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Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results
Decision problem

Input —  YES/NO Measure: running time
Computation problem

Input — {(BV BEREV BVYVY Measure: running time

Enumeration problem

Input — , :| Measure: max delay between two consecutive results
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Problem: assumes that the results to enumerate have constant size
Ambitious goal

How can we enumerate results of unbounded size in constant delay?
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Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H B V

1 2 3 4

Put(1, [l ); Put(2, W ); Output();
Put(3, ¥ ); Output();
Put(2, ] ); Output();

Results:
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Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

H B V

1 2 3 4 5

Results:

Put(1, i} ); Put(2, W ); Output(); BV
Put(3, Y ); Output() BVYVY
Put(2, l}); Output(); BEYVY

Remark: Solutions need to be ordered with small distance between consecutive solutions
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e Input: Deterministic finite automaton A on alphabet &

e Output: The words of its language L(A) c X*
We want to produce each word by editing the previous word. Questions:
e Can we find a distance bound C € N and order L(A) = {wy,w»,...}

such that d(w;, wij;1) < C for all i >17

e Here, d is the Levenshtein distance

e If yes, can we efficiently produce the sequence of edits?

4/8



5/8



a €, a, aa, aaa, ...

5/8



a €, a, aa, aaa, ...

5/8



a €, a, aa, aaa, ...

5/8



a €, a, aa, aaa, ...

a*b* €, a, b, bb, ab, aa,

5/8



a €, a, aa, aaa, ...

a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

5/8



a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b”

5/8



a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* c,d,

5/8



a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* ¢, d, ac, ad, cb, db,

5/8



a €, a, aa, aaa, ...
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

5/8



a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b*

5/8



a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8



a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8



a 3, & EEh EEE) oo
a*b* €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...

a*+b* Not possible! (or you need two threads)

5/8



a €, a, aa, aaa, ...

a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb,

5/8



a €, a, aa, aaa, ...

a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

5/8



a €, a, aa, aaa, ...
a*b” €, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...
a*(c+d)b* ¢, d, ac, ad, cb, db, cbb, dbb, acbh, adb, aac, aad, ...
a*+b* Not possible! (or you need two threads)

(a+b)* €, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)
Can you characterize the orderable languages?
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Theorem
Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

e [f yes, it suffices to use push-pop edit operations at the left and right endpoints

e Further, we can enumerate the infinite sequence of edit scripts in bounded delay

(i.e., depending on A, not on word length)

e If not, we can decompose L(A) = L(A1) u---u L(Ak) in PTIME where
each L(A;) is orderable and k is minimal (and finite)

Also:

e Characterization if we only allow edits at the right endpoint (= stack, not deque)
e Finding the minimal distance bound is NP-hard
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e Equivalence relation on loopable states it
e Pointer machine model because

e Two loopable states are equivalent if

they co-occur in a run memory usage goes to infinity

e Two loopable states are equivalent if e Everything is exponential in the DFA

some word can loop on both of them e Probably simplifiable...
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Open questions and future work:

Make the delay polynomial in |A|? (currently it is exponential)

What about the push-left pop-right distance? the padded Hamming distance?

What about enumeration in radix order?

e What about regular tree languages?

Can we go beyond regular languages?

Other uses of the enumeration model?
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Can we go beyond regular languages?
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Thanks for your attention!
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