lrezia —

Dynamic Membership for Regular Tree Languages

Antoine Amarilli’
Joint work with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

September 18, 2024

"Inria Lille

1/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*

- Given as input a word w, write n := |w| w = ababab

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L

Our problem: substitute some letters while maintaining membership to L!

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L
Our problem: substitute some letters while maintaining membership to L!

w = ababab welL

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L
Our problem: substitute some letters while maintaining membership to L!

w = abbbab w ¢ L

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L
Our problem: substitute some letters while maintaining membership to L!

w = abbbaa w¢L

2/8

Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L
Our problem: substitute some letters while maintaining membership to L!
w = abbbaa w¢L

What is the complexity of this problem? can we do better than O(n) per update?

2/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

(0

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain
membership in O(1) per update

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain
membership in O(1) per update

- finite languages eg,L=ab

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain
membership in O(1) per update

- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain
membership in O(1) per update
- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”
- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain

membership in O(1) per update
- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”
- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

- For some other languages, O(log log n) algorithm

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain

membership in O(1) per update
- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”
- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

- For some other languages, O(log log n) algorithm

- all aperiodic languages eg, L= (ab)*

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain

membership in O(1) per update
- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”
- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

- For some other languages, O(log log n) algorithm

- all aperiodic languages eg, L= (ab)*
- “combinations” with commutative languages
e.g, L = (ab)* shuffled with an even number of c's

3/8

Dynamic membership for words: Results (actually for monoids)

- Skovbjerg Frandsen, Miltersen, Skyum, “Dynamic Word Problems”, JACM'97
- A, Jachiet, Paperman, “Dynamic Membership for Reqular Languages”, ICALP'21

in 0(1)

in O(log log n)
not in 0(1)?

in ©(log n/ loglogn)

~N

- For some regular languages we can maintain

membership in O(1) per update
- finite languages eg,L=ab
- commutative languages e.g, “even number of ¢'s”
- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

- For some other languages, O(log log n) algorithm

- all aperiodic languages eg, L= (ab)*
- “combinations” with commutative languages
e.g, L = (ab)* shuffled with an even number of c's

- All other regular languages: ©(logn/ loglogn)

3/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

- Rooted, ordered, unranked forests /Cl\ /D\
b O b O ¢
/\ AN
b ¢ O a
/N

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?
a]

- Rooted, ordered, unranked forests N /\
- Label on nodes from finite alphabet b R /b\ O c
eg,x =1{a,b,c,d,O
gr {) My by My } b c D a

/\

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

a Il
- Rooted, ordered, unranked forests PN P
- Label on nodes from finite alphabet b R K O ¢
eg,x =1{a,b,c,d,
gr { y Uy Ly U, } b C |:| a
- Regular languages (given, e.g,. as tree automata) /\

e.g, “there is an a whose parentisab” a b

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

a]

- Rooted, ordered, unranked forests PN N~
- Label on nodes from finite alphabet b R /b\ 0 c
eg,x =1{a,b,c,d,

. gr { y Uy Ly Uy } b c |:| a
- Regular languages (given, e.g,. as tree automata) /N
e.g, “there is an a whose parentisab” a b

Some big simplifying assumptions:

- The shape of the tree never changes: we only
substitute node labels

4/8

Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

a]
- Rooted, ordered, unranked forests PN P
- Label on nodes from finite alphabet b O b O c
eg,x =1{a,b,c,d,00} bAc D/\a
- Regular languages (given, e.g,. as tree automata) /\
e.g, “there is an a whose parentisab” a b
Some big simplifying assumptions:
- The shape of the tree never changes: we only q b c
substitute node labels N PN
- Special neutral label [J means “replace the node by b bc aba

the list of its children” (avoids “local information”) s

Fairytale: the O(1) case

We can maintain in O(1):

Q.

Q.
o
Q>Qﬁ
(=

5/8

Fairytale: the O(1) case

We can maintain in O(1):

- Commutative regular tree languages

]
e.g, “even number of d's” /\
d d

C

|

d
T
d ab

5/8

Fairytale: the O(1) case

We can maintain in O(1):

- Commutative regular tree languages

[l
e.g, “even number of d’s” /\

- Finite tree languages on a subalphabet d d

e.g, “there is one a and one b and one ¢ which is their LCA”

C

|

d
T
d ab

5/8

Fairytale: the O(1) case

We can maintain in O(1):

- Commutative regular tree languages [C
e.g., “even number of d's” VAN \
- Finite tree languages on a subalphabet d d /dh
e.g, “there is one a and one b and one ¢ which is their LCA” d a b

- Boolean combinations thereof

5/8

Fairytale: the O(1) case

We can maintain in O(1):

- Commutative regular tree languages

[l
e.g, “even number of d’s” /\

- Finite tree languages on a subalphabet d d

e.g, “there is one a and one b and one ¢ which is their LCA”

c

\

d
T
d a b
- Boolean combinations thereof

For all other languages, conditional non-0(1) lower bound like for word languages

5/8

Fairytale: the O(1) case

We can maintain in O(1):

- Commutative regular tree languages

[l
e.g, “even number of d’s” /\

- Finite tree languages on a subalphabet d d

c

\

d
e.g, “there is one a and one b and one ¢ which is their LCA” m

- Boolean combinations thereof

For all other languages, conditional non-0(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]

5/8

Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class

6/8

Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class
- On words, all aperiodic languages are O(log log n)

6/8

Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class
- On words, all aperiodic languages are O(log log n)
- What about trees?

6/8

Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class
- On words, all aperiodic languages are O(log log n)
- What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”

AN AN N

6/8

Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class
- On words, all aperiodic languages are O(log log n)
- What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”

AAAA AAAA

a OO b OO a OO b OO

This (aperiodic) problem has an unconditional Q(log n/ loglog n) lower bound!
(from Alstrup et al., FOCS'98)

6/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

7/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

7/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

- The sequence of leaves is in an aperiodic word language
- The branch of first children is an aperiodic word language

7/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

- The sequence of leaves is in an aperiodic word language
- The branch of first children is an aperiodic word language

- Maintaining degree information
- All internal nodes have exactly 42 children

7/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

- The sequence of leaves is in an aperiodic word language
- The branch of first children is an aperiodic word language

- Maintaining degree information
- All internal nodes have exactly 42 children

- Incomprehensible things for non-aperiodic languages (details omitted)

7/8

What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

- The sequence of leaves is in an aperiodic word language
- The branch of first children is an aperiodic word language

- Maintaining degree information
- All internal nodes have exactly 42 children

- Incomprehensible things for non-aperiodic languages (details omitted)
But we are still missing a characterization of the O(loglog n) boundary...

7/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf
- In the subtree induced by the a’s, all internal nodes have degree 3

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf
- In the subtree induced by the a’s, all internal nodes have degree 3

]

/\

a [l a a a
5y & sands N0 N0 TN
AN AL L for a a a a b a a a a
aa da O a O a

/N /\

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf
- In the subtree induced by the a’s, all internal nodes have degree 3

U

/\

a O a a a
S T stands N I N
AN AL L for a a a a b a a a a
aadda O a 0O a

/N /N
a b a a

This can be maintained under substitutions in O(log log n) per update. But add...

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf
- In the subtree induced by the a’s, all internal nodes have degree 3

U

/\

a O a a a
S T stands N I N
AN AL L for a a a a b a a a a
aadda O a 0O a

/N /N
a b a a

This can be maintained under substitutions in O(log log n) per update. But add...

- Going upwards from b we always reach the second child of our parent

8/8

Current roadblock

Consider the following language on alphabet ¥ = {a,b,0}:

- There is exactly one b and it is a leaf
- In the subtree induced by the a's, all internal nodes have degree 3

U

/\

a O a a a
S T stands N I N
AN AL L for a a a a b a a a a
aadda O a 0O a

/N /N
a b a a

This can be maintained under substitutions in O(log log n) per update. But add...
- Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor 8/8

References i

@ Alstrup, S., Husfeldt, T., and Rauhe, T. (1998).
Marked ancestor problems.
In FOCS.

@ Amarilli, A, Jachiet, L., and Paperman, C. (2021).
Dynamic membership for regular languages.
In ICALP.

[@ Barloy, C. (2024).
On the complexity of regular languages.
PhD thesis, Université de Lille.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.71.3834&rep=rep1&type=pdf
http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/

References ii

[§ Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic word problems.
JACM, 14(2).

	Appendix

