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Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

—— A B
b
Data @ b

Query evaluation———— a, b,

@ a; b;

Query Results

» Measure the efficiency of this task
 Theoretical study (asymptotic complexity, lower bounds) rather than practical
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Example: Reachability query

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Query evaluation
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Example: Reachability query
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Data: Graph G Query evaluation ——— boo
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Query Q(x,y): “Which orange
Results

nodes x have a directed path ~ ——
to which blue nodes y?”

Extend to three tasks: enumeration, maintenance, and reliability
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Enumeration: Producing results in streaming
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nodes x have a directed path ——
to which blue nodes y?”
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Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——

to which blue nodes y?” Xy
e Usual complexity measure: time to produce the entire output T
* More precise measure: enumeration algorithms: ; i
- Preprocessing time: time to p.roduce compressed representation -
- Delay between each consecutive output
Results

— Test existence of a result, find some results, find all results... s



Maintenance over dynamic data: Adapting to changes
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Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

| Xy
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ﬁ e e query evaluation 2 %
Data: Graph G 2 5
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

» Relabeling updates vs more general updates
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Reliability: Probabilistic query evaluation
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node having a directed
path to a blue node?”

» The color of each node is kept with a given probability, assuming independence
» We want to know the probability of all results

* Here, more interesting: probability of the Boolean query
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Reliability: Probabilistic query evaluation

50% 50%

Probabilistic 56.25%
query evaluation Result

Data: Graph G

Query Q: “Is there an orange
node having a directed
path to a blue node?”

» The color of each node is kept with a given probability, assuming independence
» We want to know the probability of all results

* Here, more interesting: probability of the Boolean query
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Roadmap of the presentation

Present data and query formalisms:
— Monadic second-order logic (MSO) on words/trees

Results on enumeration

e Results on incremental maintenance

e Results on probabilistic query evaluation
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Families of data
1 2 3 4 5 6 7 8

Words:  O—O—O—O0—0—0—0—0

Trees:

/N
“lllllgjlii!!llll"

W\
@ \J)

Bounded-treewidth graphs:

Many other classes of graphs and relational structures:

(

less
expressive

more
expressive

9/28



Query languages
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« Conjunctive queries (CQs): find a pattern
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Query languages

From least to most expressive:

« Conjunctive queries (CQs): find a pattern
- Q(x,y): “Find two adjacent blue nodes x and y with y having an orange neighbor”

a2 (- (D0

« Unions of CQs (UCQs): disjunction of CQs
- Q(x,y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y"

« First-order logic (FO):
— conjunction, disjunction, negation, existential quantification, universal quantification

« Monadic second-order logic (MSO): extend FO with quantification over sets
- Equivalent to finite automata on words, trees, tree encodings
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On words, MSO queries are equivalent to automata
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Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x,y): “Find an orange node x before a blue node y”

0,0,0 0,00 0,00

ctart \% x:0 é}) y:O @

Result: YES

11/28



Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x,y): “Find an orange node x before a blue node y”

0,0,0 0,00 0,00

ctart \% x:0 é}) y:O @

Results: (x:1,y:3), (x:1,y:7), (X:4,y:7)
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We can enumerate query results (= satisfying assignments) using the provenance circuit

e Generalizes from words to trees

» Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures A with constant number of variables, given a word w,

we can enumerate the results of A on w with preprocessing O(Poly(|A|) x |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

14/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate

14/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate

e Deterministic: inputs to an V-gate are mutually exclusive

14/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive

» Negation normal form: negation on leaves

14/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive
» Negation normal form: negation on leaves

e Structured by a v-tree

14/28



Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive
» Negation normal form: negation on leaves

e Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)

Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/28
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Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x,y): “Find all endpoints x,y of factors of the form O™ Q"”

S x:O)AWy:Q)x*
A-OAQ]| e

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Munoz, Riveros)

Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| x |w|®) and output-linear delay

Better preprocessing time for restricted grammar classes
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Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”
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Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
OO () ) (9) (7

What happens if the tree is modified?

e Can we update the provenance circuit instead of recomputing it from scratch?
e Can we avoid re-running the preprocessing phase of the enumeration?

16/28
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We can show that relabeling updates to the tree T can be handled in O(height(T))
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— The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q

on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS"19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced
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* The update time is O(log n) and there is a lower bound of Q(logn/ loglogn)
— Already for Boolean queries on words under relabeling updates

» Yet, we can do better for some queries, e.g.:

Q: “Is there both an orange node and a blue node?”

» Simply maintain the counts! update time O(1)

— For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?
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Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a
regular language L on words under relabeling updates
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Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

* If L is in QLZG, then the problem is in O(1)

* IfLisin QSG\ QLZG, then the problem is in O(loglogn)
and conditionally not in O(1)

* If Lis not in QSG, then the problem is in ©(logn/ loglogn)

-

QLZG: in O(1)

QSG: in O(loglog n)
not in O(1)?

)

All: in ©(logn/ log log n)

e QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
— Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

« QSG: “the stable semigroup satisfies the equation x¥Tyx® = x“yxw+1"
— Aperiodic languages, tame combinations of aperiodic and commutative languages...
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Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities
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Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

« Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME
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Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!
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Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

56.25%

50% 50% 50% 50%

« Probability of A is the product of the probabilities (uses decomposability)
 Probability of Vv is the sum of the probabilities (uses determinism)
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Intractability of probabilistic query evaluation in the general case

What about more general data?
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Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- PQE is #P-hard under randomized reductions

» When allowing arbitrary instances:

- We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

- We show the same for all unbounded homomorphism-closed queries on graphs
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Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint
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Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)

For some d € N, any d-SDNNF provenance circuit for Q on a graph G of treewidth R
must have size 22K,

Theorem (MFCS’22; with Monet)

On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G € G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]
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Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g.,@@@ but not ° 0 e m

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)

For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic

query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.
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Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G’ then G’ satisfies Q

— Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)

For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.
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e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

 Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

e For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?

« Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

Thanks for your attention! /s
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