o\YTE
Q Cs,

~ INSTITUT
:Q4® - POLYTECHNIQUE
SR Y&V DE PARIS

Query Evaluation:
Enumeration, Maintenance, Reliability

Soutenance d’habilitation a diriger des recherches

Antoine Amarilli
April 4, 2023

Telécom Paris

1/28

Introduction

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

—— A B
b
Data @ b

Query evaluation———— a, b,

@ a; b;

Query Results

2/28

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

—— A B
b
Data @ b

Query evaluation———— a, b,

@ a; b;

Query Results

» Measure the efficiency of this task

2/28

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

—— A B
b
Data @ b

Query evaluation———— a, b,

@ a; b;

Query Results

» Measure the efficiency of this task
 Theoretical study (asymptotic complexity, lower bounds) rather than practical

2/28

Example: Reachability query

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Query evaluation

N N
o &~ O &~

Results

3/28

Example: Reachability query

OO x

y
O—)—) 1
Data: Graph G Query evaluation ——— boo
2 4
2 5

Query Q(x,y): “Which orange
Results

nodes x have a directed path ~ ——
to which blue nodes y?”

Extend to three tasks: enumeration, maintenance, and reliability

3/28

Enumeration: Producing results in streaming

% 5
evaluation

Query

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce the entire output

Enumeration: Producing results in streaming

OO
e e e 7 algorithm

Data: Graph G

Preprocessing

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce the entire output
* More precise measure: enumeration algorithms:

Enumeration: Producing results in streaming

OO
° e e 7 algorithm

Preprocessing

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce the entire output
* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing

a e e — algorithm — Compressed

representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce the entire output
* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce the entire output
* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?” X y

e Usual complexity measure: time to produce the entire output
* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

Results

4/28

Enumeration: Producing results in streaming

OO
° e e) algorithm

Preprocessing

{1,2} x {4,5}

— Compressed

representation

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce

the entire output

* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

- Delay between each consecutive output

—

Enumeration
algorithm

Results

4/28

Enumeration: Producing results in streaming

OO
° e e) algorithm

Preprocessing

{1,2} x {4,5}

— Compressed

representation

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——
to which blue nodes y?”

e Usual complexity measure: time to produce

the entire output

* More precise measure: enumeration algorithms:
- Preprocessing time: time to produce compressed representation

- Delay between each consecutive output

—

Enumeration
algorithm

NN
(S Rn

Results

4/28

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——

to which blue nodes y?” Xy

. : . 1 4

» Usual complexity measure: time to produce the entire output -
* More precise measure: enumeration algorithms: -

- Preprocessing time: time to produce compressed representation
- Delay between each consecutive output

Results

4/28

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——

to which blue nodes y?” Xy

. : . 1 4

» Usual complexity measure: time to produce the entire output -
* More precise measure: enumeration algorithms: -
- Preprocessing time: time to produce compressed representation -

- Delay between each consecutive output
Results

4/28

Enumeration: Producing results in streaming

&) a {1,2} x {4,5}

Preprocessing Enumeration

— . — Compressed — .
° e e algorithm . algorithm
representation
Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path ——

to which blue nodes y?” Xy
e Usual complexity measure: time to produce the entire output T
* More precise measure: enumeration algorithms: ; i
- Preprocessing time: time to p.roduce compressed representation -
- Delay between each consecutive output
Results

— Test existence of a result, find some results, find all results... s

Maintenance over dynamic data: Adapting to changes

Xy

Q) @ -

a e e ——— Query evaluation ———— oo

2 4

Data: Graph G 2 4
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

Maintenance over dynamic data: Adapting to changes

Xy
=) (W T 4
Incremental 1 5
— . —
ﬁ e e query evaluation 2 4
Data: Graph G 2 4
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

| Xy
) @ -
Incremental 1 5

— . —
ﬁ e e query evaluation 2 4
Data: Graph G 2 4
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

| Xy
@ © -
Incremental 1 5

— . —
ﬁ e e query evaluation 2 4
Data: Graph G 2 4
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

| Xy
@ © -
Incremental 1 5

— . —
ﬁ e e query evaluation 2 %
Data: Graph G 2 5
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

Maintenance over dynamic data: Adapting to changes

Change: make 2 uncolored

| Xy
@ © -
Incremental 1 5

— . —
ﬁ e e query evaluation 2 %
Data: Graph G 2 5
Query Q(x,y): “Which orange Results

nodes x have a directed path
to which blue nodes y?”

» Whenever the data is changed, do not recompute the whole result

» Relabeling updates vs more general updates
5/28

Reliability: Probabilistic query evaluation

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Query evaluation

N N a2 A

(Ca I G S S

Results

6/28

Reliability: Probabilistic query evaluation

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Probabilistic
query evaluation

N N a2 A

(Ca I G S S

Results

6/28

Reliability: Probabilistic query evaluation

50% 50% Xy
Probabilistic T4
. > 1 5
query evaluation
2 4
Data: Graph G 2 5
. Result
Query Q(x,y): “Which orange esutts

nodes x have a directed path
to which blue nodes y?”

» The color of each node is kept with a given probability, assuming independence

6/28

Reliability: Probabilistic query evaluation

50% 50%

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Probabilistic
query evaluation

NN

25%
25%
25%
25%

(Ca I G S S

Results

» The color of each node is kept with a given probability, assuming independence
e We want to know the probability of all results

6/28

Reliability: Probabilistic query evaluation

50% 50%

Probabilistic
query evaluation

Data: Graph G

Query Q: “Is there an orange
node having a directed
path to a blue node?”

» The color of each node is kept with a given probability, assuming independence
» We want to know the probability of all results

* Here, more interesting: probability of the Boolean query
6/28

Reliability: Probabilistic query evaluation

50% 50%

Probabilistic 56.25%
query evaluation Result

Data: Graph G

Query Q: “Is there an orange
node having a directed
path to a blue node?”

» The color of each node is kept with a given probability, assuming independence
» We want to know the probability of all results

* Here, more interesting: probability of the Boolean query
6/28

Provenance circuits: A unified approach to these three problems

Provenance
—) .
a e e computation

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

Provenance circuits: A unified approach to these three problems

©

Provenance

a e e) computation - @ @ @ @

Data: Graph G

nodes x have a directed path
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation

Provenance circuits: A unified approach to these three problems

©

Provenance

a e e) computation — @ @ @ —’| Evaluation

Data: Graph G

nodes x have a directed path
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation
e Use it for evaluation,

Provenance circuits: A unified approach to these three problems

O,
e Q ——] Enumeration |

Provenance Q Q .
a 9 e computation — @ @ @ —’| Evaluation |

Data: Graph G

nodes x have a directed path
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation

e Use it for evaluation, enumeration,

Provenance circuits: A unified approach to these three problems

Provenance Q Q

computation _) @ @ @ @

Provenance circuit

—>| Enumeration |
—>| Evaluation |

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation

Provenance circuits: A unified approach to these three problems

©
ORENG

—>| Enumeration |

Provenance
computation

—>| Evaluation |

6696

Data: Graph G

Query Q(x,y): “Which orange
nodes x have a directed path
to which blue nodes y?”

50% 50% 50% 50%

Provenance circuit

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation

Provenance circuits: A unified approach to these three problems

Provenance Q Q

computation _) @ @ @ @

Data: Graph G 50% 50% 50% 50% ____|

—>| Enumeration |
—>| Evaluation |

Probability
computation

nodes x have a directed path
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data
» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation
7/28

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored ———

. O,
e Q o ® ——] Enumeration |

Provenance

0 e e | computation| ——{ Evaluation |
Data: Graph G DOLY Probability
computation

nodes x have a directed path —
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data

» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation

e Update it if there are changes on the data 7128

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored ———

. O,
e Q o ® ——] Enumeration |

Provenance

0 e e | computation| ——{ Evaluation |
Data: Graph G DOLY Probability
computation

nodes x have a directed path —
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data

» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation

e Update it if there are changes on the data 7128

Provenance circuits: A unified approach to these three problems

Change: make 2 uncolored ———

. O,
e Q o ® ——] Enumeration |

Provenance

ﬁ e e —)computation @ @@ Evaluation |

Data: Graph G Probability
computation

nodes x have a directed path —
to which blue nodes y?”

» The provenance circuit describes how the query result depends on the data

» Show that it belongs to restricted circuit classes from knowledge compilation

» Use it for evaluation, enumeration, probability computation

e Update it if there are changes on the data 7128

Roadmap of the presentation

e Present data and query formalisms:
— Monadic second-order logic (MSO) on words/trees

8/28

Roadmap of the presentation

e Present data and query formalisms:
— Monadic second-order logic (MSO) on words/trees

e Results on enumeration

8/28

Roadmap of the presentation

e Present data and query formalisms:
— Monadic second-order logic (MSO) on words/trees

e Results on enumeration

e Results on incremental maintenance

8/28

Roadmap of the presentation

Present data and query formalisms:
— Monadic second-order logic (MSO) on words/trees

Results on enumeration

e Results on incremental maintenance

e Results on probabilistic query evaluation

8/28

Context

Families of data

1 2 3 4 5 6 7 8

« Words. O—O—O—0—0—0—0

less
expressive

more
expressive

9/28

Families of data

* Words:

e Trees:

1 2 3 4

less
expressive

more
expressive

9/28

Families of data

1 2 3 4 5 6 7 8

« Words: O—O—O0—0O—0—0—0—0
a less

e Trees: expressive

/N
“lllllgjlii!!llll"

W\
@ \J)

» Bounded-treewidth graphs:

more
expressive

9/28

Families of data
1 2 3 4 5 6 7 8

Words: O—O—O—O0—0—0—0—0

Trees:

/N
“lllllgjlii!!llll"

W\
@ \J)

Bounded-treewidth graphs:

Many other classes of graphs and relational structures:

(

less
expressive

more
expressive

9/28

Query languages

From least to most expressive:

« Conjunctive queries (CQs): find a pattern
- Q(x,y): “Find two adjacent blue nodes x and y with y having an orange neighbor”

a2 (- (D0

10/28

Query languages

From least to most expressive:

« Conjunctive queries (CQs): find a pattern
- Q(x,y): “Find two adjacent blue nodes x and y with y having an orange neighbor”

a2 (- (D0

« Unions of CQs (UCQs): disjunction of CQs
- Q(x,y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y"

10/28

Query languages

From least to most expressive:

« Conjunctive queries (CQs): find a pattern
- Q(x,y): “Find two adjacent blue nodes x and y with y having an orange neighbor”

a2 (- (D0

« Unions of CQs (UCQs): disjunction of CQs
- Q(x,y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y"

« First-order logic (FO):
— conjunction, disjunction, negation, existential quantification, universal quantification

10/28

Query languages

From least to most expressive:

« Conjunctive queries (CQs): find a pattern
- Q(x,y): “Find two adjacent blue nodes x and y with y having an orange neighbor”

a2 (- (D0

« Unions of CQs (UCQs): disjunction of CQs
- Q(x,y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y"

« First-order logic (FO):
— conjunction, disjunction, negation, existential quantification, universal quantification

« Monadic second-order logic (MSO): extend FO with quantification over sets
- Equivalent to finite automata on words, trees, tree encodings

10/28

Enumeration

Word automata with captures

On words, MSO queries are equivalent to automata

11/28

Word automata with captures

On words, MSO queries are equivalent to automata

Q: “Is there an orange node before a blue node?”

11/28

Word automata with captures

On words, MSO queries are equivalent to automata

Q: “Is there an orange node before a blue node?”

0,0,0 0,00 0,00

11/28

Word automata with captures

On words, MSO queries are equivalent to automata

Q: “Is there an orange node before a blue node?”

0,0,0 0,00 0,00

11/28

Word automata with captures

On words, MSO queries are equivalent to automata

Q: “Is there an orange node before a blue node?”

0,0,0 0,00 0,00

Result: YES

11/28

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q: “Is there an orange node before a blue node?”

0,0,0 0,00 0,00

Result: YES

11/28

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x,y): “Find an orange node x before a blue node y”

0,0,0 0,00 0,00

Result: YES

11/28

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x,y): “Find an orange node x before a blue node y”

0,0,0 0,00 0,00

ctart \% x:0 é}) y:O @

Result: YES

11/28

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x,y): “Find an orange node x before a blue node y”

0,0,0 0,00 0,00

ctart \% x:0 é}) y:O @

Results: (x:1,y:3), (x:1,y:7), (X:4,y:7)

11/28

Provenance circuit computation: Product construction

0,0,0 0,0,0 0,00

/@ e Product of word and automaton

12/28

Provenance circuit computation: Product construction

0,0,0 0,0,0 0,00

/@ e Product of word and automaton
8

12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton

start
12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton
x: O v: O .
start 0 U @ e Trim nodes that are not reachable/co-reachable

start

12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton
x: O v: O .
start 0 U @ e Trim nodes that are not reachable/co-reachable

start

12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton
x: O v: O .
start 0 U @ e Trim nodes that are not reachable/co-reachable

» Collapse transitions with no assignments

start
12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton

x: O yv: O .

start 0 U @ e Trim nodes that are not reachable/co-reachable
O

» Collapse transitions with no assignments

start
12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton

x: O yv: O .

start 0 U @ e Trim nodes that are not reachable/co-reachable
O

» Collapse transitions with no assignments

» Equivalent provenance circuit:

start
12/28

Provenance circuit computation: Product construction
0,00 0,00 0,0,0

/@ e Product of word and automaton

x: O yv: O .

start 0 U @ e Trim nodes that are not reachable/co-reachable
O

» Collapse transitions with no assignments

» Equivalent provenance circuit:

start
12/28

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

13/28

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

e Generalizes from words to trees

13/28

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit
» Generalizes from words to trees

» Also works for non-deterministic automata

13/28

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

e Generalizes from words to trees

» Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures A with constant number of variables, given a word w,

we can enumerate the results of A on w with preprocessing O(Poly(|A|) x |w|)
and delay O(Poly(|A|)).

13/28

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

e Generalizes from words to trees

» Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)

Given an automaton with captures A with constant number of variables, given a word w,

we can enumerate the results of A on w with preprocessing O(Poly(|A|) x |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

14/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate

14/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate

e Deterministic: inputs to an V-gate are mutually exclusive

14/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive

» Negation normal form: negation on leaves

14/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive
» Negation normal form: negation on leaves

e Structured by a v-tree

14/28

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

» Decomposable: no variable occurs on both inputs of an A-gate
e Deterministic: inputs to an V-gate are mutually exclusive
» Negation normal form: negation on leaves

e Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)

Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/28

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

15/28

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x,y): “Find all endpoints x,y of factors of the form O™ Q"”

S x:0O)Ay:O)x
A-OAQ] ¢

15/28

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x,y): “Find all endpoints x,y of factors of the form O™ Q"”

S x:0O)Ay:O)x
A-OAQ] ¢

Annotation grammar must be input-output-unambiguous: no result is captured twice

15/28

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x,y): “Find all endpoints x,y of factors of the form O™ Q"”

S x:O)AWy:Q)x*
A-OAQ] ¢

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Munoz, Riveros)

Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| x |w|®) and output-linear delay

15/28

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x,y): “Find all endpoints x,y of factors of the form O™ Q"”

S x:O)AWy:Q)x*
A-OAQ]| e

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Munoz, Riveros)

Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| x |w|®) and output-linear delay

Better preprocessing time for restricted grammar classes

15/28

Maintenance

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
LOOO ()) (9) (7

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
LOOO ()) (9) (7

What happens if the tree is modified?

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
OO ()) (9) (7

What happens if the tree is modified?

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
OO ()) (9) (7

What happens if the tree is modified?

e Can we update the provenance circuit instead of recomputing it from scratch?

16/28

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x,y): “Find pairs of an orange node x and a blue node y”

O (2
ONNO OO
OO ()) (9) (7

What happens if the tree is modified?

e Can we update the provenance circuit instead of recomputing it from scratch?
e Can we avoid re-running the preprocessing phase of the enumeration?

16/28

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

17/28

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

— The provenance circuit computation and enumeration preprocessing are bottom-up

17/28

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))
— The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

17/28

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))
— The provenance circuit computation and enumeration preprocessing are bottom-up
It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q

on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

17/28

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))
— The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)

For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q

on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS"19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/28

Improving the logarithmic complexity

* The update time is O(log n) and there is a lower bound of Q(logn/ loglogn)
— Already for Boolean queries on words under relabeling updates

18/28

Improving the logarithmic complexity

* The update time is O(log n) and there is a lower bound of Q(logn/ loglogn)
— Already for Boolean queries on words under relabeling updates

» Yet, we can do better for some queries, e.g.:

Q: “Is there both an orange node and a blue node?”

18/28

Improving the logarithmic complexity

* The update time is O(log n) and there is a lower bound of Q(logn/ loglogn)
— Already for Boolean queries on words under relabeling updates

» Yet, we can do better for some queries, e.g.:

Q: “Is there both an orange node and a blue node?”

» Simply maintain the counts! update time O(1)

18/28

Improving the logarithmic complexity

* The update time is O(log n) and there is a lower bound of Q(logn/ loglogn)
— Already for Boolean queries on words under relabeling updates

» Yet, we can do better for some queries, e.g.:

Q: “Is there both an orange node and a blue node?”

» Simply maintain the counts! update time O(1)

— For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?

18/28

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

19/28

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a QLZG: in O(1)

regular language L on words under relabeling updates

* If L is in QLZG, then the problem is in O(1)

19/28

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a QLZG: in O(1)

regular language L on words under relabeling updates

« If Lis in QLZG, then the problem is in O(1) QsG: i? _O(g’(%;c;g n)
not in :
* IfLisin QSG\ QLZG, then the problem is in O(loglogn) L)

and conditionally not in O(1)

19/28

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

* If L is in QLZG, then the problem is in O(1)

* IfLisin QSG\ QLZG, then the problem is in O(loglogn)
and conditionally not in O(1)

* If Lis not in QSG, then the problem is in ©(logn/ loglogn)

-

QLZG: in O(1)

QSG: in O(loglog n)
not in O(1)?

)

All: in ©(logn/ log log n)

19/28

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)

Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

* If L is in QLZG, then the problem is in O(1)

* IfLisin QSG\ QLZG, then the problem is in O(loglogn)
and conditionally not in O(1)

* If Lis not in QSG, then the problem is in ©(logn/ loglogn)

-

QLZG: in O(1)

QSG: in O(loglog n)
not in O(1)?

)

All: in ©(logn/ log log n)

e QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
— Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

« QSG: “the stable semigroup satisfies the equation x¥Tyx® = x“yxw+1"
— Aperiodic languages, tame combinations of aperiodic and commutative languages...

19/28

Reliability

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here:

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

20/28

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

« Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/28

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

21/28

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

21/28

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

21/28

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

50% 50% 50% 50%

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

50% 50% 50% 50%

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

50% 50% 50% 50%

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

56.25%

50% 50% 50% 50%

21/28

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

50% 50% 50% 50%

56.25%

50% 50% 50% 50%

« Probability of A is the product of the probabilities (uses decomposability)
 Probability of Vv is the sum of the probabilities (uses determinism)

21/28

Intractability of probabilistic query evaluation in the general case

What about more general data?

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- PQE is #P-hard under randomized reductions

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- PQE is #P-hard under randomized reductions

» When allowing arbitrary instances:

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- PQE is #P-hard under randomized reductions

» When allowing arbitrary instances:

- We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

22/28

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

« On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

- No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

- PQE is #P-hard under randomized reductions

» When allowing arbitrary instances:

- We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

- We show the same for all unbounded homomorphism-closed queries on graphs

22/28

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

23/28

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)

For some d € N, any d-SDNNF provenance circuit for Q on a graph G of treewidth R
must have size 22K,

23/28

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)

For some d € N, any d-SDNNF provenance circuit for Q on a graph G of treewidth R
must have size 22K,

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G € G under an input probability distribution
is #P-hard under randomized reductions.

23/28

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)

For some d € N, any d-SDNNF provenance circuit for Q on a graph G of treewidth R
must have size 22K,

Theorem (MFCS’22; with Monet)

On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G € G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/28

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g.,@@@ but not ° 0 e @

24/28

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g.,@@@ but not ° 0 e @

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

24/28

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g.,@@@ but not ° 0 e m

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)

For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic

query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.

24/28

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G’ then G’ satisfies Q

— Examples: CQs, UCQs, Datalog...

25/28

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G’ then G’ satisfies Q

— Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)

For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

25/28

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G’ then G’ satisfies Q

— Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)

For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.

25/28

Conclusion

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

26/28

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

26/28

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

 Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

26/28

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

 Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

e For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?

26/28

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

 Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

e For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?

« Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

26/28

Summary and perspectives

e Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data
- Properties of the automata correspond to knowledge compilation circuit classes

» May also extend to other settings:
- Explored for enumeration with annotated context-free grammars on words
- Open if circuits explain the tractability of PQE for safe UCQs
- Other cases? (e.g., UCQs with tractable enumeration?)

 Finer bounds on incremental maintenance via algebraic methods
- Connections with circuits not (yet) understood
- Unclear if the results extend to enumeration and to trees

e For PQE, hardness holds outside of the bounded-treewidth setting
- Better joint criteria for width when considering the instance and query?

« Enumeration of large solutions by editing previous solutions? (STACS'23; with Monet)

Thanks for your attention! /s

References i

[§ Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
[d Chekuri, C. and Chuzhoy, J. (2016).
Polynomial bounds for the grid-minor theorem.
JACM, 63(5).
[\ Dalvi, N. and Suciu, D. (2007).
Efficient query evaluation on probabilistic databases.
VLDBJ, 16(4).

27/28

https://dl.acm.org/doi/abs/10.1145/2820609
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf

References ii

[§ Dalvi, N. and Suciu, D. (2013).
The dichotomy of probabilistic inference for unions of conjunctive queries.
JACM, 59(6).

[§ Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees.
TOCL, 14(1).

28/28

http://www.cs.washington.edu/homes/suciu/dichotomyUCQ-with-acm-cls.pdf
https://hal.inria.fr/hal-00916400/file/enummso.pdf

	Introduction
	Context
	Enumeration
	Maintenance
	Reliability
	Conclusion

