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Dynamic membership of words to regular languages

• Fix a regular language L L = (ab)∗

• Given as input a word w, write n := |w| w = ababab

• Can decide in O(n) whether w ∈ L

Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w /∈ L

What is the complexity of this problem? can we do better than O(n) per update?
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Dynamic membership for words: Results (actually for monoids)

• Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM’97
• A., Jachiet, Paperman, “Dynamic Membership for Regular Languages”, ICALP’21

in O(1)

in O(log log n)
not in O(1)?

in Θ(log n/ log log n)

• For some regular languages we can maintain
membership in O(1) per update

• finite languages e.g., L = ab
• commutative languages e.g., “even number of c’s”
• “combinations” of the two

e.g., “one a before one b, even number of c’s

• For some other languages, O(log log n) algorithm
• all aperiodic languages e.g., L = (ab)∗

• “combinations” with commutative languages
e.g., L = (ab)∗ shuffled with an even number of c’s

• All other regular languages: Θ(log n/ log log n)
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Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

• Rooted, ordered, unranked forests

• Label on nodes from finite alphabet
e.g., Σ = {a,b, c,d,□}

• Regular languages (given, e.g,. as tree automata)
e.g., “there is an a whose parent is a b”

a

□

cb

b

□

c□b

a□

ba

Some big simplifying assumptions:

• The shape of the tree never changes: we only
substitute node labels

• Special neutral label □ means “replace the node by
the list of its children” (avoids “local information”)

a

cbb

cb

aba
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Fairytale: the O(1) case

We can maintain in O(1):

• Commutative regular tree languages
e.g., “even number of d’s”

• Finite tree languages on a subalphabet
e.g., “there is one a and one b and one c which is their LCA”

• Boolean combinations thereof

□

dd

c

d

bad

For all other languages, conditional non-O(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]
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Horror story: the O(log log n) case

• After O(1), we wanted to generalize the O(log log n) class

• On words, all aperiodic languages are O(log log n)
• What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”
□

□

a

□□

□

b□

a

a

□a

□

□a

□

a

□

□□

□

b□

a

a

□a

□

□a

This (aperiodic) problem has an unconditional Ω(log n/ log log n) lower bound!
(from Alstrup et al., FOCS’98)
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What can we do in O(log log n)?

We can still do many things in O(log log n)!

• Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(log log n) regular word language)

• The sequence of leaves is in an aperiodic word language
• The branch of first children is an aperiodic word language

• Maintaining degree information
• All internal nodes have exactly 42 children

• Incomprehensible things for non-aperiodic languages (details omitted)

But we are still missing a characterization of the O(log log n) boundary...
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Current roadblock

Consider the following language on alphabet Σ = {a,b,□}:

• There is exactly one b and it is a leaf
• In the subtree induced by the a’s, all internal nodes have degree 3

□

□

a

a□

aa

a

a□

ba

a

□

a□

□

aa

stands
for

a

aaa

a

aba

a

aaa

This can be maintained under substitutions in O(log log n) per update. But add...

• Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor
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