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Dynamic membership of words to regular languages

- Fix a regular language L L = (ab)*
- Given as input a word w, write n := |w| w = ababab

- Can decide in O(n) whetherw € L
Our problem: substitute some letters while maintaining membership to L!
w = abbbaa w¢L

What is the complexity of this problem? can we do better than O(n) per update?
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- “combinations” of the two
e.g., “one a before one b, even number of ¢'s

- For some other languages, O(log log n) algorithm

- all aperiodic languages eg, L= (ab)*
- “combinations” with commutative languages
e.g, L = (ab)* shuffled with an even number of c's

- All other regular languages: ©(logn/ loglogn)
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Dynamic membership to tree languages

Innocent question: “What about regular tree languages”?

a ]
- Rooted, ordered, unranked forests PN P
- Label on nodes from finite alphabet b O b O c
eg,x =1{a,b,c,d,00} bAc D/\a
- Regular languages (given, e.g,. as tree automata) /\
e.g, “there is an a whose parentisab” a b
Some big simplifying assumptions:
- The shape of the tree never changes: we only q b c
substitute node labels N PN
- Special neutral label [J means “replace the node by b bc aba

the list of its children” (avoids “local information”) s
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e.g, “even number of d’s” /\

- Finite tree languages on a subalphabet d d

c

\

d
e.g, “there is one a and one b and one ¢ which is their LCA” m

- Boolean combinations thereof

For all other languages, conditional non-0(1) lower bound like for word languages

[See PhD of Corentin Barloy, Section 7.2]
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Horror story: the O(loglog n) case

- After O(1), we wanted to generalize the O(loglogn) class
- On words, all aperiodic languages are O(log log n)
- What about trees?

Existential marked ancestor problem: “there is one b with an a ancestor”

AAAA AAAA

a OO b OO a OO b OO

This (aperiodic) problem has an unconditional Q(log n/ loglog n) lower bound!
(from Alstrup et al., FOCS'98)
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What can we do in O(log log n)?

We can still do many things in O(loglog n)!

- Whatever can be done in O(log log n) on the XML serialization (intuitively,
separation by a O(loglog n) regular word language)

- The sequence of leaves is in an aperiodic word language
- The branch of first children is an aperiodic word language

- Maintaining degree information
- All internal nodes have exactly 42 children

- Incomprehensible things for non-aperiodic languages (details omitted)
But we are still missing a characterization of the O(loglog n) boundary...
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- There is exactly one b and it is a leaf
- In the subtree induced by the a's, all internal nodes have degree 3

U

/\

a O a a a
S T stands N I N
AN AL L for a a a a b a a a a
aadda O a 0O a

/N /N
a b a a

This can be maintained under substitutions in O(log log n) per update. But add...
- Going upwards from b we always reach the second child of our parent

What is the complexity?? no known reduction from existential marked ancestor 8/8
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