
Enumerating regular languages with bounded delay

Antoine Amarilli, Mikaël Monet; STACS’23

July 27, 2023



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO

Measure: running time

Computation problem

Input → { , , }

Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO

Measure: running time

Computation problem

Input → { , , }

Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO

Measure: running time

Computation problem

Input → { , , }

Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , }

Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , }

Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input →

{ ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input → { ,

,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input → { ,
,

}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input → { ,
,
}

Measure: max delay between two consecutive results

1 / 8



Context: Enumeration algorithms

Enumeration algorithms: framework for computation problems producing many results

Decision problem

Input → YES/NO Measure: running time

Computation problem

Input → { , , } Measure: running time

Enumeration problem

Input → { ,
,
}

Measure: max delay between two consecutive results

1 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size

Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size

Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Holy grail: Constant-delay enumeration

Problem: assumes that the results to enumerate have constant size
Ambitious goal
How can we enumerate results of unbounded size in constant delay?

2 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, );

Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, );

Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, );

Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, );

Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, );

Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, );

Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, );

Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, );

Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Solution: Cheat!

Do not write each result from scratch, but by editing the previous result!

. . .
1 2 3 4 5

Results:

Put(1, ); Put(2, ); Output();

Put(3, ); Output();

Put(2, ); Output();

Remark: Solutions need to be ordered with small distance between consecutive solutions

3 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word. Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word. Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word.

Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word. Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word. Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Enumeration for automata

Problem: enumerate the words accepted by a word automaton

• Input: Deterministic finite automaton A on alphabet Σ

• Output: The words of its language L(A) ⊆ Σ∗

We want to produce each word by editing the previous word. Questions:

• Can we find a distance bound C ∈ N and order L(A) = {w1,w2, . . .}

such that d(wi ,wi+1) ≤ C for all i ≥ 1?
• Here, d is the Levenshtein distance

• If yes, can we efficiently produce the sequence of edits?

4 / 8



Examples

a∗

ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗

ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b,

bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa,

aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗

c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d ,

ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db,

cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗

Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗

ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b,

ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb,

abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Examples

a∗ ϵ, a, aa, aaa, ...

a∗b∗ ϵ, a, b, bb, ab, aa, aaa, aab, abb, bbb, ...

a∗(c + d)b∗ c , d , ac , ad , cb, db, cbb, dbb, acb, adb, aac , aad , ...

a∗ + b∗ Not possible! (or you need two threads)

(a + b)∗ ϵ, a, b, ab, aa, ba, bb, abb, aba, aaa, aab, bab, baa, bba, bbb, ... (Gray code)

Can you characterize the orderable languages?

5 / 8



Results

Theorem

Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

• If yes, it suffices to use push-pop edit operations at the left and right endpoints

• Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

• If not, we can decompose L(A) = L(A1) ⊔⋯ ⊔ L(Ak) in PTIME where
each L(Ai) is orderable and k is minimal (and finite)

Also:

• Characterization if we only allow edits at the right endpoint (= stack, not deque)

• Finding the minimal distance bound is NP-hard

6 / 8



Results

Theorem

Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

• If yes, it suffices to use push-pop edit operations at the left and right endpoints

• Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

• If not, we can decompose L(A) = L(A1) ⊔⋯ ⊔ L(Ak) in PTIME where
each L(Ai) is orderable and k is minimal (and finite)

Also:

• Characterization if we only allow edits at the right endpoint (= stack, not deque)

• Finding the minimal distance bound is NP-hard

6 / 8



Results

Theorem

Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

• If yes, it suffices to use push-pop edit operations at the left and right endpoints

• Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

• If not, we can decompose L(A) = L(A1) ⊔⋯ ⊔ L(Ak) in PTIME where
each L(Ai) is orderable and k is minimal (and finite)

Also:

• Characterization if we only allow edits at the right endpoint (= stack, not deque)

• Finding the minimal distance bound is NP-hard

6 / 8



Results

Theorem

Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

• If yes, it suffices to use push-pop edit operations at the left and right endpoints

• Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

• If not, we can decompose L(A) = L(A1) ⊔⋯ ⊔ L(Ak) in PTIME where
each L(Ai) is orderable and k is minimal (and finite)

Also:

• Characterization if we only allow edits at the right endpoint (= stack, not deque)

• Finding the minimal distance bound is NP-hard

6 / 8



Results

Theorem

Given a DFA A, we can determine in PTIME whether its language L(A) is orderable

• If yes, it suffices to use push-pop edit operations at the left and right endpoints

• Further, we can enumerate the infinite sequence of edit scripts in bounded delay
(i.e., depending on A, not on word length)

• If not, we can decompose L(A) = L(A1) ⊔⋯ ⊔ L(Ak) in PTIME where
each L(Ai) is orderable and k is minimal (and finite)

Also:

• Characterization if we only allow edits at the right endpoint (= stack, not deque)

• Finding the minimal distance bound is NP-hard

6 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Proof techniques

Pleasant (and elementary): orderability

0

1 2

3 4

5 6

a

b
d

d

a

d

b

c

c

b

• Equivalence relation on loopable states

• Two loopable states are equivalent if
they co-occur in a run

• Two loopable states are equivalent if
some word can loop on both of them

Unpleasant (and exponential): enumeration

root

a b

R(a)

L(a) R(b)

L(b)

aa ab ba bb

R(a)

L(a) R(b)L(b)

R(b)

L(b)

R(a)

L(a)

aab aba

aaba

L(a) R(a)
L(a)

R(b)

R(a) L(a)

• Pointer machine model because
memory usage goes to infinity

• Everything is exponential in the DFA

• Probably simplifiable...

7 / 8



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exponential)

• What about the push-left pop-right distance? the padded Hamming distance?

• What about enumeration in radix order?

• What about regular tree languages?

• Can we go beyond regular languages?

• Other uses of the enumeration model?

Thanks for your attention!

8 / 8



Future work

Open questions and future work:

• Make the delay polynomial in ∣A∣? (currently it is exponential)

• What about the push-left pop-right distance? the padded Hamming distance?

• What about enumeration in radix order?

• What about regular tree languages?

• Can we go beyond regular languages?

• Other uses of the enumeration model?

Thanks for your attention!

8 / 8


