

Dynamic Membership for Regular Tree Languages

Antoine Amarilli¹

Joint work with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman September 18, 2024

¹Inria Lille

• Fix a regular language L

$$L = (ab)^*$$

• Fix a regular language L

 $L = (ab)^{*}$

• Given as input a **word** w, write n := |w|

w = ababab

• Fix a regular language L

 $L = (ab)^{*}$

• Given as input a word w, write n := |w|

w = ababab

• Can decide in O(n) whether $w \in L$

- Fix a regular language L $L = (ab)^*$
- Given as input a word w, write n := |w| w = ababab
- Can decide in O(n) whether $w \in L$

Our problem: substitute some letters while maintaining membership to L!

- Fix a regular language L $L = (ab)^*$
- Given as input a word w, write n := |w| w = ababab
- Can decide in O(n) whether $w \in L$

Our problem: substitute some letters while maintaining membership to L!

w = ababab $w \in L$

- Fix a regular language L $L = (ab)^*$
- Given as input a word w, write n := |w| w = ababab
- Can decide in O(n) whether $w \in L$

Our problem: substitute some letters while maintaining membership to L!

w = abbbab $w \notin L$

- Fix a regular language L $L = (ab)^*$
- Given as input a word w, write n := |w| w = ababab
- Can decide in O(n) whether $w \in L$

Our problem: substitute some letters while maintaining membership to L!

 $w = abbbaa \qquad w \notin L$

- Fix a regular language L $L = (ab)^*$
- Given as input a word w, write n := |w| w = ababab
- Can decide in O(n) whether $w \in L$

Our problem: substitute some letters while maintaining membership to L!

 $w = abbbaa \qquad w \notin L$

What is the complexity of this problem? can we do better than O(n) per update?

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

• For some regular languages we can maintain membership in *O*(1) per update

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., L = ab

• **commutative languages** e.g., "even number of **c**'s"

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- **commutative languages** e.g., "even number of **c**'s"
- "combinations" of the two

e.g., "one **a** before one **b**, even number of **c**'s

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- **commutative languages** e.g., "even number of **c**'s"
- "combinations" of the two

e.g., "one **a** before one **b**, even number of **c**'s

• For some other languages, $O(\log \log n)$ algorithm

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- **commutative languages** e.g., "even number of **c**'s"
- "combinations" of the two

e.g., "one **a** before one **b**, even number of **c**'s

- For some other languages, $O(\log \log n)$ algorithm
 - all aperiodic languages

e.g., $\textit{L} = (\textit{ab})^*$

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- **commutative languages** e.g., "even number of **c**'s"
- "combinations" of the two

e.g., "one **a** before one **b**, even number of **c**'s

- For some other languages, $O(\log \log n)$ algorithm
 - all aperiodic languages e.g., $L = (ab)^*$
 - "combinations" with commutative languages

e.g., $L = (ab)^*$ shuffled with an even number of c's

- Skovbjerg Frandsen, Miltersen, Skyum, "Dynamic Word Problems", JACM'97
- A., Jachiet, Paperman, "Dynamic Membership for Regular Languages", ICALP'21

- For some regular languages we can maintain membership in *O*(1) per update
 - finite languages

e.g., **L** = **ab**

- **commutative languages** e.g., "even number of **c**'s"
- "combinations" of the two

e.g., "one **a** before one **b**, even number of **c**'s

- For some other languages, $O(\log \log n)$ algorithm
 - all aperiodic languages e.g., $L = (ab)^*$
 - "combinations" with commutative languages e.g., $L = (ab)^*$ shuffled with an even number of c's
- All other regular languages: $\Theta(\log n / \log \log n)$

Innocent question: "What about regular tree languages"?

Innocent question: "What about regular tree languages"?

Rooted, ordered, unranked forests

Innocent question: "What about regular tree languages"?

- Rooted, ordered, unranked forests
- Label on **nodes** from finite alphabet

e.g.,
$$\Sigma = \{a, b, c, d, \Box\}$$

Innocent question: "What about regular tree languages"?

- Rooted, ordered, unranked forests
- Label on **nodes** from finite alphabet

e.g., $\Sigma = \{a, b, c, d, \Box\}$

Regular languages (given, e.g., as tree automata)
 e.g., "there is an *a* whose parent is a *b*"

Innocent question: "What about regular tree languages"?

- Rooted, ordered, unranked forests
- Label on **nodes** from finite alphabet

e.g., $\Sigma = \{a, b, c, d, \Box\}$

Regular languages (given, e.g., as tree automata)
 e.g., "there is an *a* whose parent is a *b*"

Some big **simplifying assumptions**:

• The shape of the tree never changes: we only substitute node labels

Innocent question: "What about regular tree languages"?

- Rooted, ordered, unranked forests
- Label on **nodes** from finite alphabet

e.g., $\Sigma = \{a, b, c, d, \Box\}$

Regular languages (given, e.g., as tree automata)
 e.g., "there is an *a* whose parent is a *b*"

Some big **simplifying assumptions**:

- The shape of the tree never changes: we only substitute node labels
- **Special neutral label** □ means "replace the node by the list of its children" (avoids "local information")

а

h

Commutative regular tree languages

e.g., "even number of **d**'s"

Commutative regular tree languages

e.g., "even number of **d**'s"

• Finite tree languages on a subalphabet

e.g., "there is one **a** and one **b** and one **c** which is their LCA"

Commutative regular tree languages

e.g., "even number of **d**'s"

- Finite tree languages on a subalphabet e.g., "there is one *a* and one *b* and one *c* which is their LCA"
- Boolean combinations thereof

Commutative regular tree languages

e.g., "even number of **d**'s"

- Finite tree languages on a subalphabet e.g., "there is one *a* and one *b* and one *c* which is their LCA"
- Boolean combinations thereof

For all other languages, conditional non-O(1) lower bound like for word languages

Commutative regular tree languages

e.g., "even number of **d**'s"

- Finite tree languages on a subalphabet e.g., "there is one *a* and one *b* and one *c* which is their LCA"
- Boolean combinations thereof

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

d

• After O(1), we wanted to generalize the $O(\log \log n)$ class

- After O(1), we wanted to generalize the $O(\log \log n)$ class
- On words, all **aperiodic languages** are **O**(log log *n*)

- After O(1), we wanted to generalize the $O(\log \log n)$ class
- On words, all **aperiodic languages** are **O**(log log *n*)
- What about trees?

- After O(1), we wanted to generalize the $O(\log \log n)$ class
- On words, all **aperiodic languages** are **O**(log log n)
- What about trees?

Existential marked ancestor problem: "there is one b with an a ancestor"

- After O(1), we wanted to generalize the $O(\log \log n)$ class
- On words, all aperiodic languages are $O(\log \log n)$
- What about trees?

Existential marked ancestor problem: "there is one b with an a ancestor"

This (aperiodic) problem has an **unconditional** $\Omega(\log n / \log \log n)$ **lower bound**! (from Alstrup et al., FOCS'98)

• Whatever can be done in $O(\log \log n)$ on the XML serialization (intuitively, separation by a $O(\log \log n)$ regular word language)

- Whatever can be done in $O(\log \log n)$ on the XML serialization (intuitively, separation by a $O(\log \log n)$ regular word language)
 - The sequence of leaves is in an aperiodic word language
 - The branch of first children is an aperiodic word language

- Whatever can be done in $O(\log \log n)$ on the XML serialization (intuitively, separation by a $O(\log \log n)$ regular word language)
 - The sequence of leaves is in an aperiodic word language
 - The branch of first children is an aperiodic word language
- Maintaining degree information
 - All internal nodes have exactly 42 children

- Whatever can be done in $O(\log \log n)$ on the XML serialization (intuitively, separation by a $O(\log \log n)$ regular word language)
 - The sequence of leaves is in an aperiodic word language
 - The branch of first children is an aperiodic word language
- Maintaining degree information
 - All internal nodes have exactly 42 children
- Incomprehensible things for non-aperiodic languages (details omitted)

- Whatever can be done in $O(\log \log n)$ on the XML serialization (intuitively, separation by a $O(\log \log n)$ regular word language)
 - The sequence of leaves is in an aperiodic word language
 - The branch of first children is an aperiodic word language
- Maintaining degree information
 - All internal nodes have exactly 42 children
- Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the $O(\log \log n)$ boundary...

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

• There is exactly **one** *b* and it is **a leaf**

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

- There is exactly **one** *b* and it is **a leaf**
- In the subtree induced by the a's, all internal nodes have degree 3

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

- There is exactly **one** *b* and it is **a leaf**
- In the subtree induced by the a's, all internal nodes have degree 3

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

- There is exactly **one b** and it is **a leaf**
- In the subtree induced by the a's, all internal nodes have degree 3

This can be maintained under substitutions in $O(\log \log n)$ per update. But add...

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

- There is exactly **one b** and it is **a leaf**
- In the subtree induced by the a's, all internal nodes have degree 3

This can be maintained under substitutions in $O(\log \log n)$ per update. But add...

• Going upwards from **b** we always reach the second child of our parent

Consider the following language on alphabet $\Sigma = \{a, b, \Box\}$:

- There is exactly **one b** and it is **a leaf**
- In the subtree induced by the a's, all internal nodes have degree 3

This can be maintained under substitutions in $O(\log \log n)$ per update. But add...

• Going upwards from **b** we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor

Alstrup, S., Husfeldt, T., and Rauhe, T. (1998). Marked ancestor problems. In FOCS.

- Amarilli, A., Jachiet, L., and Paperman, C. (2021).
 Dynamic membership for regular languages.
 In ICALP.
- Barloy, C. (2024).

On the complexity of regular languages.

PhD thesis, Université de Lille.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997). Dynamic word problems. JACM, 44(2).