

Dynamic Membership for Regular Languages

Antoine Amarilli¹, Louis Jachiet¹, Charles Paperman²

September 17, 2021

¹Télécom Paris

²Université de Lille

• Fix a regular language L

$$ightarrow$$
 E.g., $L = (ab)^*$

- Fix a regular language L
 - ightarrow E.g., $L = (ab)^*$
- Read an **input word** w with n := |w|
 - \rightarrow E.g., w = abbbab

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input word w** with n := |w|

 \rightarrow E.g., w = abbbab

- Preprocess it in O(n)
 - \rightarrow E.g., we have $w \notin L$

• Fix a regular language L

ightarrow E.g., $L = (ab)^*$

• Read an **input word w** with n := |w|

 \rightarrow E.g., w = abbbab

- Preprocess it in O(n)
 - \rightarrow E.g., we have $\mathbf{w} \notin \mathbf{L}$
- Maintain the membership of w to L under substitution updates

 \rightarrow E.g., replace character at position 3 with **a**: we now have **w** \in **L**

- Fix a regular language L
 - ightarrow E.g., $L = (ab)^*$
- Read an **input word w** with n := |w|
 - \rightarrow E.g., w = abbbab
- Preprocess it in O(n)
 - \rightarrow E.g., we have $w \notin L$
- Maintain the membership of w to L under substitution updates \rightarrow E.g., replace character at position 3 with a: we now have $w \in L$
- Model: RAM model with $\Theta(\log n)$ cell size and unit-cost arithmetics

• Naive algorithm in O(n): test the whole word again after each update

- Naive algorithm in O(n): test the whole word again after each update
- General-purpose algorithm in $O(\log n)$:
 - Build a complete binary tree on the input word
 - Label the nodes with the syntactic monoid element achieved by the subtree rooted at that node
 - When updating a leaf, recompute labels upwards
 - \rightarrow Can be improved to $O(\log n / \log \log n)$ via RAM tricks

- Naive algorithm in O(n): test the whole word again after each update
- General-purpose algorithm in $O(\log n)$:
 - Build a complete binary tree on the input word
 - Label the nodes with the syntactic monoid element achieved by the subtree rooted at that node
 - When updating a leaf, recompute labels upwards
 - \rightarrow Can be improved to $O(\log n / \log \log n)$ via RAM tricks

- Specific *O*(1) algorithm for some languages:
 - \rightarrow E.g., the language **a***: count the number of **a**'s
 - \rightarrow E.g., the language (*ab*)^{*} can also be maintained in *O*(1)

- Naive algorithm in O(n): test the whole word again after each update
- General-purpose algorithm in $O(\log n)$:
 - Build a complete binary tree on the input word
 - Label the nodes with the syntactic monoid element achieved by the subtree rooted at that node
 - When updating a leaf, recompute labels upwards
 - \rightarrow Can be improved to $O(\log n / \log \log n)$ via RAM tricks

- Specific O(1) algorithm for some languages:
 - \rightarrow E.g., the language **a***: count the number of **a**'s
 - \rightarrow E.g., the language (*ab*)^{*} can also be maintained in *O*(1)
- \rightarrow What is the complexity of dynamic membership, depending on the language?

• **Dynamic word problem** for a fixed monoid **M**: maintain the product of a word of elements of **M** under substitution updates

Problem 2: Dynamic word problem for monoids

- **Dynamic word problem** for a fixed monoid *M*: maintain the product of a word of elements of *M* under substitution updates
- This is a special case of dynamic membership for regular languages
 - E.g., it assumes that there is a **neutral element**

Problem 2: Dynamic word problem for monoids

- **Dynamic word problem** for a fixed monoid *M*: maintain the product of a word of elements of *M* under substitution updates
- This is a special case of dynamic membership for regular languages
 - E.g., it assumes that there is a **neutral element**
- Partial results in [Skovbjerg Frandsen et al., 1997]:
 - \rightarrow in O(1) for commutative monoids
 - \rightarrow in $O(\log \log n)$ for group-free monoids
 - \rightarrow in $\Theta(\log n / \log \log n)$ for a certain monoid class

Results (1/2): dynamic word problem for monoids

• We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:

- For any monoid in **ZG**, the problem is in O(1)
- For any monoid **not** in **ZG**, we can reduce from a problem that we **conjecture** is **not** in *O*(1)

Results (1/2): dynamic word problem for monoids

- We identify the class **ZG** satisfying $x^{\omega+1}y = yx^{\omega+1}$:
 - For any monoid in **ZG**, the problem is in O(1)
 - For any monoid **not** in **ZG**, we can reduce from a problem that we **conjecture** is **not** in *O*(1)
- We identify the class **SG** satisfying $x^{\omega+1}yx^{\omega} = x^{\omega}yx^{\omega+1}$
 - For any monoid in **SG**, the problem is in $O(\log \log n)$
 - For any monoid not in SG, it is in Ω(log n/ log log n) (lower bound of Skovbjerg Frandsen et al.)

- Our results extend to regular language classes called **QLZG** and **QSG**
 - **Q** means: the **stable semigroup** of the language
 - L means: "all submonoids of this semigroup"

- Our results extend to regular language classes called **QLZG** and **QSG**
 - **Q** means: the **stable semigroup** of the language
 - L means: "all submonoids of this semigroup"

→ This yields a **conditional trichotomy** on the dynamic membership problem

- Our results extend to regular language classes called **QLZG** and **QSG**
 - **Q** means: the **stable semigroup** of the language
 - L means: "all submonoids of this semigroup"

→ This yields a **conditional trichotomy** on the dynamic membership problem

\rightarrow Open problems:

- Make it unconditional?
- · Identify intermediate cases between QLZG and QSG?

- Our results extend to regular language classes called **QLZG** and **QSG**
 - **Q** means: the **stable semigroup** of the language
 - L means: "all submonoids of this semigroup"

→ This yields a **conditional trichotomy** on the dynamic membership problem

\rightarrow Open problems:

- Make it unconditional?
- · Identify intermediate cases between QLZG and QSG?

Thanks for your attention!

📔 Fredman, M. and Saks, M. (1989).

The cell probe complexity of dynamic data structures.

In *STOC*, pages 345–354.

Patrascu, M. (2008).

Lower bound techniques for data structures.

PhD thesis, Massachusetts Institute of Technology.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).Dynamic word problems.

JACM, 44(2):257–271.