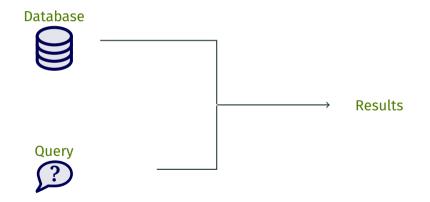


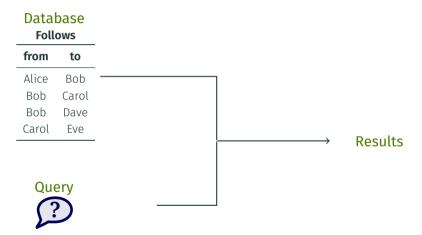
Efficient Enumeration of Query Answers via Circuits

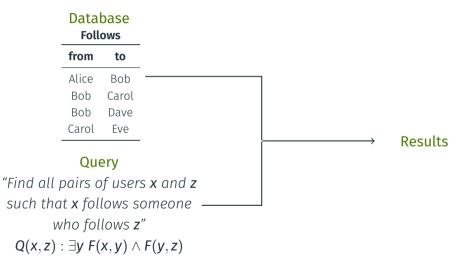
Antoine Amarilli

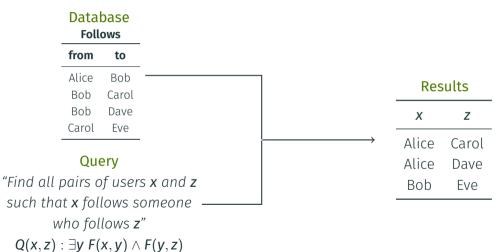
October 17, 2024

Inria Lille









• Problem of query evaluation (QE)

- Problem of query evaluation (QE)
 - Input 1: query Q
 - Input 2: database D

- Problem of query evaluation (QE)
 - Input 1: query Q
 - Input 2: database D
 - Output: result Q(D)

- Problem of query evaluation (QE)
 - Input 1: query Q
 - Input 2: database D
 - Output: result Q(D)

- Problem of query evaluation (QE)
 - Input 1: query Q
 - Input 2: database D
 - **Output:** result **Q**(**D**)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

- Problem of query evaluation (QE)
 - Input 1: query Q
 - Input 2: database D
 - Output: result Q(D)

- Combined complexity: the query and database are given as input
- Data complexity: the query is fixed, the input is only the data

- Problem of query evaluation for Q (QE(Q))
 - Input 1: query Q
 - Input: database D
 - Output: result Q(D)

- Combined complexity: the query and database are given as input
- Data complexity: the query is fixed, the input is only the data

- Problem of query evaluation for Q (QE(Q))
 - Input 1: query Q
 - Input: database D
 - Output: result Q(D)

- Combined complexity: the query and database are given as input
- Data complexity: the query is fixed, the input is only the data
 - \rightarrow Motivation: the data is usually much larger than the query

• Consider the query Q: "Find all users x, y, and z such that x follows y and y follows z" $Q(x, y, z) : F(x, y) \land F(y, z)$

- Consider the query Q: "Find all users x, y, and z such that x follows y and y follows z" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts

- Consider the query Q: "Find all users x, y, and z such that x follows y and y follows z" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?

- Consider the query Q: "Find all users x, y, and z such that x follows y and y follows z" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair

always $\Theta(n^2)$

- Consider the query **Q**: "Find all users **x**, **y**, and **z** such that **x** follows **y** and **y** follows **z**" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair
 - Better algorithm:
 - Check which **y** have a follower **x** and followee **z**

- Consider the query **Q**: "Find all users **x**, **y**, and **z** such that **x** follows **y** and **y** follows **z**" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair
 - Better algorithm:
 - Check which **y** have a follower **x** and followee **z**
 - For each such **y**, output all matching pairs of **x** and **z**

always $\Theta(n^2)$

- Consider the query **Q**: "Find all users **x**, **y**, and **z** such that **x** follows **y** and **y** follows **z**" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair
 - Better algorithm:
 - Check which y have a follower x and followee z
 - For each such **y**, output all matching pairs of **x** and **z**
 - **Problem:** we can't beat the **result size** which is $\Omega(n^2)$ in general

|D| = n

always $\Theta(n^2)$

also $\Theta(n^2)!$

- Consider the query Q: "Find all users x, y, and z such that x follows y and y follows z" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database D contains n "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair
 - Better algorithm:
 - Check which **y** have a follower **x** and followee **z**
 - For each such **y**, output all matching pairs of **x** and **z**
 - **Problem:** we can't beat the **result size** which is $\Omega(n^2)$ in general

 \rightarrow In which sense is the second algorithm preferable?

|D| = n

always $\Theta(n^2)$

also $\Theta(n^2)!$

- Consider the query **Q**: "Find all users **x**, **y**, and **z** such that **x** follows **y** and **y** follows **z**" $Q(x, y, z) : F(x, y) \land F(y, z)$
- Assume the input database **D** contains **n** "follows" facts
- What is the **data complexity** of **Q** as a function of **n**?
 - Trivial algorithm: check every pair
 - Better algorithm:
 - Check which **y** have a follower **x** and followee **z**
 - For each such **y**, output all matching pairs of **x** and **z**
 - **Problem:** we can't beat the **result size** which is $\Omega(n^2)$ in general
- \rightarrow In which sense is the second algorithm preferable?
- \rightarrow We need a **better measure of complexity**

always $\Theta(n^2)$ also $\Theta(n^2)$!

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size

- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming

- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming

How to measure the running time of algorithms producing a large collection of answers?

- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming

check which **y** have a follower and followee

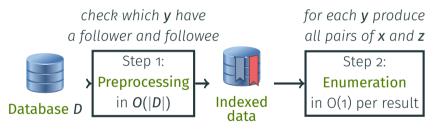
Database D Step 1: Preprocessing in O(101)

How to measure the running time of algorithms producing a large collection of answers?

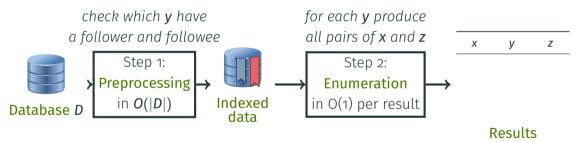
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming

check which **y** have a follower and followee

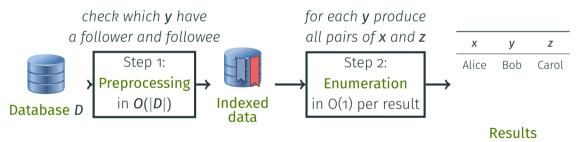
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



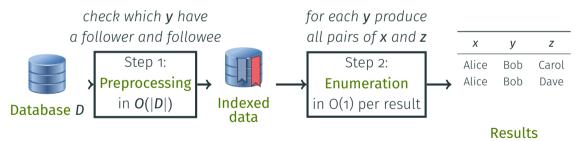
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



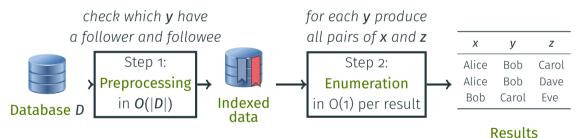
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



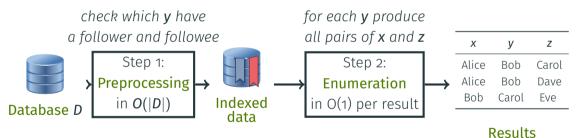
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



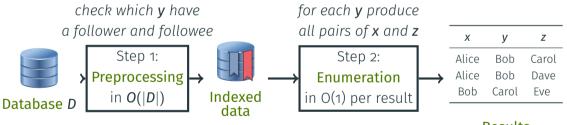
- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



 \rightarrow Tests **if there is an answer** in time O(|D|)

How to measure the running time of algorithms producing a large collection of answers?

- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming

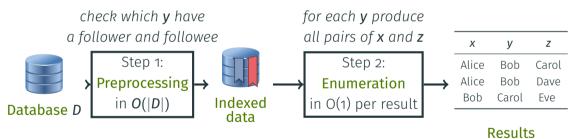


Results

- \rightarrow Tests **if there is an answer** in time O(|D|)
- \rightarrow Computes the **first** *k* **answers** in time O(|D| + k)

How to measure the running time of algorithms producing a large collection of answers?

- Idea 1: make the complexity depend on the result size
- Idea 2: make the algorithm produce results in streaming



 \rightarrow Tests **if there is an answer** in time O(|D|)

- \rightarrow Computes the **first** *k* **answers** in time O(|D| + k)
- \rightarrow Computes all answers in time O(|D| + m) for m the number of answers

- During preprocessing, compute a **factorized representation** of the answers
- During enumeration, decompress this factorized representation

- During preprocessing, compute a **factorized representation** of the answers
- During enumeration, decompress this factorized representation

 $Q(x, y, z) : F(x, y) \wedge F(y, z)$

- During preprocessing, compute a **factorized representation** of the answers
- During enumeration, decompress this factorized representation

 $Q(x, y, z) : F(x, y) \wedge F(y, z)$

Database D			
Follows			
from	to		
Alice	Bob		
Bob	Carol		
Bob	Dave		
Carol	Eve		

- During preprocessing, compute a **factorized representation** of the answers
- During enumeration, decompress this factorized representation

 $O_{\rm out} = O(D)$

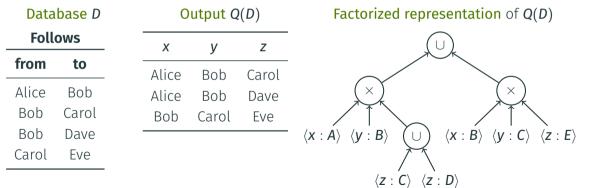
 $Q(x,y,z):F(x,y)\wedge F(y,z)$

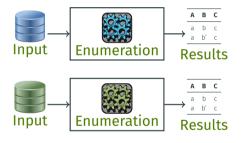
Follows		U	Output $Q(D)$			
		X	у	Z		
from	to	Alice	Bob	Carol		
Alice	Bob	Alice	Bob	Dave		
Bob	Carol	Bob	Carol	Eve		
Bob	Dave					
Carol	Eve					

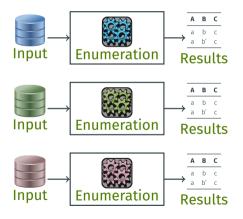
Databasa D

- During preprocessing, compute a factorized representation of the answers
- During enumeration, decompress this factorized representation

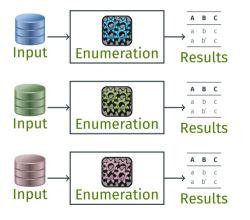
 $Q(x, y, z) : F(x, y) \wedge F(y, z)$



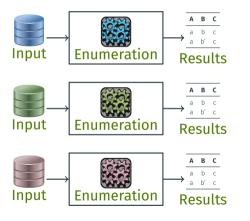


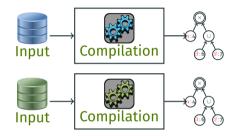


WITHOUT factorized representations:

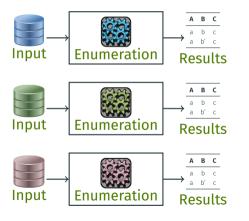


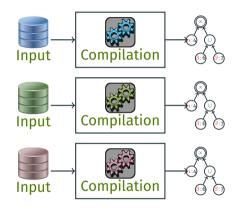
WITHOUT factorized representations:



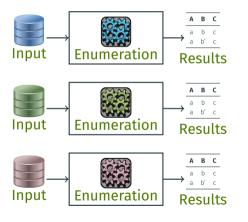


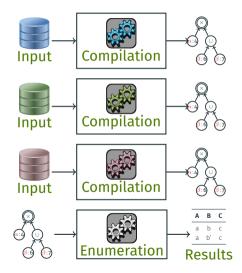
WITHOUT factorized representations:





WITHOUT factorized representations:





- Conjunctive queries (CQs) and extensions:
 - \rightarrow Yannakakis's algorithm for acyclic and free-connex conjunctive queries

- Conjunctive queries (CQs) and extensions:
 - \rightarrow Yannakakis's algorithm for acyclic and free-connex conjunctive queries
- Other settings: Queries defined by automata / monadic second-order logic

- Conjunctive queries (CQs) and extensions:
 - \rightarrow Yannakakis's algorithm for acyclic and free-connex conjunctive queries
- Other settings: Queries defined by automata / monadic second-order logic
- Summary and future work

Conjunctive queries

Other settings

Summary and future work

• Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)

- Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)
- A full conjunctive query (CQ) is a conjunction of atoms

 $Q_1(x, y)$: Follows(x, y) $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

- Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)
- A full conjunctive query (CQ) is a conjunction of atoms

 $Q_1(x,y)$: Follows(x,y)

 $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

• The **answers** of a CQ $Q(x_1, ..., x_n)$ on a database *D* are the tuples of domain elements $(a_1, ..., a_n)$ such that the corresponding facts exist in the database

- Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)
- A full conjunctive query (CQ) is a conjunction of atoms

 $Q_1(x,y)$: Follows(x,y)

 $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

• The **answers** of a CQ $Q(x_1, \ldots, x_n)$ on a database *D* are the tuples of domain elements (a_1, \ldots, a_n) such that the corresponding facts exist in the database

Foll	ows	S	Subscribed	
а	b		b	С
а	b′		b	с′
a'	b′		b′	С′
а″	b″			

• Query $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

- Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)
- A full conjunctive query (CQ) is a conjunction of atoms

 $Q_1(x,y)$: Follows(x,y)

 $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

• The **answers** of a CQ $Q(x_1, \ldots, x_n)$ on a database *D* are the tuples of domain elements (a_1, \ldots, a_n) such that the corresponding facts exist in the database

Follows		Subscribed		
а	b		b	С
а	b′		b	С′
a'	b′		b′	С′
<i>a</i> ″	b″			

- Query Q₂(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)
- Database **D** on the left

- Fix the **relation names** (the database tables) and their **arity** (number of columns) e.g., Follows (arity-2), Subscribed (arity-2)
- A full conjunctive query (CQ) is a conjunction of atoms

 $Q_1(x,y)$: Follows(x,y)

 $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)

• The **answers** of a CQ $Q(x_1, \ldots, x_n)$ on a database *D* are the tuples of domain elements (a_1, \ldots, a_n) such that the corresponding facts exist in the database

Follows		Subscribed		
а	b		b	С
а	b′		b	С′
a'	b′		b′	С′
<i>a</i> ″	b″			

- Query $Q_2(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z)
- Database **D** on the left
- There are **four answers**:

 $(a,b,c),(a,b,c^\prime),(a,b^\prime,c^\prime),(a^\prime,b^\prime,c^\prime)$

Acyclic CQs: the Gaifman graph is acyclic

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x,y,z)$: F(x,y), S(y,z)

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x,y,z)$: F(x,y), S(y,z)

 $x \longrightarrow y \longrightarrow z$ $x \longrightarrow y \longrightarrow z$

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x,y,z)$: F(x,y), S(y,z)

 $x \longrightarrow y \longrightarrow z$ $x \longrightarrow y \longrightarrow z$

 $Q_2(x,y)$: F(x,x), S(x,y), F(y,x)

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x,y,z)$: F(x,y), S(y,z)

$$x \longrightarrow y \longrightarrow z$$
 $x \longrightarrow y \longrightarrow z$

 $Q_{2}(x,y) : F(x,x), S(x,y), F(y,x)$ $\bigcap_{x \longrightarrow y} y \qquad x \longrightarrow y$

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x,y,z)$: F(x,y), S(y,z)

 $x \longrightarrow y \longrightarrow z$ $x \longrightarrow y \longrightarrow z$

 $Q_{2}(x,y): F(x,x), S(x,y), F(y,x)$

Cyclic CQs:

 $Q_3(x,z): F(x,y), F(y,z), F(z,x)$

Acyclic CQs: the Gaifman graph is acyclic $Q_1(x, y, z) : F(x, y), S(y, z)$ $x \longrightarrow y \longrightarrow z$ $x \longrightarrow y \longrightarrow z$

 $Q_{2}(x,y): F(x,x), S(x,y), F(y,x)$ $\bigcap_{x \longrightarrow y} y \qquad x \longrightarrow y$

Cyclic CQs: $Q_3(x,z) : F(x,y), F(y,z), F(z,x)$ $x \xrightarrow{} y \qquad x \xrightarrow{} y$ $z \qquad z \qquad z$

Acyclic CQs: the Gaifman graph is acyclic

 $Q_1(x, y, z) : F(x, y), S(y, z)$ $x \longrightarrow y \longrightarrow z \qquad x \longrightarrow x$

$$\longrightarrow y \longrightarrow z \qquad \qquad x \longrightarrow y \longrightarrow z$$

$$Q_{2}(x,y) : F(x,x), S(x,y), F(y,x)$$

$$\bigcap_{x \longrightarrow y} y \qquad x \longrightarrow y$$

Cyclic CQs:

$$Q_{3}(x,z): F(x,y), F(y,z), F(z,x)$$

$$x \xrightarrow{\sim} y \qquad x \xrightarrow{\sim} y$$

$$z \qquad z \qquad z$$

Intuition: the cyclic queries seem harder (e.g., searching for a triangle in an input directed graph)

Acyclic CQs: the Gaifman graph is acyclic $Q_1(x, y, z) : F(x, y), S(y, z)$ $x \longrightarrow y \longrightarrow z$ $x \longrightarrow y \longrightarrow z$

$$Q_2(x,y) : F(x,x), S(x,y), F(y,x)$$

$$\bigcap_{x \longrightarrow y} y \qquad x \longrightarrow y$$

Cyclic CQs:

$$Q_{3}(x,z): F(x,y), F(y,z), F(z,x)$$

$$x \xrightarrow{\sim} y \qquad x \xrightarrow{\sim} y$$

$$z \qquad z$$

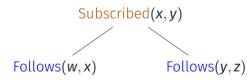
Intuition: the cyclic queries seem harder (e.g., searching for a triangle in an input directed graph)

We can generalize **acyclic CQs** to arbitrary arity (= α -acyclic Gaifman hypergraph)

Fact: a CQ is acyclic iff it has a join tree:

- The vertices are the **atoms** of the query
- For each variable, its occurrences form a connected subtree
- (For experts: width-1 generalized hypertree decomposition of the Gaifman hypergraph)

Take the query: Q(w, x, y, z) : Follows $(w, x) \land$ Subscribed $(x, y) \land$ Follows(y, z)



Theorem ([Yannakakis, 1981])

Theorem ([Yannakakis, 1981])

```
Subscribed(x, y)
```

Theorem ([Yannakakis, 1981])

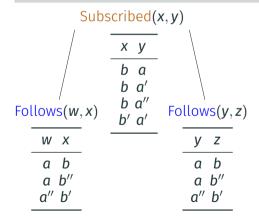
Given an acyclic CQ Q and database D, we can compute Q(D) in time $O(|Q| \times (|D| + m))$, where m is the output size

```
Subscribed(x, y)
```

• On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom

Theorem ([Yannakakis, 1981])

Given an acyclic CQ Q and database D, we can compute Q(D) in time $O(|Q| \times (|D| + m))$, where m is the output size



• On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom

Theorem ([Yannakakis, 1981])

Subscribed(x, y)		
Follows(w, x)	x y b a b a' b a''	Follows(y, z)
w x	b' a'	y z
a b a b'' a'' b'		a b a b" a" b'

- On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom
- Do **semijoins** on the tree **bottom-up**:
 - \rightarrow On every node *n*, for each child *n'*, keep only the tuples of *R_n* that have a match in *R_{n'}*

17 >

Theorem ([Yannakakis, 1981])

Subs	scribed()	x,y)
	х у	
Follows(w, x)	b a b a' b a'' b' a'	Follows(y, z)
w x		y z
a b a b'' a'' b'		a b a b" a" b'

- On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom
- Do **semijoins** on the tree **bottom-up**:
 - \rightarrow On every node *n*, for each child *n'*, keep only the tuples of *R_n* that have a match in *R_{n'}*

1/)

Theorem ([Yannakakis, 1981])

Subs	scribed()	x,y)
Follows(w, x)	x y b a b a' b a''	Follows(y, z)
$\frac{10000}{W} \times \frac{10000}{X}$	<u>b' a'</u>	$\overline{V z}$
a b a b''		a b a b''
a'' b'		a'' b'

- On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom
- Do **semijoins** on the tree **bottom-up**:
 - \rightarrow On every node *n*, for each child *n'*, keep only the tuples of *R_n* that have a match in *R_{n'}*
- Do semijoins on the tree top-down

1/)

Theorem ([Yannakakis, 1981])

Subscribed(x, y)		
	х у	
Follows(w, x)	b a b a' b a'' b' a'	Follows(y, z)
W X		y z
a b a b'' a'' b'		a b a b'' a'' b'

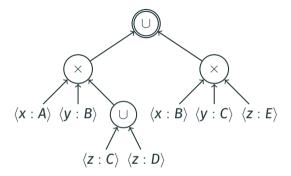
- On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom
- Do **semijoins** on the tree **bottom-up**:
 - \rightarrow On every node *n*, for each child *n'*, keep only the tuples of *R_n* that have a match in *R_{n'}*
- Do semijoins on the tree top-down

17

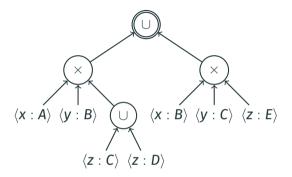
Theorem ([Yannakakis, 1981])

Subscribed(x, y)		
	х у	
Follows(w, x)	b a b a' b a'' b' a'	Follows(y, z)
W X		y z
a b a b'' a'' b'		a b a b" a" b'

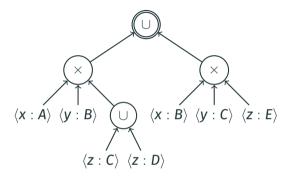
- On every node *n*, write a **copy** *R*_{*n*} of the relation of the corresponding atom
- Do **semijoins** on the tree **bottom-up**:
 - \rightarrow On every node *n*, for each child *n'*, keep only the tuples of *R_n* that have a match in *R_{n'}*
- Do semijoins on the tree top-down
- Join together all relations to get the full result



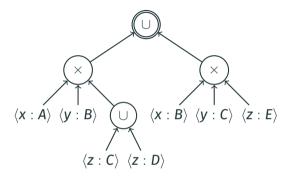
- Directed acyclic graph of gates
- Output gate:



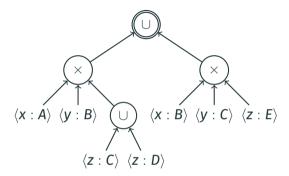
- Directed acyclic graph of gates
- Output gate:
- Variable gates (x : a): represent a single-tuple and single-column relation



- Directed acyclic graph of gates
- Output gate:
- Variable gates (x : a): represent a single-tuple and single-column relation
- Relational product gates: (× (input domains are disjoint)

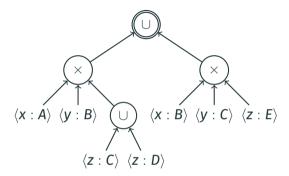


- Directed acyclic graph of gates
- Output gate:
- Variable gates (x : a): represent a single-tuple and single-column relation
- Relational product gates: (× (input domains are disjoint)
- Union gates: U (inputs have same domains)



х	у	z
А	В	С
Α	В	D
В	С	Ε

- Directed acyclic graph of gates
- Output gate:
- Variable gates (x : a): represent a single-tuple and single-column relation
- Relational product gates: (× (input domains are disjoint)
- Union gates: U (inputs have same domains)



х	у	Z
Α	В	С
Α	В	D
В	С	Ε

- Directed acyclic graph of gates
- Output gate:
- Variable gates (x : a): represent a single-tuple and single-column relation
- Relational product gates: (× (input domains are disjoint)
- Union gates: U (inputs have same domains)

Conditions on d-representations:

- Deterministic: all unions are disjoint
- Normal: no union is an input to a union

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Task: Enumerate the tuples of the relation R(g) captured by a gate gBase case: variable (x : a):

Task: Enumerate the tuples of the relation R(g) captured by a gate gBase case: variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Task: Enumerate the tuples of the relation R(g) captured by a gate g**Base case:** variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Union: enumerate R(g) and then enumerate R(g')

Task: Enumerate the tuples of the relation R(g) captured by a gate g**Base case:** variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Union: enumerate R(g) and then enumerate R(g')

Determinism: no duplicates

Task: Enumerate the tuples of the relation R(g) captured by a gate g**Base case:** variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Union: enumerate R(g) and then enumerate R(g')

Determinism: no duplicates

Product: enumerate R(g) and for each result t

Task: Enumerate the tuples of the relation R(g) captured by a gate g**Base case:** variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Union: enumerate R(g) and then enumerate R(g')

Determinism: no duplicates

Product: enumerate R(g) and for each result t enumerate R(g') and for each result t'

Task: Enumerate the tuples of the relation R(g) captured by a gate g**Base case:** variable $\langle x : a \rangle$: enumerate $\langle x : a \rangle$ and stop

Union: enumerate R(g) and then enumerate R(g')

Determinism: no duplicates

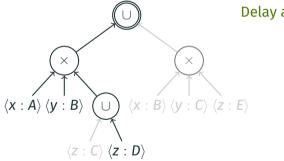
Product: enumerate R(g) and for each result tenumerate R(g') and for each result t'concatenate t and t'

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

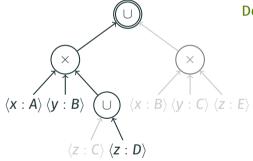
For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay



Delay analysis:

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay

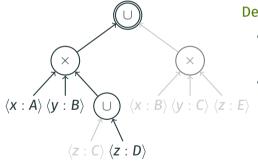


Delay analysis:

• Every product gate **nontrivially splits** the assignment to produce

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay

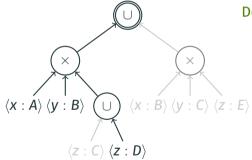


Delay analysis:

- Every product gate **nontrivially splits** the assignment to produce
- The inputs to union gates are **not union gates** (the representation is **normal**)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay

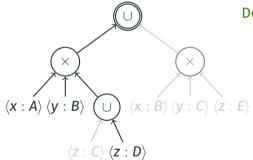


Delay analysis:

- Every product gate **nontrivially splits** the assignment to produce
- The inputs to union gates are **not union gates** (the representation is **normal**)
- Hence, the **trace** (gates visited to get a tuple) has size **linear in the tuple arity**, hence **constant**

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a normal deterministic d-representation with schema S can be enumerated in constant delay



Delay analysis:

- Every product gate **nontrivially splits** the assignment to produce
- The inputs to union gates are **not union gates** (the representation is **normal**)
- Hence, the **trace** (gates visited to get a tuple) has size **linear in the tuple arity**, hence **constant**

Note: normal deterministic d-representations also allow us to:

- Count the number of solutions in linear time
- Access the *i*-th solution, given *i*, in logarithmic time

Theorem

Given an acyclic CQ **Q** and database **D**, we can compute a **deterministic normal d-representation of** Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay

Theorem

Given an acyclic CQ **Q** and database **D**, we can compute a **deterministic normal d-representation of** Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay

Subscribed(x, y)		
	ху	
Follows(w, x)	b a b a' b a'' b' a'	Follows(y, z)
w x		y z
a b a b" a" b'		a b a b" a" b'

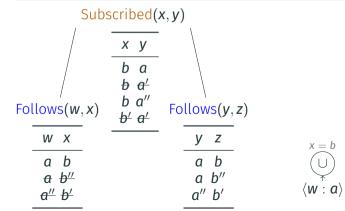
Theorem

Given an acyclic CQ Q and database D, we can compute a deterministic normal d-representation of Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay

Subscribed(x, y)		
	ху	
Follows(w, x)	b a b a' b a'' b' a'	Follows(y, z)
w x		y z
a b a b'' a'' b'		a b a b" a" b'

Theorem

Given an acyclic CQ Q and database D, we can compute a deterministic normal d-representation of Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay



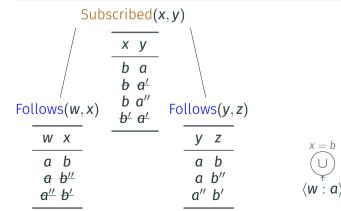
Theorem

Given an acyclic CQ Q and database D, we can compute a deterministic normal d-representation of Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay

v = a

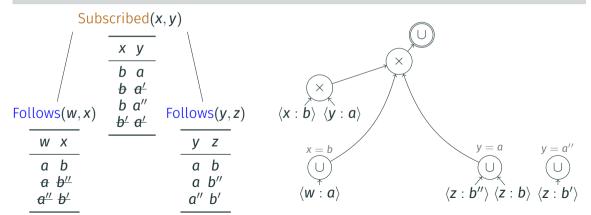
 $\langle z:b''\rangle\langle z:b\rangle\langle z:b'\rangle$

 $v = a^{\prime\prime}$



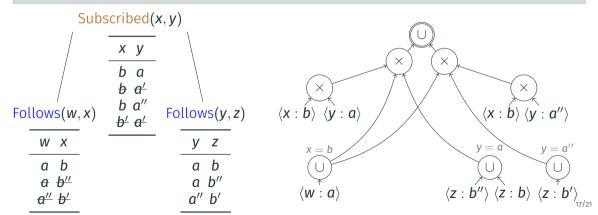
Theorem

Given an acyclic CQ Q and database D, we can compute a deterministic normal d-representation of Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay



Theorem

Given an acyclic CQ Q and database D, we can compute a deterministic normal d-representation of Q(D) in time $O(|Q| \times |D|)$ and hence enumerate Q(D) with linear preprocessing and constant delay



Conjunctive queries

Other settings

Summary and future work

• So far we have seen results on enumeration for CQs and UCQs

- So far we have seen results on enumeration for CQs and UCQs
- Efficient enumeration is also possible for **other query languages**, especially when restricting the input **data**

- So far we have seen results on enumeration for CQs and UCQs
- Efficient enumeration is also possible for **other query languages**, especially when restricting the input **data**
 - For first-order logic (FO) on bounded-degree graphs

- So far we have seen results on enumeration for CQs and UCQs
- Efficient enumeration is also possible for **other query languages**, especially when restricting the input **data**
 - For first-order logic (FO) on bounded-degree graphs

• For FO on nowhere-dense graphs

[Schweikardt et al., 2022]

- So far we have seen results on enumeration for CQs and UCQs
- Efficient enumeration is also possible for **other query languages**, especially when restricting the input **data**
 - For first-order logic (FO) on bounded-degree graphs

• For FO on nowhere-dense graphs

[Schweikardt et al., 2022]

• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

- So far we have seen results on enumeration for CQs and UCQs
- Efficient enumeration is also possible for **other query languages**, especially when restricting the input **data**
 - For first-order logic (FO) on bounded-degree graphs

• For FO on nowhere-dense graphs

[Schweikardt et al., 2022]

• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

 \rightarrow Ask me if you want to know more!

Conjunctive queries

Other settings

Summary and future work

Summary and future work

- We have seen enumeration algorithms to produce query answers in streaming
 → Ideally, we want linear preprocessing and constant delay
- Modular approach: compute a factorized representation of the results
- Tractable enumeration is possible for free-connex CQs and for MSO queries on trees
- Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Summary and future work

- We have seen enumeration algorithms to produce query answers in streaming
 → Ideally, we want linear preprocessing and constant delay
- Modular approach: compute a factorized representation of the results
- Tractable enumeration is possible for free-connex CQs and for MSO queries on trees
- Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

- Enumerating diverse / representative solutions?
- Understanding the tradeoff between preprocessing time, memory, and delay?
- Understanding how the update complexity depends on the specific query posed?
- Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Summary and future work

- We have seen enumeration algorithms to produce query answers in streaming
 → Ideally, we want linear preprocessing and constant delay
- Modular approach: compute a factorized representation of the results
- Tractable enumeration is possible for free-connex CQs and for MSO queries on trees
- Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

- Enumerating diverse / representative solutions?
- Understanding the tradeoff between preprocessing time, memory, and delay?
- Understanding how the update complexity depends on the specific query posed?
- Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Thanks for your attention!

Amarilli, A., Bourhis, P., Capelli, F., and Monet, M. (2024).

Ranked enumeration for MSO on trees via knowledge compilation. In *ICDT*.

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017). **A circuit-based approach to efficient enumeration.**

In ICALP.

Amarilli, A., Bourhis, P., and Mengel, S. (2018). **Enumeration on trees under relabelings.**

In ICDT.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a). **Constant-delay enumeration for nondeterministic document spanners.** In *ICDT*.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).

Enumeration on trees with tractable combined complexity and efficient updates. In *PODS*.

Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).

Efficient enumeration for annotated grammars.

In PODS.

Bagan, G. (2006).

MSO queries on tree decomposable structures are computable with linear delay. In *CSL*.

Bagan, G., Durand, A., and Grandjean, E. (2007).

On acyclic conjunctive queries and constant delay enumeration.

In CSL.

Berkholz, C., Gerhardt, F., and Schweikardt, N. (2020). **Constant delay enumeration for conjunctive queries: a tutorial.** *ACM SIGLOG News*, 7(1). Berkholz, C., Keppeler, J., and Schweikardt, N. (2017). **Answering conjunctive queries under updates.** In *PODS*.

Bourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).

Ranked enumeration of MSO logic on words.

In ICDT.

Bringmann, K., Carmeli, N., and Mengel, S. (2022). **Tight fine-grained bounds for direct access on join queries.** In *PODS*.

Capelli, F. and Irwin, O. (2024).

Direct access for conjunctive queries with negation.

In *ICDT*.

Carmeli, N. (2022).

Answering unions of conjunctive queries with ideal time guarantees (invited talk).

In Olteanu, D. and Vortmeier, N., editors, *ICDT*, volume 220 of *LIPIcs*. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Carmeli, N. (2023).

Accessing answers to conjunctive queries with ideal time guarantees (abstract of invited talk).

In Kutz, O., Lutz, C., and Ozaki, A., editors, *DL*, volume 3515 of *CEUR Workshop Proceedings*. CEUR-WS.org.

Carmeli, N. and Kröll, M. (2021).

On the enumeration complexity of unions of conjunctive queries. *TODS*, 46(2).

Carmeli, N. and Segoufin, L. (2023). **Conjunctive queries with self-joins, towards a fine-grained enumeration complexity analysis.**

In PODS.

Carmeli, N., Tziavelis, N., Gatterbauer, W., Kimelfeld, B., and Riedewald, M. (2023). **Tractable orders for direct access to ranked answers of conjunctive queries.** *TODS*, 48(1).

Carmeli, N., Zeevi, S., Berkholz, C., Conte, A., Kimelfeld, B., and Schweikardt, N. (2022). Answering (unions of) conjunctive queries using random access and random-order enumeration.

TODS, 47(3).

David, C., Francis, N., and Marsault, V. (2024). **Distinct shortest walk enumeration for rpqs.**

In PODS.

Durand, A. and Grandjean, E. (2007).

First-order queries on structures of bounded degree are computable with constant delay.

TOCL, 8(4).

Eldar, I., Carmeli, N., and Kimelfeld, B. (2024). **Direct access for answers to conjunctive queries with aggregation.** In *ICDT*. Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018). **Constant delay algorithms for regular document spanners.** In *PODS*.

Kara, A., Nikolic, M., Olteanu, D., and Zhang, H. (2023).

Conjunctive queries with free access patterns under updates. In *ICDT*.

Kazana, W. and Segoufin, L. (2011).

First-order query evaluation on structures of bounded degree.

Logical Methods in Computer Science, 7.

Kazana, W. and Segoufin, L. (2013).

Enumeration of monadic second-order queries on trees.

TOCL, 14(4).

Lohrey, M. and Schmid, M. L. (2024).

Enumeration for MSO-queries on compressed trees.

In PODS.

To appear. arXiv preprint arXiv:2403.03067.

Martens, W. and Trautner, T. (2018).

Evaluation and enumeration problems for regular path queries. In *ICDT.*

Muñoz, M. and Riveros, C. (2022).

Streaming enumeration on nested documents.

In *ICDT*.

Muñoz, M. and Riveros, C. (2023).

Constant-delay enumeration for SLP-compressed documents.

In ICDT.

Niewerth, M. and Segoufin, L. (2018).

Enumeration of MSO queries on strings with constant delay and logarithmic updates. In *PODS*.

Olteanu, D. and Závodnỳ, J. (2015).

Size bounds for factorised representations of query results.

TODS, 40(1).

Peterfreund, L. (2021).

Grammars for document spanners.

In *ICDT*.

Riveros, C., Van Sint Jan, N., and Vrgoč, D. (2023). **Rematch: A novel regex engine for finding all matches.** *PVLDB*, 16(11).

Schmid, M. L. and Schweikardt, N. (2021).

Spanner evaluation over SLP-compressed documents.

In PODS.

Schweikardt, N., Segoufin, L., and Vigny, A. (2022).

Enumeration for FO queries over nowhere dense graphs.

JACM, 69(3).

Tziavelis, N., Ajwani, D., Gatterbauer, W., Riedewald, M., and Yang, X. (2020). **Optimal algorithms for ranked enumeration of answers to full conjunctive queries.** *PVLDB*, 13(9).

Yannakakis, M. (1981). Algorithms for acyclic database schemes.

In VLDB, volume 81.

Enumeration for CQs with projections

General CQs extend **full CQs** by making it possible to **project away** some variables:

```
Q(x,z) : \exists y \text{ Follows}(x,y) \land \text{Follows}(y,z)
```

Q(x,z): $\exists y \text{ Follows}(x,y) \land \text{Follows}(y,z)$ Join tree: Follows(x,y) - Follows(y,z)

Q(x,z): $\exists y \text{ Follows}(x,y) \land \text{Follows}(y,z)$ Join tree: Follows(x,y) - Follows(y,z)

A CQ is **free-connex** if it is acyclic and admits a **join tree** which is **free-connex**: there is a **connected subtree** of tree nodes whose union is **exactly** the free variables

ightarrow In particular, the **free-connex full CQs** are simply the **acyclic CQs**

Q(x,z): $\exists y \text{ Follows}(x,y) \land \text{Follows}(y,z)$ Join tree: Follows(x,y) - Follows(y,z)

A CQ is **free-connex** if it is acyclic and admits a **join tree** which is **free-connex**: there is a **connected subtree** of tree nodes whose union is **exactly** the free variables

 $\rightarrow\,$ In particular, the <code>free-connex full CQs</code> are simply the <code>acyclic CQs</code>

Theorem ([Bagan et al., 2007])

For any fixed free-connex CQ **Q**, given a database **D**, we can enumerate **Q**(**D**) with linear preprocessing and constant delay

Q(x,z): $\exists y \text{ Follows}(x,y) \land \text{Follows}(y,z)$ Join tree: Follows(x,y) - Follows(y,z)

A CQ is **free-connex** if it is acyclic and admits a **join tree** which is **free-connex**: there is a **connected subtree** of tree nodes whose union is **exactly** the free variables

 $\rightarrow\,$ In particular, the <code>free-connex full CQs</code> are simply the <code>acyclic CQs</code>

Theorem ([Bagan et al., 2007])

For any fixed free-connex CQ **Q**, given a database **D**, we can enumerate **Q**(**D**) with **linear preprocessing** and **constant delay**

This can also be shown via deterministic normal d-representations

- The query is **minimized**: can always be done without loss of generality
- The query is without self joins: uses only each relation name once
 - $\rightarrow Q(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z) but not Q(x, y, z): Follows $(x, y) \land$ Follows(y, z)

- The query is **minimized**: can always be done without loss of generality
- The query is without self joins: uses only each relation name once
 - $\rightarrow Q(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z) but not Q(x, y, z): Follows $(x, y) \land$ Follows(y, z)

Then **conditional lower bounds** are known:

Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])

Let **Q** be a **self-join free CQ** enumerable with linear preprocessing and constant delay:

- The query is **minimized**: can always be done without loss of generality
- The query is without self joins: uses only each relation name once
 - $\rightarrow Q(x, y, z)$: Follows $(x, y) \land$ Subscribed(y, z) but not Q(x, y, z): Follows $(x, y) \land$ Follows(y, z)

Then **conditional lower bounds** are known:

Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])

Let **Q** be a **self-join free CQ** enumerable with linear preprocessing and constant delay:

• If **Q** is **not acyclic**, then for some **k** we can detect **k-hypercliques** in linear time

ightarrow for ${m k}=$ 3: we can find triangles in undirected graphs in linear time

- The query is **minimized**: can always be done without loss of generality
- The query is without self joins: uses only each relation name once
 - $\rightarrow Q(x, y, z) : Follows(x, y) \land Subscribed(y, z) \text{ but not } Q(x, y, z) : Follows(x, y) \land Follows(y, z)$

Then **conditional lower bounds** are known:

Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])

Let **Q** be a **self-join free CQ** enumerable with linear preprocessing and constant delay:

- If **Q** is **not acyclic**, then for some **k** we can detect **k-hypercliques** in linear time
 - $\rightarrow\,$ for ${\it k}={\rm 3}:$ we can find triangles in undirected graphs in linear time
- If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n²)
 - $\rightarrow\,$ we can even do it on sparse matrices

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the **upper bound** (Yannakakis's algorithm)

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

- No problem with self-joins in the **upper bound** (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

- No problem with self-joins in the **upper bound** (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries **easier**!

- No problem with self-joins in the upper bound (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries **easier**!

Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') $x \longrightarrow y \qquad u \longrightarrow u'$ $\bigcap_{t} \qquad \bigvee_{z} \qquad w \longrightarrow v'$ $t \qquad z \qquad w \longrightarrow w'$ (Evample from [Derkholz et al. 2000]

(Example from [Berkholz et al., 2020])

- No problem with self-joins in the **upper bound** (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries **easier**!

Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') $x \longrightarrow y \qquad u \longrightarrow u'$ Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(x, y), R(y, z), R(z, x), R(u, u'), R(v, v'), R(w, w') Q(t, x, y, z, u, u', v, v', w, w') : R(t, t), R(t, y), R(

• Q is easy: intuitively, the results from the last 3 atoms easily "reveal" all triangles

- No problem with self-joins in the **upper bound** (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries **easier**!

- Q is easy: intuitively, the results from the last 3 atoms easily "reveal" all triangles
- Q' obtained from Q by distinguishing every atom is hard (can find triangles)

- No problem with self-joins in the **upper bound** (Yannakakis's algorithm)
- Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries **easier**!

- **Q** is **easy**: intuitively, the results from the last 3 atoms easily "reveal" all triangles
- Q' obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about unions of CQs?

$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

What about unions of CQs?

$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

- The union of **easy CQs** is always easy
 - ightarrow Only subtlety is removing **duplicates**, but there are constantly many

$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

- The union of **easy CQs** is always easy
 - $\rightarrow~$ Only subtlety is removing <code>duplicates</code>, but there are constantly many
- The union of an easy CQ and a hard CQ can be easy!

$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

- The union of **easy CQs** is always easy
 - ightarrow Only subtlety is removing **duplicates**, but there are constantly many
- The union of an easy CQ and a hard CQ can be easy!
- The union of a hard CQ and a hard CQ can be easy!

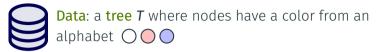
$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

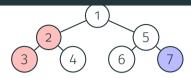
- The union of **easy CQs** is always easy
 - ightarrow Only subtlety is removing **duplicates**, but there are constantly many
- The union of an easy CQ and a hard CQ can be easy!
- The union of a hard CQ and a hard CQ can be easy!
- This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

$$Q(x,z): (\exists y \text{ Follows}(x,y) \land \text{Subscribed}(y,z)) \lor \text{Subscribed}(z,x)$$

- The union of **easy CQs** is always easy
 - ightarrow Only subtlety is removing **duplicates**, but there are constantly many
- The union of an easy CQ and a hard CQ can be easy!
- The union of a hard CQ and a hard CQ can be easy!
- This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

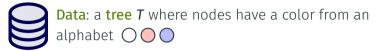




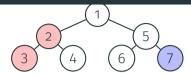
Query Q in monadic second-order logic (MSO)

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y" Equivalent formalism: tree automata

"Find the pairs of a pink node and a blue node?" $Q(x,y) := P_{\odot}(x) \land P_{\odot}(y)$

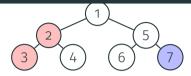


- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y" Equivalent formalism: tree automata



"Find the pairs of a pink node and a blue node?" $Q(x,y) := P_{\odot}(x) \land P_{\odot}(y)$

results: (2,7), (3,7)



Query Q in monadic second-order logic (MSO)

- $\cdot P_{\odot}(x)$ means "x is blue"
- $\cdot x \rightarrow y$ means "x is the parent of y" Equivalent formalism: tree automata

"Find the pairs of a pink node and a blue node?"
Q(x,y) := P_⊙(x) ∧ P_⊙(y)

Result: Enumerate all pairs (a, b) of nodes of T such that Q(a, b) holds

results: (2,7), (3,7)

Data complexity: Measure efficiency as a function of *T* (the query *Q* is fixed)

Results for MSO on trees

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with **linear-time preprocessing** and **constant delay**.

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with **linear-time preprocessing** and **constant delay**.

We can reprove this via factorized representations:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

For any fixed bottom-up deterministic tree automaton A with "captures", given a tree T, we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]

We can enumerate the answers of MSO queries on trees with **linear-time preprocessing** and **constant delay**.

We can reprove this via factorized representations:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

For any fixed bottom-up deterministic tree automaton A with "captures", given a tree T, we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Note that the d-representation is **no longer normal**, but we show with some effort:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP'17)

For any fixed schema $S = (x_1, ..., x_k)$, the tuples of a deterministic d-representation with schema S can be enumerated with linear preprocessing and constant delay

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Query: a pattern P given as a regular expression

 $P := \Box [a-z0-9.]^* @ [a-z0-9.]^* \Box$

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

Query: a pattern P given as a regular expression

 $P := \Box [a-z0-9.]^* @ [a-z0-9.]^* \Box$

Output: the list of **substrings** of **T** that match **P**:

 $[186,200\rangle,\ [483,500\rangle,\ \ldots$

Data: a text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging: a3mm.net/blog Git: a3mm.net/git ...

Query: a pattern P given as a regular expression

 $P := \Box [a-z0-9.]^* @ [a-z0-9.]^* \Box$


```
[186,200\rangle,\ [483,500\rangle,\ \ldots
```

Goal:

- be very efficient in T (constant-delay)
- be reasonably efficient in P (polynomial-time)

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19; see also PODS'19)

We can enumerate all matches of an input **nondeterministic automaton with captures** on an input **text** with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton

Theorem (A., Bourhis, Mengel, Niewerth, ICDT'19; see also PODS'19)

We can enumerate all matches of an input **nondeterministic automaton with captures** on an input **text** with

- Preprocessing linear in the text and polynomial in the automaton
- Delay constant in the text and polynomial in the automaton
- Generalizes earlier result on deterministic automata [Florenzano et al., 2018]
- To make the algorithm polynomial in the **(nondeterministic) automaton**, we need efficient enumeration for a certain kind of **non-deterministic d-representations**

Efficient enumeration is now being studied in **many settings** in data management (sometimes with weaker guarantees than linear preprocessing and constant delay):

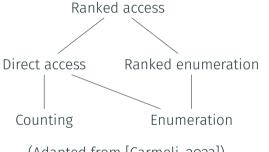
- For regular path queries [Martens and Trautner, 2018, David et al., 2024]
- For compressed structures:
 - Compressed trees [Lohrey and Schmid, 2024]
 - SLP-compressed documents [Schmid and Schweikardt, 2021, Muñoz and Riveros, 2023]
- For visibly pushdown languages [Muñoz and Riveros, 2022]
- For **context-free languages** with annotations [Peterfreund, 2021], [A., Jachiet, Muñoz, Riveros, 2023]

There are also software implementations [Riveros et al., 2023]

Introduction: From enumeration to more general tasks

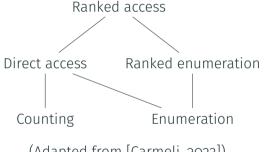
Sometimes, we want more than enumerating query results in an unspecified order:

Sometimes, we want more than enumerating query results in an unspecified order:



(Adapted from [Carmeli, 2023])

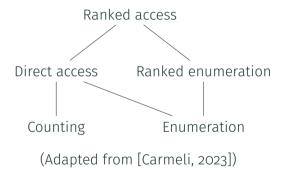
Sometimes, we want **more** than enumerating query results in an unspecified order:



(Adapted from [Carmeli, 2023])

- **Direct access**: getting the *i*-th answer
- **Counting** the answers
- Ranked enumeration: enumerating in a prescribed order
- Ranked access: getting the *i*-th tuple in a prescribed order

Sometimes, we want more than enumerating query results in an unspecified order:



- Direct access: getting the *i*-th answer
- Counting the answers
- Ranked enumeration: enumerating in a prescribed order
- **Ranked access**: getting the *i*-th tuple in a prescribed order

Another question: maintain an enumeration structure under updates to the data

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]
 - Extensions to CQs with aggregation [Eldar et al., 2024]

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]
 - Extensions to CQs with **aggregation** [Eldar et al., 2024]
 - Extensions to CQs with **negated atoms** [Capelli and Irwin, 2024]

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]
 - Extensions to CQs with aggregation [Eldar et al., 2024]
 - Extensions to CQs with negated atoms [Capelli and Irwin, 2024]
- Other directions:
 - Other ranking functions defined by dioids [Tziavelis et al., 2020]

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]
 - Extensions to CQs with **aggregation** [Eldar et al., 2024]
 - Extensions to CQs with **negated atoms** [Capelli and Irwin, 2024]
- Other directions:
 - Other ranking functions defined by dioids [Tziavelis et al., 2020]
 - Random access and random-order enumeration [Carmeli et al., 2022]

For CQs and UCQs:

- Most works study self-join-free CQs under **lexicographic orders** and aim for **logarithmic** access time or delay:
 - Characterization of tractable orders for CQs [Carmeli et al., 2023]
 - Characterization of **optimal preprocessing time** for polylog direct access [Bringmann et al., 2022]
 - Extensions to CQs with aggregation [Eldar et al., 2024]
 - Extensions to CQs with negated atoms [Capelli and Irwin, 2024]
- Other directions:
 - Other ranking functions defined by dioids [Tziavelis et al., 2020]
 - Random access and random-order enumeration [Carmeli et al., 2022]

For **MSO** queries on trees:

- Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
- Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

• Say the input data is often modified; we restart the enumeration after each update

- Say the input data is often modified; we restart the enumeration after each update
- Can we avoid **re-running** the preprocessing phase from scratch?

- Say the input data is often **modified**; we **restart** the enumeration after each update
- Can we avoid **re-running** the preprocessing phase from scratch?

For self-join-free CQs:

- Notion of **q-hierarchical CQs** that admit linear preprocessing and constant delay enumeration and **constant-time updates**; lower bounds [Berkholz et al., 2017]
- Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

- Say the input data is often **modified**; we **restart** the enumeration after each update
- Can we avoid **re-running** the preprocessing phase from scratch?

For self-join-free CQs:

- Notion of **q-hierarchical CQs** that admit linear preprocessing and constant delay enumeration and **constant-time updates**; lower bounds [Berkholz et al., 2017]
- Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

- On words, linear preprocessing and constant delay enumeration is possible under insert/delete updates [Niewerth and Segoufin, 2018]
- On **trees**, linear preprocessing and constant delay enumeration is possible under **substitution updates** [A., Bourhis, Mengel, 2018] and possibly more