tree’s structure never changes
<img>g
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What are relabelings good for?

» Parameterized queries:
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user-selected section” <body>,
— Write down the user parameters
as labels on the tree <di >/ :\ tion>
— Relabel when they change 1V22 S/ec 10<3
* Group-by with aggregation: <h2>, <P”s
- Example: “For each section, / \
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Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)
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Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work

Delay  Updates

[Bagan, 2006],

[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014]
[Niewerth and Segoufin, 2018]
[This work]

0(1) N/A

5
O'Q
~|
SN
o

o( (

( (
0(1) O(logT)
0(1) O(log T) (relabelings)

— Consequences for group-by, aggregation, parameterized queries
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Proof techniques




Knowledge compilation

To make the proof modular, we follow knowledge compilation:

LLLLLLLLLLL

3s section(S)A
S~ XAS~ YA
h2(x) A img(y)

Query

Phase 1:
Preprocessing

R

(SN

> . /L\

v
=

Indexed

tree

Phase 2:
Enumeration

—

{x:a,y:6),
X4,y 7>}
Results
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Knowledge compilation

To make the proof modular, we follow knowledge compilation:

» Preprocessing: Compute a circuit representation of the answers

* Enumeration: Apply a generic algorithm on the circuit

<<<<<<<<<<<<<<<<<

<h2>,

3s section(S)A
S~ XAS~ YA
h2(x) A img(y)

Query

Phase 1:
Preprocessing

Phase 2:
Enumeration

—

Circuit

{x:a,y:6),
X4,y 7>}
Results

First present approach without relabelings (as in our ICALP'17 paper)
then extend the approach to support relabelings
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 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

{(x:4,y:6) Three kinds of set-valued gates:
(X:4,y:7) )  Variable gate @ :
{(x:4)} {(v:6),(y:7)} — captures {(x:4)}

* Union gate @ :

— union of sets of tuples

{v:7)}
» Product gate @ ;

— relational product
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Preprocessing: Set circuit construction

N Phase 1:
4 /<>»

wé S, | Preprocessing 3
Tree Circuit

3s section(s)A
S~ XNAS~ YA
h2(x) A ing(y)

Query

Theorem

For any MSO query Q(X4, . ..,Xg), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{<X1n1,,ank>‘(n1,,nk)€-rk}
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Preprocessing: Set circuit construction

L S
e Phase 1:
h2: <p>s H .
wé S, | Preprocessing 3
Tree Circuit

3s section(s)A
S~ XNAS~ YA
h2(x) A ing(y)

Query

Theorem

For any MSO query Q(X4, . ..,Xg), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{(X1:0,... . X ng) | (n,...,ng) € TR}

» Proof idea: Translate query to bottom-up tree automaton
and build a provenance circuit following the structure of the tree



Enumeration on set circuits

Phase 2: {04y -6),
. i —  (x:4y:7)}
= numeration Results
Circuit

Theorem

Given a set circuit satisfying some conditions, we can enumerate all
tuples that it captures with linear preprocessing and constant delay

E.g, for {(x:4,y:6), (x:4,y:7)}: enumerate (x:4,y:6), then (x:4,y:7)
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General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

Base case: variable : enumerate (x : n) and stop
U-gate x-gate
91 92 gn 9>
Concatenation: enumerate T(g,) Lexicographic product:
and then enumerate T(g,) for every t; in T(g4):

for every t, in T(g,):
outputt; +t;,

13/19



Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

O
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. @ are all decomposable:
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Enumeration relies on some conditions on the input circuit (d-DNNF):

. @ are all deterministic:

For any two inputs g, and g, of a U-gate, @
the captured sets T(g,) and T(g,) are disjoint

(they have no tuple in common)

— Avoids duplicate tuples @ o

. @ are all decomposable:
For any two inputs g, and g, of a x-gate, @ @

no variable has a path to both g, and g»

— Avoids duplicate singletons

e Also an additional upwards-determinism condition
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Enumeration subtleties

e We must not waste time in gates capturing ()
— Label them during the preprocessing
* We must not waste time because of gates capturing {()}
— Homogenization to set them aside
e We must not waste time in hierarchies of U-gates
— Precompute a reachability index (uses upwards-determinism)
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Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
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Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
Four kinds of Boolean gates:

 Variable gate :

— true iff node 4 is labeled h2

« AND, OR, NOT :

— usual semantics

One new set-valued gate:

. : Test gate

— (0 if Boolean input is false
— like the set input otherwise
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Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
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Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

e When the tree is relabeled, change the Boolean variables
— New captured set: {(x:4,y:6)}
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Complexity of relabelings

* When a label changes, update the circuit bottom-up

/N

<img>s  <img>;

18/19



Complexity of relabelings

* When a label changes, update the circuit bottom-up

<p>s

/ <>ideo>
gy

<img>g

18/19



Complexity of relabelings

* When a label changes, update the circuit bottom-up

<p>s

/ <>ideo>
gy

<img>g

18/19



Complexity of relabelings

* When a label changes, update the circuit bottom-up
e The circuit follows the structure of the input tree T
so updates are in O(height(T))

<p>s

/ <>ideo>
gy

<img>g

18/19



Complexity of relabelings

* When a label changes, update the circuit bottom-up
e The circuit follows the structure of the input tree T
so updates are in O(height(T))
— Balancing lemma: Rewrite the input tree to make it balanced
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Conclusion
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Summary and future work

Summary:
* Problem: enumerate the answers of an MSO query on a tree

with efficient support for relabeling updates on the tree

e Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

e Consequences: group-by, parameterized queries, aggregation

Future work:

e Practice: implement the technique with automata
 Applications: text extraction? e.g., document spanners (ongoing)
« Updates: support insertions/deletions? (ongoing)

Thanks for your attention!
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