Enumerating regular languages with bounded delay

Antoine Amarilli, Mikaél Monet; STACS'23
July 27, 2023
TELECOM

Paris
) T
h’ztla/‘ V: IP PARIS

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input - YES/NO

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input — YES/NO Measure: running time

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input — YES/NO Measure: running time

Computation problem

Input — {.Vy..V».VV}

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input — YES/NO Measure: running time

Computation problem

Input — {(BV BEREV BVYVY Measure: running time

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem
Input — YES/NO Measure: running time
Computation problem

Input — {(BV BEREV BVYVY Measure: running time

Enumeration problem

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results
Decision problem

Input — YES/NO Measure: running time
Computation problem

Input — {(BV BEREV BVYVY Measure: running time

Enumeration problem

Input —

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results
Decision problem

Input — YES/NO Measure: running time
Computation problem

Input — {] v, Bl v,] v v} Measure: running time

Enumeration problem

Input — {.v,

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results
Decision problem

Input — YES/NO Measure: running time
Computation problem

Input — {] v, Bl v,] v v} Measure: running time

Enumeration problem

Input — {.v,
EEV,

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input — YES/NO Measure: running time

Computation problem
Input — {(BV BEREV BVYVY Measure: running time

Enumeration problem

Input — ,

{@V
EEV,
CRA S

Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results
Decision problem

Input — YES/NO Measure: running time
Computation problem

Input — {(BV BEREV BVYVY Measure: running time

Enumeration problem

Input — , :| Measure: max delay between two consecutive results

{@V
EEV,
CRA S

1/8

Holy grail: Constant-delay enumeration

2/8

Holy grail: Constant-delay enumeration

On acyclic conjunctive queries and constant delay
enumeration

Guillaume Bagan * Arnaud Durand Etienne Grandjean ¥

2/8

Holy grail: Constant-delay enumeration

On acyclic conjunctive queries and constant delay
enumeration

Guill Enumeration of MSO Queries on Strings with
Constant Delay and Logarithmic Updates

Matthias Niewerth Luc Segoufin
University of Bayreuth INRIA and ENS Ulm

2/8

Holy grail: Constant-delay enumeration

On acyclic conjunctive queries and constant delay
enumeration

Guillt Enumeration of MSO Queries on Strings with

Constant Delav and Logsarithmic Undates
Constant delay enumeration for FO queries over databases with

3 local bounded expansion
&
Luc Segoufin Alexandre Vigny
INRIA and ENS Ulm Université Paris Diderot Paris 7
Paris Paris

2/8

Holy grail: Constant-delay enumeration

On acyclic c A glimpse on constant delay enumeration

Luc Segoufin

Guilla Enw
INRIA and ENS Cachan

LONINTANL 1JE1AV AN LOYANNInmiic uUmnadies
Constant delay enumeration for FO queries over databases with

3 local bounded expansion
&
Luc Segoufin Alexandre Vigny
INRIA and ENS Ulm Université Paris Diderot Paris 7
Paris Paris

2/8

Holy grail: Constant-delay enumeration

On acyclic c A glimpse on constant delay enumeration

Luc Segoufin

Guillal Enw
INRIA and ENS Cachan

LONINTANL 1JE1AV AN LOYANNInmiic uUmnadies
Constant delay enumeration for FO queries over databases with

A local bounded expansion

Constant Delay Enumeration for Conjunctive Queries — a Tutorial

2/8

Hol il:
y grail: Constant-delay enumeration

OH aC'yChC C i

Luc Segoufin

Guillau Enu o
Constant-delay enumeration for SLP-C

documents

Munoz and Cristian Ri
idad Catolica de Chile

ompress

(o}
Martin veros =

e nia TInivers

2/8

Holy grail: Constant-delay enumeration

On acyclic c A glimpse on constant delay enumeration

Luc Segoufin
Guillat Enui

TNTTT

Constant-delay €

documents

{n Munoz and CI‘iStll
dad Catolica de Chile

pumeration for SLP-compress

C an Riveros &
Mart

e ota TIniversi

Problem: assumes that the results to enumerate have constant size

2/8

Holy grail: Constant-delay enumeration

On acyclic c A glimpse on constant delay enumeration

Luc Segoufin
Guillat Enu

TATI ™ -

Constar\t—delay e

documents
z and Cristian Rive
blica de Chile

pumeration for SLP-compress

[0 ros &
Martm Muno

eta TTrnvPY‘QIdad Ca't
Problem: assumes that the results to enumerate have constant size
Ambitious goal

How can we enumerate results of unbounded size in constant delay?
2/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

Results:

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

Results:

Put(1, .);

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

Results:

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

Results:

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H Vv

1 2 3 4 5

Results:

Put(1, [l); Put(2, v)

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H Vv

1 2 3 4 5

Results:

Put(1, . Put(2, v Output();

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H Vv

1 2 3 4 5

Results:

Put(1, . Put(2, v Output(); . v

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H Vv

1 2 3 4 5

Results:

Put(1, . Put(2, v Output(); . v
Put(3, ¥)

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

B V V
Results:
1 2 3 4 5
Put(1, . Put(2, v Output(); . v
Put(3, ¥)

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H VvV V

1 2 3 4 5

Results:

Put(1, . Put(2, v Output(); . v

Put(3, v Output()

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

B V V
Results:
1 2 3 4 5
Put(1, . Put(2, v Output(); . v

Put(3, v Output() . v v

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

B V V
Results:
1 2 3 4 5
Put(1, . Put(2, v Output(); . v
Put(3, v) Output(); . v v
Put(2, [l}):

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

B B Vv
Results:
1 2 3 4 5
Put(1, . Put(2, v Output(); . v
Put(3, v) Output(); . v v
Put(2, [l}):

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

HE B Vv
Results:
1 2 3 4 5
Put(1, i}); Put(2, W); Output(); BV
Put(3, v) Output(); . v v

Put(2, .); Output();

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H B V

1 2 3 4

Put(1, [l); Put(2, W); Output();
Put(3, ¥); Output();
Put(2,]); Output();

Results:

4
BVYVY
HEYV

3/8

Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H B V

1 2 3 4 5

Results:

Put(1, i}); Put(2, W); Output(); BV
Put(3, Y); Output() BVYVY
Put(2, l}); Output(); BEYVY

Remark: Solutions need to be ordered with small distance between consecutive solutions

3/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

4/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*

4/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*

We want to produce each word by editing the previous word.

4/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*

We want to produce each word by editing the previous word. Questions:

4/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*
We want to produce each word by editing the previous word. Questions:
e Can we find a distance bound C € N and order L(A) = {wy,w»,...}

such that d(w;, wij;1) < C for all i >17

e Here, d is the Levenshtein distance

4/8

Enumeration for automata

Problem: enumerate the words accepted by a word automaton

e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*
We want to produce each word by editing the previous word. Questions:
e Can we find a distance bound C € N and order L(A) = {wy,w»,...}

such that d(w;, wij;1) < C for all i >17

e Here, d is the Levenshtein distance

e If yes, can we efficiently produce the sequence of edits?

4/8

5/8

a €, a, aa, aaa, ...

5/8

a €, a, aa, aaa, ...

5/8

a €, a, aa, aaa, ...

5/8

a €, a, aa, aaa, ...

a*b* €, a, b, bb, ab, aa,

5/8

a €, a, aa, aaa, ...

a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

5/8

a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b”

5/8

a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* c,d,

5/8

a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* ¢, d, ac, ad, cb, db,

5/8

a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

5/8

a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b*

5/8

a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8

a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8

a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8

a €, a, aa, aaa, ...

a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb,

5/8

a €, a, aa, aaa, ...

a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

5/8

a €, a, aa, aaa, ...
a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)
Can you characterize the orderable languages?

5/8

Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

6/8

Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

e [f yes, it suffices to use push-pop edit operations at the left and right endpoints

6/8

Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

e [f yes, it suffices to use push-pop edit operations at the left and right endpoints

e Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

6/8

Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

e [f yes, it suffices to use push-pop edit operations at the left and right endpoints

e Further, we can enumerate the infinite sequence of edit scripts in bounded delay

(i.e., depending on A, not on word length)

e If not, we can decompose L(A) = L(A1) u---u L(Ak) in PTIME where
each L(A;) is orderable and k is minimal (and finite)

6/8

Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

e [f yes, it suffices to use push-pop edit operations at the left and right endpoints

e Further, we can enumerate the infinite sequence of edit scripts in bounded delay

(i.e., depending on A, not on word length)

e If not, we can decompose L(A) = L(A1) u---u L(Ak) in PTIME where
each L(A;) is orderable and k is minimal (and finite)

Also:

e Characterization if we only allow edits at the right endpoint (= stack, not deque)
e Finding the minimal distance bound is NP-hard

6/8

Proof techniques

Pleasant (and elementary): orderability

e Equivalence relation on loopable states

7/8

Proof techniques

Pleasant (and elementary): orderability

e Equivalence relation on loopable states

e Two loopable states are equivalent if

they co-occur in a run

7/8

Proof techniques

Pleasant (and elementary): orderability

e Equivalence relation on loopable states

e Two loopable states are equivalent if
they co-occur in a run

e Two loopable states are equivalent if
some word can loop on both of them

7/8

Proof techniques

Pleasant (and elementary): orderability Unpleasant (and exponential): enumeration

aaba

R(a) L(a)
aab aba
ey N N
aa R(5) ab ba R(2) bb
a
L’N‘?) / 1(b) L(3) \‘%b)
a b
R(a) L(b
)) L) ()
e Equivalence relation on loopable states root
Pointer machine model because

e Two loopable states are equivalent if

they co-occur in a run memory usage goes to infinity

e Two loopable states are equivalent if
some word can loop on both of them

7/8

Proof techniques

Pleasant (and elementary): orderability Unpleasant (and exponential): enumeration

aaba

R(a) L(a)
aab aba
ey N N
aa R(5) ab ba R(2) bb
a
L’N‘?) / 1(b) L(3) \‘%b)
a b
R(a) L(b
)) L) ()
e Equivalence relation on loopable states root
Pointer machine model because

e Two loopable states are equivalent if

they co-occur in a run memory usage goes to infinity

e Two loopable states are equivalent if e Everything is exponential in the DFA

some word can loop on both of them

7/8

Proof techniques

Pleasant (and elementary): orderability Unpleasant (and exponential): enumeration

aaba

R(a) L(a)
aab aba
ey N N
aa R(5) ab ba R(2) bb
a
R(
LN‘?)/ 1(b) L(3) \L%b)
a b
R(a) L(b
L(a) (b)

e Equivalence relation on loopable states it
e Pointer machine model because

e Two loopable states are equivalent if

they co-occur in a run memory usage goes to infinity

e Two loopable states are equivalent if e Everything is exponential in the DFA

some word can loop on both of them e Probably simplifiable...

7/8

Open questions and future work:

Make the delay polynomial in |A|? (currently it is exponential)

What about the push-left pop-right distance? the padded Hamming distance?

What about enumeration in radix order?

e What about regular tree languages?

Can we go beyond regular languages?

Other uses of the enumeration model?

8/8

Open questions and future work:

Make the delay polynomial in |A|? (currently it is exponential)

What about the push-left pop-right distance? the padded Hamming distance?

What about enumeration in radix order?

e What about regular tree languages?

Can we go beyond regular languages?

Other uses of the enumeration model?

Thanks for your attention!

8/8

