TELECOM

Paris

5.4 i |

Dynamic Membership for Regular Languages

Antoine Amarilli’, Louis Jachiet’, Charles Paperman?
September 17, 2021

Télécom Paris

2Université de Lille

1/6

Problem: dynamic membership for regular languages

- Fix a regular language L
— Eg,L=(ab)*

2/6

Problem: dynamic membership for regular languages

- Fix a regular language L
— Eg,L=(ab)*

- Read an input word w with n := |w|
— E.g,w = abbbab

2/6

Problem: dynamic membership for regular languages

- Fix a regular language L
— Eg,L=(ab)*

- Read an input word w with n := |w|
— E.g,w = abbbab

- Preprocess it in O(n)
— E.g,we havew ¢ L

2/6

Problem: dynamic membership for regular languages

- Fix a regular language L
— Eg,L=(ab)*

- Read an input word w with n := |w|
— E.g,w = abbbab

- Preprocess it in O(n)
— E.g,we havew ¢ L

- Maintain the membership of w to L under substitution updates
— E.g, replace character at position 3 with a: we now have w < L

2/6

Problem: dynamic membership for regular languages

- Fix a regular language L
— Eg,L=(ab)*

- Read an input word w with n := |w|
— E.g,w = abbbab

- Preprocess it in O(n)
— E.g,we havew ¢ L

- Maintain the membership of w to L under substitution updates
— E.g, replace character at position 3 with a: we now have w < L

- Model: RAM model with ©(logn) cell size and unit-cost arithmetics

2/6

What is the complexity of the problem?

- Naive algorithm in O(n): test the whole word again after each update

3/6

What is the complexity of the problem?

- Naive algorithm in O(n): test the whole word again after each update

- General-purpose algorithm in O(log n): °
- Build a complete binary tree on the input word / \
- Label the nodes with the syntactic monoid element ¢ ¢
achieved by the subtree rooted at that node ./ \. ./
- When updating a leaf, recompute labels upwards N

— Can be improved to O(logn/ loglogn) via RAM tricks abbbab

3/6

What is the complexity of the problem?

- Naive algorithm in O(n): test the whole word again after each update

- General-purpose algorithm in O(log n): °
- Build a complete binary tree on the input word / \
- Label the nodes with the syntactic monoid element ¢ ¢
achieved by the subtree rooted at that node ./ \. ./
- When updating a leaf, recompute labels upwards N
— Can be improved to O(logn/loglogn) via RAM tricks abbbab

- Specific O(1) algorithm for some languages:

— E.g, the language a*: count the number of a's
— E.g, the language (ab)* can also be maintained in 0(1)

3/6

What is the complexity of the problem?

- Naive algorithm in O(n): test the whole word again after each update

- General-purpose algorithm in O(log n): °
- Build a complete binary tree on the input word / \
- Label the nodes with the syntactic monoid element ¢ ¢
achieved by the subtree rooted at that node ./ \. ./
- When updating a leaf, recompute labels upwards N
— Can be improved to O(logn/loglogn) via RAM tricks abbbab

- Specific O(1) algorithm for some languages:

— E.g, the language a*: count the number of a's
— E.g, the language (ab)* can also be maintained in 0(1)

— What is the complexity of dynamic membership, depending on the language?
3/6

Problem 2: Dynamic word problem for monoids

- Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

416

Problem 2: Dynamic word problem for monoids

- Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

- This is a special case of dynamic membership for regular languages
- Eg, it assumes that there is a neutral element

416

Problem 2: Dynamic word problem for monoids

- Dynamic word problem for a fixed monoid M: maintain the product
of a word of elements of M under substitution updates

- This is a special case of dynamic membership for regular languages
- E.g, it assumes that there is a neutral element

- Partial results in [Skovbjerg Frandsen et al., 1997]:

— in O(1) for commutative monoids
— in O(log log n) for group-free monoids
— in ©(log n/ loglog n) for a certain monoid class

416

Results (1/2): dynamic word problem for monoids

s N\
, - We identify the class ZG satisfying x* 1y = yx*
ZG: in 0(1) L .
- For any monoid in ZG, the problem is in O(1)
- For any monoid not in ZG, we can reduce from a
problem that we conjecture is not in O(1)
not in O(1)?

5/6

Results (1/2): dynamic word problem for monoids

ZG: in 0(1)

SG: in O(loglogn)
not in O(1)?

All: in ©(logn/ loglog n)

- We identify the class ZG satisfying x* 1y = yx* 7

- For any monoid in ZG, the problem is in O(1)
- For any monoid not in ZG, we can reduce from a
problem that we conjecture is not in O(1)

- We identify the class SG satisfying xyx® = x¥yx« "

- For any monoid in SG, the problem is in O(log log n)
- For any monoid not in SG, itis in Q(logn/loglogn)
(lower bound of Skovbjerg Frandsen et al.)

5/6

Results (2/2): dynamic membership for regular languages

- Our results extend to regular language classes
called OLZG and OSG

' - Q means: the stable semigroup of the language
QLZG: in O(1) - L means: “all submonoids of this semigroup”

QSG: in O(loglogn)
not in O(1)?

All: in ©(logn/ loglog n)

6/6

Results (2/2): dynamic membership for regular languages

() - Our results extend to regular language classes

called OLZG and OSG
' - Q means: the stable semigroup of the language
QLZG: in O(1) - L means: “all submonoids of this semigroup”
— This yields a conditional trichotomy on the dynamic
QSG: in O(log log n) membership problem
not in O(1)?
All: in ©(logn/ log log n)

6/6

Results (2/2): dynamic membership for regular languages

() - Our results extend to regular language classes
called OLZG and OSG
- Q means: the stable semigroup of the language
QLZG: in O(1) - L means: “all submonoids of this semigroup”
— This yields a conditional trichotomy on the dynamic
QSG: in O(loglogn) membership problem
not in O(1)?
— Open problems:
- Make it unconditional?
All: in ©(log n/ log log n) - ldentify intermediate cases between QLZG and QSG?

6/6

Results (2/2): dynamic membership for regular languages

() - Our results extend to regular language classes
called OLZG and OSG
- Q means: the stable semigroup of the language
QLZG: in O(1) - L means: “all submonoids of this semigroup”
— This yields a conditional trichotomy on the dynamic
QSG: in O(loglogn) membership problem
not in O(1)?
— Open problems:
- Make it unconditional?
All: in ©(log n/ log log n) - ldentify intermediate cases between QLZG and QSG?

- J Thanks for your attention!
6/6

References

[Fredman, M. and Saks, M. (1989).
The cell probe complexity of dynamic data structures.
In STOC, pages 345-354.

[3 Patrascu, M. (2008).

Lower bound techniques for data structures.
PhD thesis, Massachusetts Institute of Technology.

[d Skovbjerg Frandsen, G., Miltersen, P. B., and Skyum, S. (1997).
Dynamic word problems.
JACM, 14(2):257-271.

	Appendix

