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Smallest Witness for Boolean Queries

• Fix a Boolean query Q

→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)
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Regular Path Queries (RPQs)

• Fix an finite alphabet Σ

• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b
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Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N

• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges
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Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ
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Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ
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Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!
• Is this problem in PTIME?
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Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w

• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w

• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C

• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C

• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · ·

C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11



Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1 

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t 7/11



Tractability for Modularity Constraints

What about L = (aq)∗ar?

(st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming
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• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming
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An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗?

Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits
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Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoı̂t Groz)
For every regular language L, then SWL is either in PTIME or NP-complete

Current status:

• Tractability via Directed Steiner Network or by the r mod q argument
• These two techniques can be combined
• Similar techniques seem to cover:

• Arbitrary groups, beyond Z/qZ
• The “multilevel” case: a1

∗ b1 (a1 + a2)
∗ b2 · · · (a1 + · · ·+ an)∗

Reminiscent of CSP/VSCP but no clear connection:

SWL: “For fixed RHS structure HL, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to HL”
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Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q

• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!
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• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11



Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut

• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]
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