
Dynamic Membership for Regular Tree Languages

Antoine Amarilli1

Joint work with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman
September 18, 2024
1Inria Lille

1/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = ababab w ∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbab w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab

• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”

• “combinations” of the two
e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm

• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)

3/8

Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)
3/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests

• Label on nodes from finite alphabet
e.g., Σ = {a,b, c,d,□}

• Regular languages (given, e.g,. as tree automata)
e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests

• Label on nodes from finite alphabet
e.g., Σ = {a,b, c,d,□}

• Regular languages (given, e.g,. as tree automata)
e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests
• Label on nodes from finite alphabet

e.g., Σ = {a,b, c,d,□}

• Regular languages (given, e.g,. as tree automata)
e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests
• Label on nodes from finite alphabet

e.g., Σ = {a,b, c,d,□}
• Regular languages (given, e.g,. as tree automata)

e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests
• Label on nodes from finite alphabet

e.g., Σ = {a,b, c,d,□}
• Regular languages (given, e.g,. as tree automata)

e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests
• Label on nodes from finite alphabet

e.g., Σ = {a,b, c,d,□}
• Regular languages (given, e.g,. as tree automata)

e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba

4/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class

• On words, all aperiodic languages are O(log log n)
• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)

6/8

Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class
• On words, all aperiodic languages are O(log log n)

• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)

6/8

Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class
• On words, all aperiodic languages are O(log log n)
• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)

6/8

Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class
• On words, all aperiodic languages are O(log log n)
• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)

6/8

Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class
• On words, all aperiodic languages are O(log log n)
• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)

6/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...

7/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf

• In the subtree induced by the a’s, all internal nodes have degree 3
□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

8/8

Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor 8/8

References i

Alstrup, S., Husfeldt, T., and Rauhe, T. (1998).
Marked ancestor problems.
In FOCS.
Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic membership for regular languages.
In ICALP.
Barloy, C. (2024).
On the complexity of regular languages.
PhD thesis, Université de Lille.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.3834&rep=rep1&type=pdf
http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/

References ii

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic word problems.
JACM, 44(2).

	Appendix

