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Problem statement

Input:

? Query Q (Metro|RER)*|(Bus|Tram)*

Database D or graph
% Probabilities on facts or edges 50%

Output: the probability that the query is true under the distribution
(assuming independence of all probabilistic events)

Complexity: already #P-hard in the input database!
(from #MONOTONE-SAT)
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Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth
by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

4/7



Using treewidth to make the problem tractable

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
4/7



Tractability on treelike instances

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem
For any fixed Boolean MSO query q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satisfies q
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Lower bound

What can we do for unbounded-treewidth instances?

... not much.

Theorem
For any graph signature σ, there is a first-order query q such that
for any constructible unbounded-treewidth class I ,
probability evaluation of q on I is #P-hard under RP reductions

3

1

2

4 3 4

2

1

maps vertices
to vertices

maps edges to
vertex-disjoint paths

Proof idea: extract instances of a hard problem as topological minors
using recent polynomial bounds [Chekuri and Chuzhoy, 2014]
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Future and ongoing work

• Improving the lower bound:
• From graphs to arbitrary arity databases
• From FO down to unions of conjunctive queries with 6=

• Complexity in query and database — currently Ω

(
22.

. .
2|Q|

× |D|
)

→ Which queries can efficiently be compiled to automata?

• Non-Boolean queries: efficient enumeration of query results?

• Other tasks: probabilistic conditioning
“Knowing that I’m here, what’s the probability that RER B is up?”

Thanks for your attention!
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