
Dynamic Membership for Regular Languages

Antoine Amarilli1, Louis Jachiet1, Charles Paperman2

September 17, 2021
1Télécom Paris

2Université de Lille

1/6

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics

2/6

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics

2/6

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics

2/6

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics

2/6

Problem: dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input word w with n := |w|
→ E.g., w = abbbab

• Preprocess it in O(n)

→ E.g., we have w /∈ L

• Maintain the membership of w to L under substitution updates
→ E.g., replace character at position 3 with a: we now have w ∈ L

• Model: RAM model with Θ(log n) cell size and unit-cost arithmetics

2/6

What is the complexity of the problem?

• Naive algorithm in O(n): test the whole word again after each update

• General-purpose algorithm in O(log n):
• Build a complete binary tree on the input word
• Label the nodes with the syntactic monoid element

achieved by the subtree rooted at that node
• When updating a leaf, recompute labels upwards
→ Can be improved to O(log n/ log log n) via RAM tricks a b b b a b

• • •

• •

•

• Specific O(1) algorithm for some languages:
→ E.g., the language a∗: count the number of a’s
→ E.g., the language (ab)∗ can also be maintained in O(1)

→ What is the complexity of dynamic membership, depending on the language?

3/6

What is the complexity of the problem?

• Naive algorithm in O(n): test the whole word again after each update

• General-purpose algorithm in O(log n):
• Build a complete binary tree on the input word
• Label the nodes with the syntactic monoid element

achieved by the subtree rooted at that node
• When updating a leaf, recompute labels upwards
→ Can be improved to O(log n/ log log n) via RAM tricks a b b b a b

• • •

• •

•

• Specific O(1) algorithm for some languages:
→ E.g., the language a∗: count the number of a’s
→ E.g., the language (ab)∗ can also be maintained in O(1)

→ What is the complexity of dynamic membership, depending on the language?

3/6

What is the complexity of the problem?

• Naive algorithm in O(n): test the whole word again after each update

• General-purpose algorithm in O(log n):
• Build a complete binary tree on the input word
• Label the nodes with the syntactic monoid element

achieved by the subtree rooted at that node
• When updating a leaf, recompute labels upwards
→ Can be improved to O(log n/ log log n) via RAM tricks a b b b a b

• • •

• •

•

• Specific O(1) algorithm for some languages:
→ E.g., the language a∗: count the number of a’s
→ E.g., the language (ab)∗ can also be maintained in O(1)

→ What is the complexity of dynamic membership, depending on the language?

3/6

What is the complexity of the problem?

• Naive algorithm in O(n): test the whole word again after each update

• General-purpose algorithm in O(log n):
• Build a complete binary tree on the input word
• Label the nodes with the syntactic monoid element

achieved by the subtree rooted at that node
• When updating a leaf, recompute labels upwards
→ Can be improved to O(log n/ log log n) via RAM tricks a b b b a b

• • •

• •

•

• Specific O(1) algorithm for some languages:
→ E.g., the language a∗: count the number of a’s
→ E.g., the language (ab)∗ can also be maintained in O(1)

→ What is the complexity of dynamic membership, depending on the language?
3/6

Problem 2: Dynamic word problem for monoids

• Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

• This is a special case of dynamic membership for regular languages
• E.g., it assumes that there is a neutral element

• Partial results in [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain monoid class

4/6

Problem 2: Dynamic word problem for monoids

• Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

• This is a special case of dynamic membership for regular languages
• E.g., it assumes that there is a neutral element

• Partial results in [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain monoid class

4/6

Problem 2: Dynamic word problem for monoids

• Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

• This is a special case of dynamic membership for regular languages
• E.g., it assumes that there is a neutral element

• Partial results in [Skovbjerg Frandsen et al., 1997]:
→ in O(1) for commutative monoids
→ in O(log log n) for group-free monoids
→ in Θ(log n/ log log n) for a certain monoid class

4/6

Results (1/2): dynamic word problem for monoids

ZG: in O(1)

not in O(1)?

• We identify the class ZG satisfying xω+1y = yxω+1:
• For any monoid in ZG, the problem is in O(1)

• For any monoid not in ZG, we can reduce from a
problem that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• For any monoid in SG, the problem is in O(log log n)

• For any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

5/6

Results (1/2): dynamic word problem for monoids

ZG: in O(1)

SG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• We identify the class ZG satisfying xω+1y = yxω+1:
• For any monoid in ZG, the problem is in O(1)

• For any monoid not in ZG, we can reduce from a
problem that we conjecture is not in O(1)

• We identify the class SG satisfying xω+1yxω = xωyxω+1

• For any monoid in SG, the problem is in O(log log n)

• For any monoid not in SG, it is in Ω(log n/ log log n)

(lower bound of Skovbjerg Frandsen et al.)

5/6

Results (2/2): dynamic membership for regular languages

QLZG: in O(1)

QSG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• Our results extend to regular language classes
called QLZG and QSG

• Q means: the stable semigroup of the language
• L means: “all submonoids of this semigroup”

→ This yields a conditional trichotomy on the dynamic
membership problem

→ Open problems:
• Make it unconditional?
• Identify intermediate cases between QLZG and QSG?

Thanks for your attention!

6/6

Results (2/2): dynamic membership for regular languages

QLZG: in O(1)

QSG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• Our results extend to regular language classes
called QLZG and QSG

• Q means: the stable semigroup of the language
• L means: “all submonoids of this semigroup”

→ This yields a conditional trichotomy on the dynamic
membership problem

→ Open problems:
• Make it unconditional?
• Identify intermediate cases between QLZG and QSG?

Thanks for your attention!

6/6

Results (2/2): dynamic membership for regular languages

QLZG: in O(1)

QSG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• Our results extend to regular language classes
called QLZG and QSG

• Q means: the stable semigroup of the language
• L means: “all submonoids of this semigroup”

→ This yields a conditional trichotomy on the dynamic
membership problem

→ Open problems:
• Make it unconditional?
• Identify intermediate cases between QLZG and QSG?

Thanks for your attention!

6/6

Results (2/2): dynamic membership for regular languages

QLZG: in O(1)

QSG: in O(log log n)

not in O(1)?

All: in Θ(log n/ log log n)

• Our results extend to regular language classes
called QLZG and QSG

• Q means: the stable semigroup of the language
• L means: “all submonoids of this semigroup”

→ This yields a conditional trichotomy on the dynamic
membership problem

→ Open problems:
• Make it unconditional?
• Identify intermediate cases between QLZG and QSG?

Thanks for your attention!
6/6

References

Fredman, M. and Saks, M. (1989).
The cell probe complexity of dynamic data structures.
In STOC, pages 345–354.

Patrascu, M. (2008).
Lower bound techniques for data structures.
PhD thesis, Massachusetts Institute of Technology.

Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic word problems.
JACM, 44(2):257–271.

	Appendix

