TELECDM
irisTech

i il

"N C cr il

Enumeration on Trees under Relabelings

Antoine Amarilli’, Pierre Bourhis?, Stefan Mengel3
March 27th, 2018

1Télécom ParisTech
2CNRS CRIStAL

3CNRS CRIL

1/19

Problem statement

Problem: Query evaluation on trees

e Tree on a fixed alphabet
» Boolean query to test a property of the tree

2/19

Problem: Query evaluation on trees

e Tree on a fixed alphabet
» Boolean query to test a property of the tree

Example tree

<body>
<div> <section>

<h2>/ \
/ \

2/19

Problem: Query evaluation on trees

e Tree on a fixed alphabet
» Boolean query to test a property of the tree

Example tree Example query
<body> .
/ \ Is there an h2 header and an image
) . that are in the same section?
<div> <section>

<h2>/ \
/ \

2/19

Problem: Query evaluation on trees

e Tree on a fixed alphabet
» Boolean query to test a property of the tree

Example tree Example query
<body> .
/ \ Is there an h2 header and an image
) . that are in the same section?
<div> <section>
<h2> Example answer

/ \ —YES

2/19

Problem: Query evaluation on trees

e Tree on a fixed alphabet
» Boolean query to test a property of the tree

Example tree Example query
<body> .
/ \ Is there an h2 header and an image
) . that are in the same section?
<div> <section>
<h2> Example answer
/ \ —YES

— Theorem: For monadic second-order (MSO) queries, we can

check if the query is true or not in linear time in the input tree

Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

2/19

Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree

<body>4
N
<div>, <section>;
N
<h2>, <p>s

/N

e ;

2/19

Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s

/N

e ;

2/19

Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s5 Example answer

/N S {(w.6), (7))

e ;

2/19

Problem: Non-Boolean query evaluation on trees

e Tree on a fixed alphabet
* Non-Boolean query to find tuples of nodes satisfying a property

Example tree Example query
<body>4 . ,
/ \ Find all pairs of an h2 header and
) . an image in the same section
<div>, <section>;
<h2>, <p>s5 Example answer

/N S {(w.6), (7))

e ;

— Corollary: For each possible tuple, we can check in linear time

if it is an answer to the query 219

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

3/19

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

3/19

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

Results 1 - 20 of 10,514

3/19

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

Results 1 - 20 of 10,514

3/19

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

3/19

Enumerating all answers

— There can be lots of answers!
- “Find all pairs of ..."- output size can be O(|T|?)

Q query evaluation m

Results 1 - 20 of 10,514

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

— Solution: Enumerate answers one after the other

3/19

Enumeration

<body>4

N

<div>, <section>;

AN

<h2>, <p>s
/ N\

s ;

Tree

3s section(s)A

S~ XAS~ YA

h2(x) A ing(y)
Query

4119

Enumeration

<body>4

/ \
<div>; <section>3
AN Phase 1
<h2>, <p>s ” > .
7/ \ Preprocessing
e ;
Tree

3s section(s)A

S~ XAS~ YA

h2(x) A ing(y)
Query

4119

Enumeration

<body>4

N
<div>; <section>;
Phase 1
<h2>, <p>s ” > X S
/ N\ Preprocessing .
s ; g ;
Tree Indexed

tree
3s section(s)A
S~ XAS~ YA
h2(x) A img(y)
Query

4119

Enumeration

<body>4

N
<div>; <section>3
Phase 1:
<h2>, <p>s ” > X S
/ N\ Preprocessing .
s ; g ;
Tree Indexed
tree
3s section(s)A 1
S~ XAS~ YA
h2(x) A img(y) Phase 2:

Query Enumeration

4119

Enumeration

<body>4

N

<div>; <section>;
<h2>, <p>s

s ;

Tree

3s section(s)A

S~ XAS~ YA

h2(x) A ing(y)
Query

Phase 1:

? .
Preprocessing

g’ < img>;

Indexed
tree

1

Phase 2:
Enumeration

!

{(4.6),

Results
4/19

Enumeration

<body>4

, N
Phase 1
<h2>, <p>s ” > X S
7/ \ Preprocessing
s ; ¢ ™ ;
Tree Indexed
tree
3s section(s)A
S~ XAS~ YA 3
h2(x) A img(y) 0011 ﬂ*"""‘ Phase 2:
Quer ! i
y State Enumeration
y

0 4

{(4.6),

Results
4/19

Enumeration

<body>4

, N
Phase 1
<h2>, <p>s ” > X S
7/ \ Preprocessing
s ; ¢ ™ ;
Tree Indexed
tree
3s section(s)A
S~ XNAS ~= YA | J
h2(x) A img(y) 0011 ﬂ*"""‘ Phase 2:
Quer ! i
y State Enumeration
y

0 4

{(4.6),

Results
4/19

Enumeration

<body>4

. N
Phase 1
<h2>, <p>s ” > X S
7/ \ Preprocessing
s ; ¢ ™ ;
Tree Indexed
tree
3s section(s)A
S~ XAS~ YA [3
h2(x) A img(y) ““#ﬁ Phase 2:
Quer ! Enumeration
y State
y
L 4

{(4,6), (t.7)}

Results
4/19

Enumeration

<body>4

d / <\ tion>
Phase 1
<h2>, <p>s - > X >
7/ \ Preprocessing
s ; ¢ ™ ;
Tree Indexed
tree
3s section(s)A
S~ XAS~ YA I 3
h2(x) A img(y) i wﬁﬁ‘ Phase 2:
Quer ! i
y State Enumeration
y
Theorem (Bagan’06; Kazana & Segoufin'13) 1

We can enumerate the answers of any MSO query {<4 6), (4 7)}
with preprocessing linear in the input tree

and constant delay between each answer Results
4119

Handling updates

<body>4

N

<div>; <section>;

Phase 1
Preprocessing

s ; g ;

Tree T Indexed
tree

<h2>, <p>s

e Trees are often updated, even after we have preprocessed them

5/19

Handling updates

<body>4

N

<div>; <section>;

Phase 1
Nseos Preprocessing

e Itwgs; ¢ ™ ,

Tree T Indexed
tree

<h2>, <p>s

e Trees are often updated, even after we have preprocessed them

5/19

Handling updates

<body>, <body>4
N\ AN
<div>; <section>3 <div>, <section>;
Phase 1: N\
<h2>, <p>s . S <h2>,
/ Qideos Preprocessing ’ o (Videsr
e g ¢ * Twgs;
Tree T Indexed
tree

e Trees are often updated, even after we have preprocessed them

5/19

Handling updates

<body>, <body>4
N\ S
<div>, <section>; <div>y <section>;
Phase 1: N\
<h2>, <p>s5 . > <h2>,
/ Qideos Preprocessing ’ o (Videsr
e g ¢ * Twgs;
Tree T Indexed
tree

e Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006, trees 0(1) O(T) (from scratch)
[Kazana and Segoufin, 2013]

5/19

Handling updates

<body>, <body>4

N S
<div>, <section>; <div>y <section>;
Phase 1: N\
<h2>, <p>s5 ﬁ . > <h2>,
/ Qideos Preprocessing o (Videsr
e g ¢ * Twgs;
Tree T Indexed
tree

e Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006, trees 0(1) O(T) (from scratch)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(log®T) O(log?T)

5/19

Handling updates

<body>, <body>4

AN Sy
<div>, <section>; <div>y <section>;
/N Phase 1: RN
<h2>, <p>s —_—) A > \ <h2>, <p>g
/" Qideos Preprocessing NG
s wgd 5>€ gz,
Tree T Indexed
tree

e Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

Bagan, 2006, trees 0(1) O(T) (from scratch)

[
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(log®T) O(log?T)
[Losemann and Martens, 2014] words O(logT) O(logT)

5/19

Handling updates

<body>, <body>4

AN Sy
<div>, <section>; <div>y <section>;
/N Phase 1: N
<h2>, <p>s —_—) A > \ <h2>, <p>g
<>11deo> Pre p rocessi ng \; W)@(}idec»
e g ¢ * Twgs;
Tree T Indexed
tree

e Trees are often updated, even after we have preprocessed them

Work Data Delay Updates

[Bagan, 2006, trees 0(1) O(T) (from scratch)
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(log®T) O(log?T)
[Losemann and Martens, 2014] words O(logT) O(logT)

[Niewerth and Segoufin, 2018] words 0O(1) O(logT)

5/19

Relabelings

<b0dy>1
s >/ <\ cions » We focus on relabeling updates:
1iv section
’ / \3 change the label of a node
<h2>, <p>5

/N

g ;

6/19

Relabelings

<b0dy>1
s >/ <\ cions » We focus on relabeling updates:
1iv section
’ / \3 change the label of a node
<h2>, <p>s * Example: relabel node 7 to <video>

/N

g ;

6/19

Relabelings

<b0dy>1
s >/ <\ cions » We focus on relabeling updates:
1iv section
’ / \3 change the label of a node
<h2>, <p>s * Example: relabel node 7 to <video>

/ <>/ideo>
TImsZ;

g

6/19

Relabelings

<b0dy>1
s >/ <\ cions » We focus on relabeling updates:
1iv section
’ / \3 change the label of a node
<h2>, <p>s * Example: relabel node 7 to <video>

/ <},ide(» e The tree’s structure never changes
g

6/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>4
<div>, <section>3
<h2>, <p>5

/ N\

s ;

7/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>,
— Write down the user parameters / \\
as labels on the tree))
<div>, <section>;
<h2>, <p>s

/ N\

s ;

7/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>,
— Write down the user parameters
as labels on the tree di >/ :\ tion>
— Relabel when they change V72 S/ec 1o<3
<h2>, <p>s

/ N\

s ;

7/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>,
— Write down the user parameters
as labels on the tree di >/ :\ tion>
— Relabel when they change V72 S/ec 1o<3
<h2>, <p>s

» Group-by with aggregation:
- Example: “For each section, / \
what is the total size of images” g y

7/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>,
— Write down the user parameters
as labels on the tree <di >/ :\ tion>
— Relabel when they change 1V22 S/ec 10<3
* Group-by with aggregation: <h2>, <P’s
- Example: “For each section, / \
what is the total size of images” g y

— Enumerate the groups and
write down each group

7/19

What are relabelings good for?

» Parameterized queries:
- Example: “Find all images in a

user-selected section” <body>,
— Write down the user parameters
as labels on the tree <di >/ :\ tion>
— Relabel when they change 1V22 S/ec 10<3
* Group-by with aggregation: <h2>, <P”s
- Example: “For each section, / \
what is the total size of images” g y

— Enumerate the groups and
write down each group
— Relabel when switching groups

7/19

Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

8/19

Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006], trees 0(1) N/A
[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(log®T) O(log®T)
[Losemann and Martens, 2014] words O(logT) O(logT)
[Niewerth and Segoufin, 2018] words 0O(1) O(logT)

8/19

Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work Data Delay Updates

[Bagan, 2006], trees 0(1) N/A

[Kazana and Segoufin, 2013]

[Losemann and Martens, 2014] trees O(log®T) O(log®T)

[Losemann and Martens, 2014] words O(logT) O(logT)

[Niewerth and Segoufin, 2018] words 0O(1) O(logT)

[This work] trees 0(1) O(log T) (relabelings)

8/19

Theorem (Main result)

We can enumerate the answers of any MSO query with preprocessing
linear in the input tree T and constant delay between each answer
and we can relabel any node and update the index in time O(log T)

Work

Delay Updates

[Bagan, 2006],

[Kazana and Segoufin, 2013]
[Losemann and Martens, 2014]
[Losemann and Martens, 2014]
[Niewerth and Segoufin, 2018]
[This work]

0(1) N/A

5
O'Q
~|
SN
o

o((

((
0(1) O(logT)
0(1) O(log T) (relabelings)

— Consequences for group-by, aggregation, parameterized queries

8/19

Proof techniques

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

LLLLLLLLLLL

3s section(S)A
S~ XAS~ YA
h2(x) A img(y)

Query

Phase 1:
Preprocessing

R

(SN

> . /L\

v
=

Indexed

tree

Phase 2:
Enumeration

—

{x:a,y:6),
X4,y 7>}
Results

9/19

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

» Preprocessing: Compute a circuit representation of the answers

* Enumeration: Apply a generic algorithm on the circuit

<<<<<<<<<<<<<<<<<

<b2>,

3s section(S)A
S~ XAS~ YA
h2(x) A img(y)

Query

Phase 1:
Preprocessing

Phase 2:
Enumeration

—

Circuit

{x:a,y:6),
X4,y 7>}
Results

9/19

Knowledge compilation

To make the proof modular, we follow knowledge compilation:

» Preprocessing: Compute a circuit representation of the answers

* Enumeration: Apply a generic algorithm on the circuit

<<<<<<<<<<<<<<<<<

<h2>,

3s section(S)A
S~ XAS~ YA
h2(x) A img(y)

Query

Phase 1:
Preprocessing

Phase 2:
Enumeration

—

Circuit

{x:a,y:6),
X4,y 7>}
Results

First present approach without relabelings (as in our ICALP'17 paper)
then extend the approach to support relabelings

9/19

A set circuit represents a set of answers to a query Q(x,y)

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

)
) Q)
() D

Three kinds of set-valued gates:

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

@ Variable gate @ :

— captures {(x:4)}

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

@ Variable gate @ :

— captures {(x:4)}

@ Q * Union gate @ :
— union of sets of tuples

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

@ Variable gate @ :

— captures {(x:4)}

@ Q * Union gate @ :

— union of sets of tuples

» Product gate @ ;
@ 0 — relational product

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

 Variable gate @ :

— captures {(x:4)}

* Union gate @ :

— union of sets of tuples

» Product gate @ ;

— relational product

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

 Variable gate @ :

— captures {(x:4)}

* Union gate @ :

— union of sets of tuples

{v:7)}
» Product gate @ ;

— relational product

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

 Variable gate @ :

— captures {(x:4)}

* Union gate @ :

— union of sets of tuples

{v:7)}
» Product gate @ ;

— relational product

10/19

A set circuit represents a set of answers to a query Q(x,y)

 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

Three kinds of set-valued gates:

 Variable gate @ :

— captures {(x:4)}

* Union gate @ :

— union of sets of tuples

{v:7)}
» Product gate @ ;

— relational product

10/19

A set circuit represents a set of answers to a query Q(x,y)
 Singleton x:6 — “the free variable x is mapped to node 6”
* Tuple (x:4,y:6): tuple of singletons
* The circuit captures a set of tuples, e.g, {(x:4,y:6), (X:4,y:7)}

{(x:4,y:6) Three kinds of set-valued gates:
(X:4,y:7)) Variable gate @ :
{(x:4)} {(v:6),(y:7)} — captures {(x:4)}

* Union gate @ :

— union of sets of tuples

{v:7)}
» Product gate @ ;

— relational product

10/19

Preprocessing: Set circuit construction

N Phase 1:
4 /<>»

wé S, | Preprocessing 3
Tree Circuit

3s section(s)A
S~ XNAS~ YA
h2(x) A ing(y)

Query

Theorem

For any MSO query Q(X4, . ..,Xg), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{<X1n1,,ank>‘(n1,,nk)€-rk}

11/19

Preprocessing: Set circuit construction

L S
e Phase 1:
h2: <p>s H .
wé S, | Preprocessing 3
Tree Circuit

3s section(s)A
S~ XNAS~ YA
h2(x) A ing(y)

Query

Theorem

For any MSO query Q(X4, . ..,Xg), given a tree T, we can build in O(T)
a set circuit capturing exactly the set of answers of Q on T:
{(X1:0,... . X ng) | (n,...,ng) € TR}

» Proof idea: Translate query to bottom-up tree automaton
and build a provenance circuit following the structure of the tree

Enumeration on set circuits

Phase 2: {04y -6),
. i — (x:4y:7)}
= numeration Results
Circuit

Theorem

Given a set circuit satisfying some conditions, we can enumerate all
tuples that it captures with linear preprocessing and constant delay

E.g, for {(x:4,y:6), (x:4,y:7)}: enumerate (x:4,y:6), then (x:4,y:7)

12/19

General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

13/19

General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

Base case: variable @ :

13/19

General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

Base case: variable @ : enumerate (x : n) and stop

13/19

General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

Base case: variable : enumerate (x : n) and stop

U-gate

Q

g1 9>

Concatenation: enumerate T(g,)
and then enumerate T(g»)

13/19

General enumeration approach

— Enumerate the set T(g) captured by each gate g
— Do it by top-down induction on the circuit

Base case: variable : enumerate (x : n) and stop
U-gate x-gate
91 92 gn 9>
Concatenation: enumerate T(g,) Lexicographic product:
and then enumerate T(g,) for every t; in T(g4):

for every t, in T(g,):
outputt; +t;,

13/19

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

O
) G
(9 &

14119

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

. @ are all deterministic:

For any two inputs g, and g, of a U-gate, @
the captured sets T(g,) and T(g,) are disjoint

(they have no tuple in common)

— Avoids duplicate tuples @ Q

14119

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

. @ are all deterministic:

For any two inputs g, and g, of a U-gate, @
the captured sets T(g,) and T(g,) are disjoint

(they have no tuple in common)

— Avoids duplicate tuples @ o

. @ are all decomposable:
For any two inputs g, and g, of a x-gate, @ @

no variable has a path to both g, and g»

— Avoids duplicate singletons

14119

Circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

. @ are all deterministic:

For any two inputs g, and g, of a U-gate, @
the captured sets T(g,) and T(g,) are disjoint

(they have no tuple in common)

— Avoids duplicate tuples @ o

. @ are all decomposable:
For any two inputs g, and g, of a x-gate, @ @

no variable has a path to both g, and g»

— Avoids duplicate singletons

e Also an additional upwards-determinism condition

14119

Enumeration subtleties

e We must not waste time in gates capturing ()

15/19

Enumeration subtleties

* We must not waste time in gates capturing ()
— Label them during the preprocessing

15/19

@°°
@ e@

* We must not waste time in gates capturing ()
— Label them during the preprocessing
* We must not waste time because of gates capturing {()}

15/19

@°°
@ e@

* We must not waste time in gates capturing ()
— Label them during the preprocessing

* We must not waste time because of gates capturing {()}
— Homogenization to set them aside

15/19

Enumeration subtleties

* We must not waste time in gates capturing ()
— Label them during the preprocessing

* We must not waste time because of gates capturing {()}
— Homogenization to set them aside

» We must not waste time in hierarchies of U-gates

15/19

Enumeration subtleties

e We must not waste time in gates capturing ()
— Label them during the preprocessing
* We must not waste time because of gates capturing {()}
— Homogenization to set them aside
e We must not waste time in hierarchies of U-gates
— Precompute a reachability index (uses upwards-determinism)

15/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
Four kinds of Boolean gates:

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
Four kinds of Boolean gates:

 Variable gate :

— true iff node 4 is labeled h2

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
Four kinds of Boolean gates:

 Variable gate :

— true iff node 4 is labeled h2

« AND, OR, NOT :

— usual semantics

16/19

Hybrid circuits to support relabelings

To support relabelings, we use hybrid circuits that have:

. |:| Boolean gates that depend only on the labeling

. O Set gates that capture a set of tuples for each labeling
Four kinds of Boolean gates:

 Variable gate :

— true iff node 4 is labeled h2

« AND, OR, NOT :

— usual semantics

One new set-valued gate:

. : Test gate

— (0 if Boolean input is false
— like the set input otherwise

16/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

/N

s ;

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}
e When the tree is relabeled, change the Boolean variables

<body>4
SN
<section>3
N
<h2>, <p>s

/ <>ideo>
gy

6

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}
e When the tree is relabeled, change the Boolean variables

<p>s

/// ;sideo>
gy

6

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}
e When the tree is relabeled, change the Boolean variables

<p>s

/// ;sideo>
gy

6

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}
e When the tree is relabeled, change the Boolean variables

<p>s

/// ;sideo>
gy

6

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}
e When the tree is relabeled, change the Boolean variables

<p>s

/// ;sideo>
gy

6

17/19

Hybrid circuit semantics

» For every labeling, the hybrid circuit captures a set of tuples
— Here, the captured setis {(x:4,y:6), (X:4,y:7)}

e When the tree is relabeled, change the Boolean variables
— New captured set: {(x:4,y:6)}

<p>s

/// ;sideo>
gy

6

17/19

Complexity of relabelings

* When a label changes, update the circuit bottom-up

/N

s ;

18/19

Complexity of relabelings

* When a label changes, update the circuit bottom-up

<p>s

/ <>ideo>
gy

g

18/19

Complexity of relabelings

* When a label changes, update the circuit bottom-up

<p>s

/ <>ideo>
gy

g

18/19

Complexity of relabelings

* When a label changes, update the circuit bottom-up
e The circuit follows the structure of the input tree T
so updates are in O(height(T))

<p>s

/ <>ideo>
gy

g

18/19

Complexity of relabelings

* When a label changes, update the circuit bottom-up
e The circuit follows the structure of the input tree T
so updates are in O(height(T))
— Balancing lemma: Rewrite the input tree to make it balanced

<p>s

/ <>ideo>
gy

6

18/19

Conclusion

Summary and future work

Summary:

* Problem: enumerate the answers of an MSO query on a tree
with efficient support for relabeling updates on the tree

19/19

Summary and future work

Summary:

* Problem: enumerate the answers of an MSO query on a tree
with efficient support for relabeling updates on the tree

e Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

19/19

Summary and future work

Summary:

* Problem: enumerate the answers of an MSO query on a tree
with efficient support for relabeling updates on the tree

e Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

e Consequences: group-by, parameterized queries, aggregation

19/19

Summary and future work

Summary:

* Problem: enumerate the answers of an MSO query on a tree
with efficient support for relabeling updates on the tree

e Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

e Consequences: group-by, parameterized queries, aggregation
Future work:

e Practice: implement the technique with automata
 Applications: text extraction? e.g., document spanners (ongoing)
« Updates: support insertions/deletions? (ongoing)

19/19

Summary and future work

Summary:
* Problem: enumerate the answers of an MSO query on a tree

with efficient support for relabeling updates on the tree

e Main result: we can do this with linear preprocessing,
constant delay between each answer, and log update time

e Consequences: group-by, parameterized queries, aggregation

Future work:

e Practice: implement the technique with automata
 Applications: text extraction? e.g., document spanners (ongoing)
« Updates: support insertions/deletions? (ongoing)

Thanks for your attention!

19/19

References i

[§ Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
[d Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
[Losemann, K. and Martens, W. (2014,).
MSO queries on trees: enumerating answers under updates.
In CSL-LICS.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf
http://www.theoinf.uni-bayreuth.de/download/lics14-preprint.pdf

References ii

[d Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

©

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

Set circuit construction

» Automaton: “Select all node pairs (x,y)” * States: {0,x,y,xy}

	Problem statement
	Proof techniques
	Conclusion
	Appendix

