
Enumerating Pattern Matches in Words and Trees

Antoine Amarilli1, Pierre Bourhis2, Stefan Mengel3, Matthias Niewerth4

October 8th, 2018
1Télécom ParisTech

2CNRS CRIStAL

3CNRS CRIL

4Universität Bayreuth

1/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses

• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Problem: Finding patterns in text

• We have a long text T:
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07.
French national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP
a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4) in the DIG team of
Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science
awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• We want to �nd a pattern P in the text T:
→ Example: �nd email addresses
• Write the pattern as a regular expression:

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

→ How to �nd the pattern P e�ciently in the text T?

2/36

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?

3/36

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?

3/36

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?

3/36

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?

3/36

Solution: automata

• Convert the pattern from a regular expression to an automaton

P := ␣+ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣+

1start 2 3 4

[a-z0-9.] [a-z0-9.]

@

• Then, evaluate the automaton on the text T
... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

• How e�cient is this?
3/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T

• We measure complexity according to two metrics:
• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T

• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...

• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T

• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...

• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...

→ Linear data complexity but exponential combined complexity
• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)

→ Linear data complexity and polynomial combined complexity

4/36

Complexity of automaton evaluation

• Task: testing if an automaton A accepts a text T
• We measure complexity according to two metrics:

• Data complexity: in the text T
• Combined complexity: in T and A

• If the automaton A is deterministic...
• Data complexity is linear in T
• Combined complexity is polynomial in T and A

• In general...
• Compute a deterministic automaton from A...
→ Linear data complexity but exponential combined complexity

• Better: Read T while remembering the current set of states
(like determinizing A, but on the �y)
→ Linear data complexity and polynomial combined complexity

4/36

Actual problem: Extracting all patterns

• This only tests if the pattern exactly matches the whole text!
→ “YES”

• We want to actually �nd all pattern matches!
→ Find all pairs of positions that are the endpoints of a match

• Generalization: patterns that can capture a tuple of positions
→ Find the email addresses without leading/trailing spaces
→ Find all pairs of a name followed by an email address

5/36

Actual problem: Extracting all patterns

• This only tests if the pattern exactly matches the whole text!
→ “YES”

• We want to actually �nd all pattern matches!
→ Find all pairs of positions that are the endpoints of a match

• Generalization: patterns that can capture a tuple of positions
→ Find the email addresses without leading/trailing spaces
→ Find all pairs of a name followed by an email address

5/36

Actual problem: Extracting all patterns

• This only tests if the pattern exactly matches the whole text!
→ “YES”

• We want to actually �nd all pattern matches!
→ Find all pairs of positions that are the endpoints of a match

• Generalization: patterns that can capture a tuple of positions
→ Find the email addresses without leading/trailing spaces
→ Find all pairs of a name followed by an email address

5/36

Patterns with capture variables

• Write the pattern P as a regular expression with capture variables
P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

6/36

Patterns with capture variables

• Write the pattern P as a regular expression with capture variables
P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Semantics: a match of P maps α and β to positions of T

... Email and XMPP a3nm@a3nm.net Affiliation
Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

6/36

Patterns with capture variables

• Write the pattern P as a regular expression with capture variables
P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

6/36

Patterns with capture variables

• Write the pattern P as a regular expression with capture variables
P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Semantics: a match of P maps α and β to positions of T
... Email and XMPP a3nm@a3nm.net Affiliation

Associate professor of computer ...

→ One match: 〈α : 20, β : 32〉

6/36

Formal problem statement

• Problem description:

• Input:
• A text T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

7/36

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

7/36

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

7/36

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

7/36

Formal problem statement

• Problem description:
• Input:

• A text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French
national. Appearance as of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor of computer science (office C201-4) in the DIG team of Télécom
ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded
by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure. More Résumé
Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

• A pattern P given as a regular expression with capture variables

P := •∗ ␣+ α [a-z0-9.]∗ @ [a-z0-9.]∗ β ␣+ •∗

• Output: the list of matches of P on T
〈α : 187, β : 199〉, ...

• We measure the complexity of the problem:
• In data complexity, as a function of T
• In combined complexity, as a function of P and T

7/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern
αβ l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern
α

β

l

α

β o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern
α

β

l

αβ

o

α

β l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern
α

β

l

αβ

o

αβ

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

α

β l α

β

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l αβ o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l α

β

o

α

β l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l α

β

o

αβ

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

α

β l

αβ

o α

β

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

α

β o α

β

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o αβ l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o α

β

l

α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

α

β l

αβ

o

αβ

l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

α

β o

αβ

l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

α

β l α

β

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity...

O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)

• Challenge: This is impossible, there can be too many matches:
• Consider the text T:

aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity

8/36

Measuring the complexity

• Naive algorithm: Consider all ways to assign capture variables
and test for each of them if it satis�es the pattern

αβ

l

αβ

o

αβ

l

αβ

→ For k capture variables, data complexity... O(|T|k+1)

• Hope: If T is big, we want data complexity to be in O(|T|)
• Challenge: This is impossible, there can be too many matches:

• Consider the text T:
aaa

• Consider the regexp with captures P := •∗ α a∗ β •∗

• The number of matches is O(|T|2)

→ We need a di�erent way to measure complexity
8/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Enumeration algorithms

Idea: In real life, we do not want to compute all the answers
we just need to be able to enumerate answers quickly

→ Formalization: enumeration algorithms

9/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

0011

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

0011

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

⊥

10/36

Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

Text T

•∗␣+α[a-z0-9.]∗@
[a-z0-9.]∗β␣+•∗

Pattern P

Phase 1:
Preprocessing

Data structure

Phase 2:
Enumeration

{
〈α : 42, β : 57〉,

〈α : 1337, β : 1351〉
}

Results

State

⊥

Two ways to measure performance:

• Total time for phase 1
• Delay between two results in phase 2

... in combined and data complexity
10/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is...

polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A

• Data complexity is... constant: nothing to do on T
• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is...

constant: nothing to do on T
• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...

• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is...

polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T

• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is...

polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Complexity of enumeration algorithms

• Recall the inputs to our problem:
• The text T
• The regexp with captures P
→ Assumption: there is a constant number k of capture variables

• What is the performance of the naive algorithm?
• In terms of preprocessing...

• Combined complexity is... polynomial: convert P to an automaton A
• Data complexity is... constant: nothing to do on T

• In terms of delay...
• Combined complexity is... polynomial: check if A accepts T
• Data complexity is... polynomial in T: time to �nd the next match

→ Can we do better?

11/36

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:

Theorem [Florenzano et al., 2018]
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:
Theorem
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

12/36

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:
Theorem [Florenzano et al., 2018]
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:
Theorem
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

12/36

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:
Theorem [Florenzano et al., 2018]
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:
Theorem
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

12/36

Results for enumerating pattern matches

• Existing work has shown the best possible bounds:
Theorem [Florenzano et al., 2018]
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

→ Problem: They only measure data complexity!
The combined complexity is exponential with their approach!

• Our contribution is:
Theorem
We can �nd all matches of a regexp with captures P on text T with:

• Preprocessing linear in T (data) and polynomial in T and P (combined)
• Delay constant in T (data) and polynomial in T and P (combined)

12/36

Automaton formalism

• We use automata that read letters and capture variables

→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text

→ Output: tuples 〈α : i, β : j〉 such that
A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Automaton formalism

• We use automata that read letters and capture variables
→ Example: P := •∗ α a∗ β •∗

1 2 3

•

α

a

β

•

• Semantics of the automaton A:
• Reads letters from the text
• Guesses variables at positions in the text
→ Output: tuples 〈α : i, β : j〉 such that

A has an accepting run reading α at position i and β at j

• Assumption: There is no run for which A reads
the same capture variable twice at the same position

• Challenge: Because of nondeterminism we can have
many di�erent runs of A producing the same tuple!

13/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗, match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay

14/36

Proof idea: product DAG

Compute a product DAG of the text T and of the automaton A

Example: Text T := aaaba and P := •∗ α a∗ β •∗,

match 〈α : 0, β : 3〉

1

2

3

•

α

a

β

•

a a a b a

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3 3

α

β

α

β

α

β

α

β

α

β

α

β

→ Each path in the product DAG corresponds to a match

→ Challenge: Enumerate paths but avoid duplicate matches
and do not waste time to ensure constant delay 14/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue

• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue

• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: on-the-�y computation to avoid duplicates

i i+ 1

1

2

3

α

β

1

2

3

• We are at a position i and set of states in blue
• Partition tuples based on the set S of variables
assigned at the current position

• For each S, consider the set of states
where we can be at i+ 1 when reading S at i

• Example: S = {α}

→ We must have preprocessed the DAG
to make sure that we can always �nish the run

15/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress

· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:

→ Compute for each state the next position where we can reach
some state that can assign a variable

→ Compute at each position i the transitive closure to all positions j
such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable

→ Compute at each position i the transitive closure to all positions j
such that j is the next position of some state at i (there are ≤ |A|)

16/36

Proof idea: jump pointers to save time

• Issue: When we can’t assign variables, we do not make progress
· · ·

· · ·

· · ·

· · ·
α α α α α

• Idea: Directly jump to the reachable states
at the next position where we can assign a variable

• Challenge: Preprocessing in linear time in T and polynomial in A:
→ Compute for each state the next position where we can reach

some state that can assign a variable
→ Compute at each position i the transitive closure to all positions j

such that j is the next position of some state at i (there are ≤ |A|)16/36

Proof idea: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
i i+ 1

α

γ

β

α

α

β

γ

α?

β?

γ?
0 1

γ?
0 1

0 1
β?

γ?
0 1

γ?
0 1

0 1

0 1

• Idea: Explore a decision tree on the variables (built on the �y)
• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)
→ Assumption: we don’t see the same variable twice on a path

17/36

Proof idea: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
i i+ 1

α

γ

β

α

α

β

γ

α?

β?

γ?
0 1

γ?
0 1

0 1
β?

γ?
0 1

γ?
0 1

0 1

0 1

• Idea: Explore a decision tree on the variables (built on the �y)

• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)
→ Assumption: we don’t see the same variable twice on a path

17/36

Proof idea: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
i i+ 1

α

γ

β

α

α

β

γ

α?

β?

γ?
0 1

γ?
0 1

0 1
β?

γ?
0 1

γ?
0 1

0 1

0 1

• Idea: Explore a decision tree on the variables (built on the �y)

• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)
→ Assumption: we don’t see the same variable twice on a path

17/36

Proof idea: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
i i+ 1

α

γ

β

α

α

β

γ

α?

β?

γ?
0 1

γ?
0 1

0 1
β?

γ?
0 1

γ?
0 1

0 1

0 1

• Idea: Explore a decision tree on the variables (built on the �y)
• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)

→ Assumption: we don’t see the same variable twice on a path

17/36

Proof idea: �ashlight search

• Issue: Finding which variable sets we can assign at position i?
i i+ 1

α

γ

β

α

α

β

γ

α?

β?

γ?
0 1

γ?
0 1

0 1
β?

γ?
0 1

γ?
0 1

0 1

0 1

• Idea: Explore a decision tree on the variables (built on the �y)
• At each decision tree node, �nd the reachable states which
have all required variables (1) and no forbidden variables (0)
→ Assumption: we don’t see the same variable twice on a path

17/36

Extension: From Text to Trees

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

18/36

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉

18/36

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there

α:

an h2 header and

β:

an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

18/36

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results:

〈α : 4, β : 6〉, 〈α : 4, β : 7〉

18/36

Pattern matching on trees

• The data T is no longer text but is now a tree:
<body>1

<section>3

<p>5

76

<h2>4

<div>2

• The pattern P asks about the structure of the tree:
Is there α: an h2 header and β: an image in the same section?

• Results: 〈α : 4, β : 6〉, 〈α : 4, β : 7〉
18/36

De�nitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures

• Like for text, we can enumerate the matches of tree automata...
Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

• Again, this is only in data complexity!
• We conjecture the following bounds for this task (ongoing work):

Conjecture

• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

19/36

De�nitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures
• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T

(data)

• Delay constant in T

(data)

• Again, this is only in data complexity!
• We conjecture the following bounds for this task (ongoing work):

Conjecture

• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

19/36

De�nitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures
• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

• Again, this is only in data complexity!
• We conjecture the following bounds for this task (ongoing work):

Conjecture

• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

19/36

De�nitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures
• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

• Again, this is only in data complexity!

• We conjecture the following bounds for this task (ongoing work):
Conjecture

• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

19/36

De�nitions and Results on Trees

• Tree patterns can be written as a tree automaton with captures
• Like for text, we can enumerate the matches of tree automata...

Theorem [Bagan, 2006]
We can �nd all matches on a tree T of a tree automaton A
(with constantly many capture variables) with:

• Preprocessing linear in T (data)
• Delay constant in T (data)

• Again, this is only in data complexity!
• We conjecture the following bounds for this task (ongoing work):

Conjecture

• Preprocessing linear in T (data) and polynomial in A and T (combined)
• Delay constant in T (data) and polynomial in A and T (combined)

19/36

Proof idea for trees: structure

Similar structure to the previous proof, but with a circuit:

• Preprocessing: Compute a circuit representation of the answers
• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing Data

structure

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

20/36

Proof idea for trees: structure

Similar structure to the previous proof, but with a circuit:

• Preprocessing: Compute a circuit representation of the answers
• Enumeration: Apply a generic algorithm on the circuit

Tree

Phase 1:
Preprocessing

×

α :4

β :6

∪

β :7

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

20/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”

• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons

• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}

• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}

{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

}

{
〈β :6〉, 〈β :7〉

}

{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}

{
〈α :4, β :6〉
〈α :4, β :7〉

}

Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuits

A set circuit represents a set of answers to a pattern P(α, β)

• Singleton α :6→ “the variable α is mapped to node 6”
• Tuple 〈α :4, β :6〉: tuple of singletons
• The circuit captures a set of tuples, e.g., {〈α :4, β :6〉, 〈α :4, β :7〉}

×

α :4

β :6

∪

β :7

{
〈β :7〉

}{
〈β :6〉

}

{
〈α :4〉

} {
〈β :6〉, 〈β :7〉

}
{
〈α :4, β :6〉
〈α :4, β :7〉

} Three kinds of set-valued gates:

• Variable gate α :4 :

→ captures
{
〈α :4〉

}
• Union gate ∪ :
→ union of sets of tuples

• Product gate × :
→ relational product

21/36

Proof idea for trees: set circuit construction

Tree

Phase 1:
Preprocessing

×

α :4

β :6

∪

β :7

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

Theorem
For any tree automaton A with capture variables α1, . . . , αk,
given a tree T, we can build in O(|T| × |A|) a set circuit capturing
exactly the set of tuples {〈α1 : n1, . . . , αk : nk〉 in the output of A on T

22/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×
×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×
×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×
×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×
×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×

×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×

×

23/36

Proof idea for trees: set circuit construction (details)

• Automaton: “Select all node pairs (α, β)” • States: {∅, α, β, αβ}

n

α :n

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

∪ ∪ ∪ ∪
∅ α β αβ

×
×

23/36

Proof idea for trees: enumeration on set circuits

Tree

Phase 1:
Preprocessing

×

α :4

β :6

∪

β :7

Phase 2:
Enumeration

{
〈α : 4, β : 6〉,
〈α : 4, β : 7〉

}
Results

∃s section(s)∧
s α ∧ s β∧
h2(α) ∧ img(β)

Pattern

Theorem
Given a set circuit satisfying some conditions, we can enumerate all
tuples that it captures with linear preprocessing and constant delay

E.g., for
{
〈α :4, β :6〉, 〈α :4, β :7〉

}
: enumerate 〈α :4, β :6〉 then 〈α :4, β :7〉

24/36

Proof idea for trees: general enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable α :n : enumerate 〈α :n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

25/36

Proof idea for trees: general enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable α :n :

enumerate 〈α :n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

25/36

Proof idea for trees: general enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable α :n : enumerate 〈α :n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

25/36

Proof idea for trees: general enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable α :n : enumerate 〈α :n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

25/36

Proof idea for trees: general enumeration approach

→ Enumerate the set T(g) captured by each gate g
→ Do it by top-down induction on the circuit

Base case: variable α :n : enumerate 〈α :n〉 and stop

∪-gate

∪

g1 g2

Concatenation: enumerate T(g1)
and then enumerate T(g2)

×-gate

×

g1 g2

Lexicographic product:
for every t1 in T(g1):

for every t2 in T(g2):
output t1 + t2

25/36

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

α :4

β :6

∪

β :7

• Also an additional upwards-determinism condition

• Our circuit satis�es these thanks to automaton determinism

26/36

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

α :4

β :6

∪

β :7

• Also an additional upwards-determinism condition

• Our circuit satis�es these thanks to automaton determinism

26/36

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

α :4

β :6

∪

β :7

• Also an additional upwards-determinism condition

• Our circuit satis�es these thanks to automaton determinism

26/36

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

α :4

β :6

∪

β :7

• Also an additional upwards-determinism condition

• Our circuit satis�es these thanks to automaton determinism

26/36

Proof idea for trees: circuit conditions

Enumeration relies on some conditions on the input circuit (d-DNNF):

• ∪ are all deterministic:
For any two inputs g1 and g2 of a ∪-gate,
the captured sets T(g1) and T(g2) are disjoint
(they have no tuple in common)
→ Avoids duplicate tuples

• × are all decomposable:

For any two inputs g1 and g2 of a ×-gate,
no variable has a path to both g1 and g2
→ Avoids duplicate singletons

×

α :4

β :6

∪

β :7

• Also an additional upwards-determinism condition
• Our circuit satis�es these thanks to automaton determinism 26/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅

→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

27/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

27/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}

→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

27/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

27/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates

→ Precompute a reachability index (uses upwards-determinism)

27/36

Proof idea for trees: enumeration subtleties

∪

× β :6

α :4 ∪

×

× ×

× ×

× α :4

∪

∪ ∪

∪ ∪

· · · · · ·

· · ·

· · ·

• We must not waste time in gates capturing ∅
→ Label them during the preprocessing

• We must not waste time because of gates capturing {〈〉}
→ Homogenization to set them aside

• We must not waste time in hierarchies of ∪-gates
→ Precompute a reachability index (uses upwards-determinism)

27/36

Extension: Handling Updates

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

28/36

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

28/36

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing

• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

28/36

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?

28/36

Updates

Tree T

Phase 1:
Preprocessing

Data structure

• The input data can be modi�ed after the preprocessing
• If this happen, we must rerun the preprocessing from scratch

→ Can we do better?
28/36

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

29/36

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

29/36

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)

[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

29/36

Known results on dynamic trees

All these results are on data complexity in T (for a �xed pattern):

Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Losemann and Martens, 2014] text O(T) O(log T) O(log T)
[Niewerth and Segou�n, 2018] text O(T) O(1) O(log T)

29/36

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

30/36

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

30/36

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

30/36

Relabelings

• Special kind of updates: relabelings
that change the label of a node

• Example: relabel node 7 to <video>

• The tree’s structure never changes

30/36

New results on dynamic trees

• If we allow only relabeling updates, we can show:
Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)

[Amarilli et al., 2018] trees O(T) O(1) O(log T)

• Current proof uses hybrid circuits but we want to simplify it
• Remaining open questions:
→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

31/36

New results on dynamic trees

• If we allow only relabeling updates, we can show:
Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

• Current proof uses hybrid circuits but we want to simplify it
• Remaining open questions:
→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

31/36

New results on dynamic trees

• If we allow only relabeling updates, we can show:
Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

• Current proof uses hybrid circuits but we want to simplify it
• Remaining open questions:
→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

31/36

New results on dynamic trees

• If we allow only relabeling updates, we can show:
Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

• Current proof uses hybrid circuits but we want to simplify it

• Remaining open questions:
→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

31/36

New results on dynamic trees

• If we allow only relabeling updates, we can show:
Work Data Preproc. Delay Updates

[Bagan, 2006],
[Kazana and Segou�n, 2013]

trees O(T) O(1) O(T)

[Losemann and Martens, 2014] trees O(T) O(log2 T) O(log2 T)
[Amarilli et al., 2018] trees O(T) O(1) O(log T)

• Current proof uses hybrid circuits but we want to simplify it
• Remaining open questions:
→ Does this hold for more general updates (insert/delete, etc.)?
→ Can we also achieve tractable combined complexity?

31/36

Extension: Connection to Circuits

Connections with Boolean circuits

• Mapping DAGs and set circuits can be seen as variants of
Boolean circuits

• The answers to enumerate are their satisfying assignments
• These circuits fall in restricted circuit classes
that allow for e�cient enumeration

→ Task: Given a Boolean circuit, how to e�ciently enumerate
its satisfying valuations?

32/36

Connections with Boolean circuits

• Mapping DAGs and set circuits can be seen as variants of
Boolean circuits

• The answers to enumerate are their satisfying assignments

• These circuits fall in restricted circuit classes
that allow for e�cient enumeration

→ Task: Given a Boolean circuit, how to e�ciently enumerate
its satisfying valuations?

32/36

Connections with Boolean circuits

• Mapping DAGs and set circuits can be seen as variants of
Boolean circuits

• The answers to enumerate are their satisfying assignments
• These circuits fall in restricted circuit classes
that allow for e�cient enumeration

→ Task: Given a Boolean circuit, how to e�ciently enumerate
its satisfying valuations?

32/36

Connections with Boolean circuits

• Mapping DAGs and set circuits can be seen as variants of
Boolean circuits

• The answers to enumerate are their satisfying assignments
• These circuits fall in restricted circuit classes
that allow for e�cient enumeration

→ Task: Given a Boolean circuit, how to e�ciently enumerate
its satisfying valuations?

32/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Boolean circuits

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

• Assignment: set of variables mapped to 1
Example: Sν = {y}; more concise than ν

Our task: Enumerate all satisfying assignments of an input circuit

33/36

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

34/36

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

34/36

Circuit restrictions

d-DNNF:

• ∨ are all deterministic:

The inputs are mutually exclusive
(= no valuation ν makes two inputs
simultaneously evaluate to 1)

• ∧ are all decomposable:

The inputs are independent
(= no variable x has a path to two
di�erent inputs)

v-tree: ∧-gates follow a tree
on the variables

∨

∧

x ∧

y ¬

z

∧∧

¬

x ∧

y z

•

•

zy

x

34/36

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay

Subtleties: Must complete to a set circuit; memory usage problems

35/36

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay

Subtleties: Must complete to a set circuit; memory usage problems

35/36

Main results

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments with preprocessing linear in |C|+ |T|
and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N
(at most k variables are set to 1):

Theorem
Given a d-DNNF circuit C with a v-tree T, we can enumerate its
satisfying assignments of size ≤ k
with preprocessing linear in |C|+ |T| and constant delay

Subtleties: Must complete to a set circuit; memory usage problems
35/36

Summary and Future Work

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T

• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees

• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data

• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits

• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?

• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!

36/36

Summary and future work

Summary:

• Problem: given a text T and a pattern P,
enumerate e�ciently all matches of P on T
• Result: we can do this with tractable combined complexity
and linear preprocessing and constant delay in data complexity

Ongoing and future work:

• Extending the results from text to trees
• Supporting updates on the input data
• Understanding the connections with circuits
• Enumerating results in a relevant order?
• Testing how well our methods perform in practice

Thanks for your attention!
36/36

References i

Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on trees under relabelings.
In ICDT.
Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc,
D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.

References ii

Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Losemann, K. and Martens, W. (2014).
MSO queries on trees: Enumerating answers under updates.
In CSL-LICS.
Niewerth, M. and Segou�n, L. (2018).
Enumeration of MSO queries on strings with constant delay and
logarithmic updates.
In PODS.
To appear.

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

	Extension: From Text to Trees
	Extension: Handling Updates
	Extension: Connection to Circuits
	Summary and Future Work
	Appendix

