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Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics
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What is the complexity of the problem?

• Naive algorithm in O(n): test the whole word again after each update

• General-purpose algorithm in O(log n):
• Build a complete binary tree on the input word
• Label the nodes with the syntactic monoid element

achieved by the subtree rooted at that node
• When updating a leaf, recompute labels upwards
→ Can be improved to O(log n/ log log n) via RAM tricks a b b b a b

• • •

• •

•

• Specific O(1) algorithm for some languages:
→ E.g., the language a∗: count the number of a’s
→ E.g., the language (ab)∗ can also be maintained in O(1)

→ What is the complexity of dynamic membership, depending on the language?
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Problem 2: Dynamic word problem for monoids

• Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

• This is a special case of dynamic membership for regular languages
• E.g., it assumes that there is a neutral element

• Partial results in [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain monoid class
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Results (1/2): dynamic word problem for monoids

ZG: in O(1)

not in O(1)?

• We identify the class ZG satisfying xω+1y = yxω+1:
• For any monoid in ZG, the problem is in O(1)

• For any monoid not in ZG, we can reduce from a
problem that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• For any monoid in SG, the problem is in O(log log n)

• For any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)
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Results (2/2): dynamic membership for regular languages

QLZG: in O(1)

QSG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• Our results extend to regular language classes
called QLZG and QSG

• Q means: the stable semigroup of the language
• L means: “all submonoids of this semigroup”

→ This yields a conditional trichotomy on the dynamic
membership problem

→ Open problems:
• Make it unconditional?
• Identify intermediate cases between QLZG and QSG?

Thanks for your attention!
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