
Efficient Enumeration of Query Answers via Circuits

Antoine Amarilli
October 17, 2024

Inria Lille

1/21

Query evaluation

Central problem in database theory and practice: query evaluation

Database

Database
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Query

?

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”
Q(x, z) : ∃y F(x, y) ∧ F(y, z)

Results

Results

x z

Alice Carol
Alice Dave
Bob Eve

2/21

Query evaluation

Central problem in database theory and practice: query evaluation

Database

Database
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Query

?

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”
Q(x, z) : ∃y F(x, y) ∧ F(y, z)

Results

Results

x z

Alice Carol
Alice Dave
Bob Eve

2/21

Query evaluation

Central problem in database theory and practice: query evaluation

Database

Database
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Query

?

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”
Q(x, z) : ∃y F(x, y) ∧ F(y, z)

Results

Results

x z

Alice Carol
Alice Dave
Bob Eve

2/21

Query evaluation

Central problem in database theory and practice: query evaluation

Database

Database
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Query

?

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”
Q(x, z) : ∃y F(x, y) ∧ F(y, z)

Results

Results

x z

Alice Carol
Alice Dave
Bob Eve

2/21

Query evaluation

Central problem in database theory and practice: query evaluation

Database

Database
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Query

?

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”

Query
“Find all pairs of users x and z
such that x follows someone

who follows z”
Q(x, z) : ∃y F(x, y) ∧ F(y, z)

Results

Results

x z

Alice Carol
Alice Dave
Bob Eve

2/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)

• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D

• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation (QE)
• Input 1: query Q
• Input 2: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data

→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation for Q (QE(Q))
• Input 1: query Q
• Input: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data

→ Motivation: the data is usually much larger than the query

3/21

Combined complexity and data complexity

How to study the computational complexity of query evaluation?

• Problem of query evaluation for Q (QE(Q))
• Input 1: query Q
• Input: database D
• Output: result Q(D)

Two ways to measure complexity:

• Combined complexity: the query and database are given as input

• Data complexity: the query is fixed, the input is only the data
→ Motivation: the data is usually much larger than the query

3/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?

• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z

• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm:

also Θ(n2)!

• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm: also Θ(n2)!
• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm: also Θ(n2)!
• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?

→ We need a better measure of complexity

4/21

Data complexity for large output size

• Consider the query Q: “Find all users x, y, and z such that x follows y and y follows z”
Q(x, y, z) : F(x, y) ∧ F(y, z)

• Assume the input database D contains n “follows” facts |D| = n

• What is the data complexity of Q as a function of n?
• Trivial algorithm: check every pair always Θ(n2)

• Better algorithm: also Θ(n2)!
• Check which y have a follower x and followee z
• For each such y, output all matching pairs of x and z

• Problem: we can’t beat the result size which is Ω(n2) in general

→ In which sense is the second algorithm preferable?
→ We need a better measure of complexity

4/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size

• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|)

Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol

Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave

Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results

→ Tests if there is an answer in time O(|D|)

→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)

→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)

→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Enumeration algorithms

How to measure the running time of algorithms producing a large collection of answers?

• Idea 1: make the complexity depend on the result size
• Idea 2: make the algorithm produce results in streaming

check which y have
a follower and followee

for each y produce
all pairs of x and z

Database D

Step 1:
Preprocessing

in O(|D|) Indexed
data

Step 2:
Enumeration

in O(1) per result

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Results
→ Tests if there is an answer in time O(|D|)
→ Computes the first k answers in time O(|D|+ k)
→ Computes all answers in time O(|D|+m) for m the number of answers

5/21

Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

6/21

Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

6/21

Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

6/21

Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

6/21

Idea: Factorized representations (aka circuits)

• During preprocessing, compute a factorized representation of the answers
• During enumeration, decompress this factorized representation

Q(x, y, z) : F(x, y) ∧ F(y, z)

Database D
Follows

from to

Alice Bob
Bob Carol
Bob Dave
Carol Eve

Output Q(D)

x y z

Alice Bob Carol
Alice Bob Dave
Bob Carol Eve

Factorized representation of Q(D)

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

6/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results

7/21

Advantage of factorized representations: Modularity

WITHOUT factorized representations:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

WITH factorized representations:

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

Input Compilation

×

α :4

β :6

∪

β :7

×

α :4

β :6

∪

β :7 Enumeration

A B C

a b c
a b’ c

Results
7/21

Roadmap of the talk

Results on enumeration for query evaluation, especially via factorized representations

• Conjunctive queries (CQs) and extensions:
→ Yannakakis’s algorithm for acyclic and free-connex conjunctive queries

• Other settings: Queries defined by automata / monadic second-order logic

• Summary and future work

8/21

Roadmap of the talk

Results on enumeration for query evaluation, especially via factorized representations

• Conjunctive queries (CQs) and extensions:
→ Yannakakis’s algorithm for acyclic and free-connex conjunctive queries

• Other settings: Queries defined by automata / monadic second-order logic

• Summary and future work

8/21

Roadmap of the talk

Results on enumeration for query evaluation, especially via factorized representations

• Conjunctive queries (CQs) and extensions:
→ Yannakakis’s algorithm for acyclic and free-connex conjunctive queries

• Other settings: Queries defined by automata / monadic second-order logic

• Summary and future work

8/21

Roadmap of the talk

Results on enumeration for query evaluation, especially via factorized representations

• Conjunctive queries (CQs) and extensions:
→ Yannakakis’s algorithm for acyclic and free-connex conjunctive queries

• Other settings: Queries defined by automata / monadic second-order logic

• Summary and future work

8/21

Table of contents

Conjunctive queries

Other settings

Summary and future work

9/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Conjunctive query basics

• Fix the relation names (the database tables) and their arity (number of columns)
e.g., Follows (arity-2), Subscribed (arity-2)

• A full conjunctive query (CQ) is a conjunction of atoms
Q1(x, y) : Follows(x, y)

Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• The answers of a CQ Q(x1, . . . , xn) on a database D are the tuples of domain
elements (a1, . . . ,an) such that the corresponding facts exist in the database

Follows

a b
a b′

a′ b′

a′′ b′′

Subscribed

b c
b c′

b′ c′

• Query Q2(x, y, z) : Follows(x, y) ∧ Subscribed(y, z)

• Database D on the left

• There are four answers:
(a,b, c), (a,b, c′), (a,b′, c′), (a′,b′, c′)

10/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)

x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)

x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)

11/21

Cyclic vs acyclic CQs

Assuming that all relations are arity-2, let’s distinguish acyclic CQs and cyclic CQs

Acyclic CQs: the Gaifman graph is acyclic

Q1(x, y, z) : F(x, y), S(y, z)
x y z x y z

Q2(x, y) : F(x, x), S(x, y), F(y, x)

x y x y

Cyclic CQs:

Q3(x, z) : F(x, y), F(y, z), F(z, x)
x y

z

x y

z

Intuition: the cyclic queries seem
harder (e.g., searching for a triangle in
an input directed graph)

We can generalize acyclic CQs to arbitrary arity (= α-acyclic Gaifman hypergraph)
11/21

Join trees for acyclic CQs

Fact: a CQ is acyclic iff it has a join tree:

• The vertices are the atoms of the query

• For each variable, its occurrences form a connected subtree
• (For experts: width-1 generalized hypertree decomposition of the Gaifman hypergraph)

Take the query: Q(w, x, y, z) : Follows(w, x) ∧ Subscribed(x, y) ∧ Follows(y, z)

Subscribed(x, y)

Follows(w, x) Follows(y, z)

12/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result

13/21

Yannakakis’s algorithm for acyclic CQs

Theorem ([Yannakakis, 1981])
Given an acyclic CQ Q and database D, we can compute Q(D) in time O(|Q| × (|D|+m)),
where m is the output size

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

• On every node n, write a copy Rn of the
relation of the corresponding atom

• Do semijoins on the tree bottom-up:
→ On every node n, for each child n′, keep only

the tuples of Rn that have a match in Rn′

• Do semijoins on the tree top-down

• Join together all relations to get the full result
13/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union

14/21

Factorized representations : d-representations [Olteanu and Závodnỳ, 2015]

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

x y z

A B C
A B D
B C E

• Directed acyclic graph of gates

• Output gate:

• Variable gates ⟨x : a⟩: represent a
single-tuple and single-column relation

• Relational product gates: ×
(input domains are disjoint)

• Union gates: ∪
(inputs have same domains)

Conditions on d-representations:

• Deterministic: all unions are disjoint

• Normal: no union is an input to a union
14/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩:

enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t

enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations

Task: Enumerate the tuples of the relation R(g) captured by a gate g

Base case: variable ⟨x : a⟩: enumerate ⟨x : a⟩ and stop

∪-gate

∪

g g′

Union: enumerate R(g) and then
enumerate R(g′)

Determinism: no duplicates

×-gate

×

g g′

Product: enumerate R(g) and for each result t
enumerate R(g′) and for each result t′

concatenate t and t′

15/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time

16/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time

16/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time

16/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time

16/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time

16/21

Enumerating tuples for normal deterministic d-representations (2)

Theorem ([Olteanu and Závodnỳ, 2015], Theorem 4.11)
For any fixed schema S = (x1, . . . , xk), the tuples of a normal deterministic
d-representation with schema S can be enumerated in constant delay

∪

×

⟨x : A⟩ ⟨y : B⟩ ∪

⟨z : C⟩ ⟨z : D⟩

×

⟨x : B⟩ ⟨y : C⟩ ⟨z : E⟩

Delay analysis:

• Every product gate nontrivially splits the
assignment to produce

• The inputs to union gates are not union gates
(the representation is normal)

• Hence, the trace (gates visited to get a tuple)
has size linear in the tuple arity, hence constant

Note: normal deterministic d-representations also allow us to:

• Count the number of solutions in linear time
• Access the i-th solution, given i, in logarithmic time 16/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Factorized representations for full acyclic CQs

Theorem
Given an acyclic CQ Q and database D, we can compute a deterministic normal
d-representation of Q(D) in time O(|Q| × |D|) and hence enumerate Q(D) with linear
preprocessing and constant delay

Subscribed(x, y)

Follows(w, x) Follows(y, z)

x y
b a
b a′
b a′′
b′ a′

w x
a b
a b′′
a′′ b′

y z
a b
a b′′
a′′ b′

∪
x = b

⟨w : a⟩

∪

⟨z : b′⟩

y = a′′

∪
y = a

⟨z : b⟩⟨z : b′′⟩

∪

×

×

⟨x : b⟩ ⟨y : a⟩

×

×

⟨x : b⟩ ⟨y : a′′⟩

17/21

Table of contents

Conjunctive queries

Other settings

Summary and future work

18/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]

• For monadic second-order logic (MSO) on trees
[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Other settings

• So far we have seen results on enumeration for CQs and UCQs

• Efficient enumeration is also possible for other query languages, especially when
restricting the input data

• For first-order logic (FO) on bounded-degree graphs
[Durand and Grandjean, 2007, Kazana and Segoufin, 2011]

• For FO on nowhere-dense graphs [Schweikardt et al., 2022]
• For monadic second-order logic (MSO) on trees

[Bagan, 2006, Kazana and Segoufin, 2013]

→ Ask me if you want to know more!

19/21

Table of contents

Conjunctive queries

Other settings

Summary and future work

20/21

Summary and future work

• We have seen enumeration algorithms to produce query answers in streaming
→ Ideally, we want linear preprocessing and constant delay

• Modular approach: compute a factorized representation of the results

• Tractable enumeration is possible for free-connex CQs and for MSO queries on trees

• Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

• Enumerating diverse / representative solutions?

• Understanding the tradeoff between preprocessing time, memory, and delay?

• Understanding how the update complexity depends on the specific query posed?

• Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Thanks for your attention!

21/21

Summary and future work

• We have seen enumeration algorithms to produce query answers in streaming
→ Ideally, we want linear preprocessing and constant delay

• Modular approach: compute a factorized representation of the results

• Tractable enumeration is possible for free-connex CQs and for MSO queries on trees

• Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

• Enumerating diverse / representative solutions?

• Understanding the tradeoff between preprocessing time, memory, and delay?

• Understanding how the update complexity depends on the specific query posed?

• Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Thanks for your attention!

21/21

Summary and future work

• We have seen enumeration algorithms to produce query answers in streaming
→ Ideally, we want linear preprocessing and constant delay

• Modular approach: compute a factorized representation of the results

• Tractable enumeration is possible for free-connex CQs and for MSO queries on trees

• Ongoing research: ranked enumeration, ranked access, incremental maintenance...

Other broad directions for further research:

• Enumerating diverse / representative solutions?

• Understanding the tradeoff between preprocessing time, memory, and delay?

• Understanding how the update complexity depends on the specific query posed?

• Can we enumerate large objects by editing previous solutions? (e.g., Gray code)

Thanks for your attention!
21/21

References i

Amarilli, A., Bourhis, P., Capelli, F., and Monet, M. (2024).
Ranked enumeration for MSO on trees via knowledge compilation.
In ICDT.
Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A circuit-based approach to efficient enumeration.
In ICALP.
Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.

https://arxiv.org/abs/2310.00731
https://databasetheory.org/ICDT/what-is-icdt
https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/

References ii

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-delay enumeration for nondeterministic document spanners.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on trees with tractable combined complexity and efficient updates.
In PODS.
Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient enumeration for annotated grammars.
In PODS.

https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2201.00549

References iii

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
Bagan, G., Durand, A., and Grandjean, E. (2007).
On acyclic conjunctive queries and constant delay enumeration.
In CSL.
Berkholz, C., Gerhardt, F., and Schweikardt, N. (2020).
Constant delay enumeration for conjunctive queries: a tutorial.
ACM SIGLOG News, 7(1).

https://webusers.imj-prg.fr/~arnaud.durand/papers/BDGlongversion.pdf

References iv

Berkholz, C., Keppeler, J., and Schweikardt, N. (2017).
Answering conjunctive queries under updates.
In PODS.
Bourhis, P., Grez, A., Jachiet, L., and Riveros, C. (2021).
Ranked enumeration of MSO logic on words.
In ICDT.
Bringmann, K., Carmeli, N., and Mengel, S. (2022).
Tight fine-grained bounds for direct access on join queries.
In PODS.

https://arxiv.org/pdf/1702.06370
https://drops.dagstuhl.de/opus/volltexte/2021/13728/

References v

Capelli, F. and Irwin, O. (2024).
Direct access for conjunctive queries with negation.
In ICDT.
Carmeli, N. (2022).
Answering unions of conjunctive queries with ideal time guarantees (invited talk).
In Olteanu, D. and Vortmeier, N., editors, ICDT, volume 220 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

References vi

Carmeli, N. (2023).
Accessing answers to conjunctive queries with ideal time guarantees (abstract of
invited talk).
In Kutz, O., Lutz, C., and Ozaki, A., editors, DL, volume 3515 of CEUR Workshop
Proceedings. CEUR-WS.org.

Carmeli, N. and Kröll, M. (2021).
On the enumeration complexity of unions of conjunctive queries.
TODS, 46(2).

References vii

Carmeli, N. and Segoufin, L. (2023).
Conjunctive queries with self-joins, towards a fine-grained enumeration complexity
analysis.
In PODS.
Carmeli, N., Tziavelis, N., Gatterbauer, W., Kimelfeld, B., and Riedewald, M. (2023).
Tractable orders for direct access to ranked answers of conjunctive queries.
TODS, 48(1).
Carmeli, N., Zeevi, S., Berkholz, C., Conte, A., Kimelfeld, B., and Schweikardt, N. (2022).
Answering (unions of) conjunctive queries using random access and random-order
enumeration.
TODS, 47(3).

References viii

David, C., Francis, N., and Marsault, V. (2024).
Distinct shortest walk enumeration for rpqs.
In PODS.
Durand, A. and Grandjean, E. (2007).
First-order queries on structures of bounded degree are computable with constant
delay.
TOCL, 8(4).
Eldar, I., Carmeli, N., and Kimelfeld, B. (2024).
Direct access for answers to conjunctive queries with aggregation.
In ICDT.

https://webusers.imj-prg.fr/~arnaud.durand/papers/ADEGtocl.pdf
https://webusers.imj-prg.fr/~arnaud.durand/papers/ADEGtocl.pdf

References ix

Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.
Kara, A., Nikolic, M., Olteanu, D., and Zhang, H. (2023).
Conjunctive queries with free access patterns under updates.
In ICDT.
Kazana, W. and Segoufin, L. (2011).
First-order query evaluation on structures of bounded degree.
Logical Methods in Computer Science, 7.

https://arxiv.org/abs/1803.05277
https://lmcs.episciences.org/903

References x

Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Lohrey, M. and Schmid, M. L. (2024).
Enumeration for MSO-queries on compressed trees.
In PODS.
To appear. arXiv preprint arXiv:2403.03067.

Martens, W. and Trautner, T. (2018).
Evaluation and enumeration problems for regular path queries.
In ICDT.

https://hal.inria.fr/hal-00916400/file/enummso.pdf

References xi

Muñoz, M. and Riveros, C. (2022).
Streaming enumeration on nested documents.
In ICDT.
Muñoz, M. and Riveros, C. (2023).
Constant-delay enumeration for SLP-compressed documents.
In ICDT.
Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.

https://drops.dagstuhl.de/opus/volltexte/2022/15893/
https://arxiv.org/abs/2209.12301
https://hal.inria.fr/hal-01895796/file/enum-update-words.pdf

References xii

Olteanu, D. and Závodnỳ, J. (2015).
Size bounds for factorised representations of query results.
TODS, 40(1).
Peterfreund, L. (2021).
Grammars for document spanners.
In ICDT.
Riveros, C., Van Sint Jan, N., and Vrgoč, D. (2023).
Rematch: A novel regex engine for finding all matches.
PVLDB, 16(11).

https://www.cs.ox.ac.uk/dan.olteanu/papers/oz-tods15.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/13715/

References xiii

Schmid, M. L. and Schweikardt, N. (2021).
Spanner evaluation over SLP-compressed documents.
In PODS.
Schweikardt, N., Segoufin, L., and Vigny, A. (2022).
Enumeration for FO queries over nowhere dense graphs.
JACM, 69(3).
Tziavelis, N., Ajwani, D., Gatterbauer, W., Riedewald, M., and Yang, X. (2020).
Optimal algorithms for ranked enumeration of answers to full conjunctive queries.
PVLDB, 13(9).

10.4230/LIPIcs.ICDT.2021.4
https://www.di.ens.fr/~segoufin/Papers/Mypapers/enum-nowheredense.pdf

References xiv

Yannakakis, M. (1981).
Algorithms for acyclic database schemes.
In VLDB, volume 81.

Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z)

Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations

Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z) Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations

Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z) Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations

Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z) Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations

Enumeration for CQs with projections

General CQs extend full CQs by making it possible to project away some variables:

Q(x, z) : ∃y Follows(x, y) ∧ Follows(y, z) Join tree: Follows(x, y) — Follows(y, z)

A CQ is free-connex if it is acyclic and admits a join tree which is free-connex:
there is a connected subtree of tree nodes whose union is exactly the free variables

→ In particular, the free-connex full CQs are simply the acyclic CQs

Theorem ([Bagan et al., 2007])
For any fixed free-connex CQ Q, given a database D, we can enumerate Q(D) with linear
preprocessing and constant delay

This can also be shown via deterministic normal d-representations

Lower bounds for CQ enumeration

What about enumeration for non-free-connex CQs? Let us assume:

• The query is minimized: can always be done without loss of generality
• The query is without self joins: uses only each relation name once

→ Q(x, y, z) : Follows(x, y)∧ Subscribed(y, z) but not Q(x, y, z) : Follows(x, y)∧ Follows(y, z)

Then conditional lower bounds are known:
Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])
Let Q be a self-join free CQ enumerable with linear preprocessing and constant delay:

• If Q is not acyclic, then for some k we can detect k-hypercliques in linear time
→ for k = 3: we can find triangles in undirected graphs in linear time

• If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n2)

→ we can even do it on sparse matrices

Lower bounds for CQ enumeration

What about enumeration for non-free-connex CQs? Let us assume:

• The query is minimized: can always be done without loss of generality
• The query is without self joins: uses only each relation name once

→ Q(x, y, z) : Follows(x, y)∧ Subscribed(y, z) but not Q(x, y, z) : Follows(x, y)∧ Follows(y, z)

Then conditional lower bounds are known:
Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])
Let Q be a self-join free CQ enumerable with linear preprocessing and constant delay:

• If Q is not acyclic, then for some k we can detect k-hypercliques in linear time
→ for k = 3: we can find triangles in undirected graphs in linear time

• If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n2)

→ we can even do it on sparse matrices

Lower bounds for CQ enumeration

What about enumeration for non-free-connex CQs? Let us assume:

• The query is minimized: can always be done without loss of generality
• The query is without self joins: uses only each relation name once

→ Q(x, y, z) : Follows(x, y)∧ Subscribed(y, z) but not Q(x, y, z) : Follows(x, y)∧ Follows(y, z)

Then conditional lower bounds are known:
Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])
Let Q be a self-join free CQ enumerable with linear preprocessing and constant delay:

• If Q is not acyclic, then for some k we can detect k-hypercliques in linear time
→ for k = 3: we can find triangles in undirected graphs in linear time

• If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n2)

→ we can even do it on sparse matrices

Lower bounds for CQ enumeration

What about enumeration for non-free-connex CQs? Let us assume:

• The query is minimized: can always be done without loss of generality
• The query is without self joins: uses only each relation name once

→ Q(x, y, z) : Follows(x, y)∧ Subscribed(y, z) but not Q(x, y, z) : Follows(x, y)∧ Follows(y, z)

Then conditional lower bounds are known:
Theorem ([Bagan et al., 2007, Carmeli and Segoufin, 2023])
Let Q be a self-join free CQ enumerable with linear preprocessing and constant delay:

• If Q is not acyclic, then for some k we can detect k-hypercliques in linear time
→ for k = 3: we can find triangles in undirected graphs in linear time

• If Q is acyclic but not free-connex, then we can multiply n-by-n matrices in O(n2)

→ we can even do it on sparse matrices

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)

• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles

• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about CQs with self-joins?

Can we lift the self-join-freeness hypothesis?

• No problem with self-joins in the upper bound (Yannakakis’s algorithm)
• Queries with self-joins do not get harder if we distinguish every atom

However, the presence of self-joins can make queries easier!

Q(t, x, y, z,u,u′, v, v′,w,w′) : R(t, t),R(x, y),R(y, z),R(z, x),R(u,u′),R(v, v′),R(w,w′)

t

x y

z

u u′
v v′
w w′ (Example from [Berkholz et al., 2020])

• Q is easy: intuitively, the results from the last 3 atoms easily “reveal“ all triangles
• Q′ obtained from Q by distinguishing every atom is hard (can find triangles)

Open problem: dichotomy on CQs with self-joins? see [Carmeli and Segoufin, 2023]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

What about unions of CQs?

Union of CQs (UCQs): a disjunction of conjunctive queries

Q(x, z) :
(
∃y Follows(x, y) ∧ Subscribed(y, z)

)
∨ Subscribed(z, x)

• The union of easy CQs is always easy
→ Only subtlety is removing duplicates, but there are constantly many

• The union of an easy CQ and a hard CQ can be easy!

• The union of a hard CQ and a hard CQ can be easy!

• This can happen even if each CQ does not have self-joins! [Carmeli, 2022]

Open problem: dichotomy on UCQs? see [Carmeli and Kröll, 2021]

MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

?
Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”
Equivalent formalism: tree automata

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

?
Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”
Equivalent formalism: tree automata

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

?
Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”
Equivalent formalism: tree automata

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

?
Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”
Equivalent formalism: tree automata

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

Results for MSO on trees

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can reprove this via factorized representations:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed bottom-up deterministic tree automaton A with “captures”, given a tree T,
we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Note that the d-representation is no longer normal, but we show with some effort:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed schema S = (x1, . . . , xk), the tuples of a deterministic d-representation
with schema S can be enumerated with linear preprocessing and constant delay

Results for MSO on trees

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can reprove this via factorized representations:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed bottom-up deterministic tree automaton A with “captures”, given a tree T,
we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Note that the d-representation is no longer normal, but we show with some effort:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed schema S = (x1, . . . , xk), the tuples of a deterministic d-representation
with schema S can be enumerated with linear preprocessing and constant delay

Results for MSO on trees

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can reprove this via factorized representations:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed bottom-up deterministic tree automaton A with “captures”, given a tree T,
we can build a deterministic d-representation capturing the results of A on T in O(|T|)

Note that the d-representation is no longer normal, but we show with some effort:
Theorem (A., Bourhis, Jachiet, Mengel, ICALP’17)
For any fixed schema S = (x1, . . . , xk), the tuples of a deterministic d-representation
with schema S can be enumerated with linear preprocessing and constant delay

Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)
• be reasonably efficient in P (polynomial-time)

Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)
• be reasonably efficient in P (polynomial-time)

Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)
• be reasonably efficient in P (polynomial-time)

Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)
• be reasonably efficient in P (polynomial-time)

Results for nondeterministic document spanners

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19; see also PODS’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

• Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• To make the algorithm polynomial in the (nondeterministic) automaton, we need
efficient enumeration for a certain kind of non-deterministic d-representations

Results for nondeterministic document spanners

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19; see also PODS’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

• Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• To make the algorithm polynomial in the (nondeterministic) automaton, we need
efficient enumeration for a certain kind of non-deterministic d-representations

Other enumeration settings

Efficient enumeration is now being studied in many settings in data management
(sometimes with weaker guarantees than linear preprocessing and constant delay):

• For regular path queries [Martens and Trautner, 2018, David et al., 2024]

• For compressed structures:
• Compressed trees [Lohrey and Schmid, 2024]
• SLP-compressed documents [Schmid and Schweikardt, 2021, Muñoz and Riveros, 2023]

• For visibly pushdown languages [Muñoz and Riveros, 2022]

• For context-free languages with annotations [Peterfreund, 2021], [A., Jachiet, Muñoz,
Riveros, 2023]

There are also software implementations [Riveros et al., 2023]

Introduction: From enumeration to more general tasks

Sometimes, we want more than enumerating query results in an unspecified order:

Ranked access

Direct access Ranked enumeration

Counting Enumeration

(Adapted from [Carmeli, 2023])

• Direct access: getting the i-th answer

• Counting the answers

• Ranked enumeration: enumerating in a
prescribed order

• Ranked access: getting the i-th tuple in a
prescribed order

Another question: maintain an enumeration structure under updates to the data

Introduction: From enumeration to more general tasks

Sometimes, we want more than enumerating query results in an unspecified order:

Ranked access

Direct access Ranked enumeration

Counting Enumeration

(Adapted from [Carmeli, 2023])

• Direct access: getting the i-th answer

• Counting the answers

• Ranked enumeration: enumerating in a
prescribed order

• Ranked access: getting the i-th tuple in a
prescribed order

Another question: maintain an enumeration structure under updates to the data

Introduction: From enumeration to more general tasks

Sometimes, we want more than enumerating query results in an unspecified order:

Ranked access

Direct access Ranked enumeration

Counting Enumeration

(Adapted from [Carmeli, 2023])

• Direct access: getting the i-th answer

• Counting the answers

• Ranked enumeration: enumerating in a
prescribed order

• Ranked access: getting the i-th tuple in a
prescribed order

Another question: maintain an enumeration structure under updates to the data

Introduction: From enumeration to more general tasks

Sometimes, we want more than enumerating query results in an unspecified order:

Ranked access

Direct access Ranked enumeration

Counting Enumeration

(Adapted from [Carmeli, 2023])

• Direct access: getting the i-th answer

• Counting the answers

• Ranked enumeration: enumerating in a
prescribed order

• Ranked access: getting the i-th tuple in a
prescribed order

Another question: maintain an enumeration structure under updates to the data

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]

• Characterization of optimal preprocessing time for polylog direct access
[Bringmann et al., 2022]

• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]

• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]
• Extensions to CQs with aggregation [Eldar et al., 2024]

• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]
• Other directions:

• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]
• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]
• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]

• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]
• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Results on ranked enumeration / ranked access

For CQs and UCQs:

• Most works study self-join-free CQs under lexicographic orders and aim for
logarithmic access time or delay:

• Characterization of tractable orders for CQs [Carmeli et al., 2023]
• Characterization of optimal preprocessing time for polylog direct access

[Bringmann et al., 2022]
• Extensions to CQs with aggregation [Eldar et al., 2024]
• Extensions to CQs with negated atoms [Capelli and Irwin, 2024]

• Other directions:
• Other ranking functions defined by dioids [Tziavelis et al., 2020]
• Random access and random-order enumeration [Carmeli et al., 2022]

For MSO queries on trees:

• Ranked enumeration shown with logarithmic delay on words [Bourhis et al., 2021]
• Recent extension to trees [A., Bourhis, Capelli, Monet, 2024]

Incremental maintenance of enumeration structures

• Say the input data is often modified; we restart the enumeration after each update

• Can we avoid re-running the preprocessing phase from scratch?

For self-join-free CQs:

• Notion of q-hierarchical CQs that admit linear preprocessing and constant delay
enumeration and constant-time updates; lower bounds [Berkholz et al., 2017]
• Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

• On words, linear preprocessing and constant delay enumeration is possible under
insert/delete updates [Niewerth and Segoufin, 2018]
• On trees, linear preprocessing and constant delay enumeration is possible under

substitution updates [A., Bourhis, Mengel, 2018] and possibly more

Incremental maintenance of enumeration structures

• Say the input data is often modified; we restart the enumeration after each update
• Can we avoid re-running the preprocessing phase from scratch?

For self-join-free CQs:

• Notion of q-hierarchical CQs that admit linear preprocessing and constant delay
enumeration and constant-time updates; lower bounds [Berkholz et al., 2017]
• Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

• On words, linear preprocessing and constant delay enumeration is possible under
insert/delete updates [Niewerth and Segoufin, 2018]
• On trees, linear preprocessing and constant delay enumeration is possible under

substitution updates [A., Bourhis, Mengel, 2018] and possibly more

Incremental maintenance of enumeration structures

• Say the input data is often modified; we restart the enumeration after each update
• Can we avoid re-running the preprocessing phase from scratch?

For self-join-free CQs:

• Notion of q-hierarchical CQs that admit linear preprocessing and constant delay
enumeration and constant-time updates; lower bounds [Berkholz et al., 2017]
• Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

• On words, linear preprocessing and constant delay enumeration is possible under
insert/delete updates [Niewerth and Segoufin, 2018]
• On trees, linear preprocessing and constant delay enumeration is possible under

substitution updates [A., Bourhis, Mengel, 2018] and possibly more

Incremental maintenance of enumeration structures

• Say the input data is often modified; we restart the enumeration after each update
• Can we avoid re-running the preprocessing phase from scratch?

For self-join-free CQs:

• Notion of q-hierarchical CQs that admit linear preprocessing and constant delay
enumeration and constant-time updates; lower bounds [Berkholz et al., 2017]
• Results on the preprocessing-delay-update tradeoff for some CQs [Kara et al., 2023]

For MSO queries on trees, aiming for logarithmic update time:

• On words, linear preprocessing and constant delay enumeration is possible under
insert/delete updates [Niewerth and Segoufin, 2018]
• On trees, linear preprocessing and constant delay enumeration is possible under

substitution updates [A., Bourhis, Mengel, 2018] and possibly more

	Conjunctive queries
	Other settings
	Summary and future work
	Appendix

