Smallest Witnesses for RPQs

(e

cLa—

Antoine Amarilli’
Joint work with Benoit Groz, Nicole Wein

May 28, 2025

"Inria Lille

1/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

- Receive as input a database D

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
b ¢ f
a a f3
d e fu

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3xyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
d e fu

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3xyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
d e fu

{ﬁlva,f3?f4} |: Q

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O b ¢ f2
a a f3
- Witness: a subdatabase D' C D such that D' = Q d e fu

{ﬁlva,f3?f4} |: Q

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

__rR
- Receive as input a database D a b fi
— We will always require that D = O g g ;2
3
d e fu

- Witness: a subdatabase D' C D such that D' = Q

{2} EQ

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O b ¢ f2
a a f3
- Witness: a subdatabase D' C D such that D' = Q d e fu

- Smallest witness: a witness of minimum size (#facts) {f.fo,f3,. 4} EQ

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
d e fu

- Witness: a subdatabase D' C D such that D' = Q

- Smallest witness: a witness of minimum size (#facts) {3} EQ

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
- Witness: a subdatabase D' C D such that D' = Q d_e fu
- Smallest witness: a witness of minimum size (#facts) {f.fo,f3,. 4} EQ

- We study data complexity: the query Q is fixed, the input is the database D

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
- Witness: a subdatabase D' C D such that D' = Q l fa
- Smallest witness: a witness of minimum size (#facts) {f.fo,f3,. 4} EQ

- We study data complexity: the query Q is fixed, the input is the database D
- We focus on Boolean queries
— Complexity is different when we have a set of answers [Hu and Sintos, 2024]

2/1

Smallest Witness for Boolean Queries

- Fix a Boolean query Q Q: 3Ixyz R(x,y),R(y,2)
— Take Q monotone: if D C D" and D |= Q then D' = Q

R
- Receive as input a database D a b fi
— We will always require that D = O 2 g];2
3
- Witness: a subdatabase D' C D such that D' = Q l fa
- Smallest witness: a witness of minimum size (#facts) {f.fo,f3,. 4} EQ

- We study data complexity: the query Q is fixed, the input is the database D
- We focus on Boolean queries
— Complexity is different when we have a set of answers [Hu and Sintos, 2024]

- For a UCQ Q the task is always PTIME (smallest witnesses have size < |Q|)

2/1

Regular Path Queries (RPQs)

- Fix an finite alphabet ©

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ;
— Given by a regular language L on X

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X
- Graph database D = (V,E)
— Vertices Vand edges ECV x L xV

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X
- Graph database D = (V,E) a a b
— Vertices Vand edgesECV x X xV / \ a a

3/M

Regular Path Queries (RPQs)

- Fix an finite alphabet ©
- Regular path query RPQ;
— Given by a regular language L on X
- Graph database D = (V,E)
— Vertices Vand edges ECV x L xV
- We have D = RPQ(s,t) with constants s, t if:

- We have a walk w in D from the source s to the target t
- The concatenation of the edge labels of wis in L

3/m

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X
- Graph database D = (V,E) a ; b
— Vertices Vand edges ECV x L xV /‘ (_\{\ a
- We have D = RPQ(s,t) with constants s, t if: /
a \

- We have a walk w in D from the source s to the target t
- The concatenation of the edge labels of wis in L

3/m

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X
- Graph database D = (V,E) a ; b
— Vertices Vand edges ECV x L xV /‘ (_\{\ a
- We have D = RPQ(s,t) with constants s, t if:
- We have a walk w in D from the source s to the target t a \ /

- The concatenation of the edge labels of wis in L
- Note: w is not necessarily a simple path

3/m

Regular Path Queries (RPQs)

- Fix an finite alphabet & Y ={a,b}
- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X

- Graph database D = (V,E) a ('&

— Vertices Vand edges ECV x L xV / \\{ a

- We have D = RPQ(s,t) with constants s, t if: ° % —t
- We have a walk w in D from the source s to the target t a\\ / .
- The concatenation of the edge labels of wis in L
- Note: w is not necessarily a simple path

- We can check in PTIME whether D = RPQ(s, t)

— Evaluate in Datalog, or do product construction of D
with automaton for L

a //,/
—a

3/m

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:
- Input: graph database D, vertices s and t integer kR € N

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

— What is the complexity of SW; depending on the language L?

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

— What is the complexity of SW; depending on the language L?

First results:

- SW, is always in NP
— Guess the subdatabase D’ with |D’| < k and verify D' = RPQ, (s, t)

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

— What is the complexity of SW; depending on the language L?

First results:

- SW, is always in NP

— Guess the subdatabase D’ with |D’| < k and verify D' = RPQ, (s, t)
- If Lis a finite language, then SW is in PTIME

— Follows from tractability for UCQs

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

— What is the complexity of SW; depending on the language L?

First results:

- SW, is always in NP

— Guess the subdatabase D’ with |D’| < k and verify D' = RPQ, (s, t)
- If Lis a finite language, then SW is in PTIME

— Follows from tractability for UCQs
- For L = a*, we have that SW, is...

4/

Smallest Witness for RPQs

- Decision problem SW; for a fixed regular language L:

- Input: graph database D, vertices s and t integer kR € N
- Output: is there a subdatabase D’ C D with < k edges that satisfies RPQ,(s, t)

— What is the complexity of SW; depending on the language L?

First results:

- SW, is always in NP
— Guess the subdatabase D’ with |D’| < k and verify D' = RPQ, (s, t)
- If Lis a finite language, then SW is in PTIME
— Follows from tractability for UCQs
- For L = a*, we have that SW, is... in PTIME
— Compute the shortest path from s to t and check that it has < k edges

4/

Tractability by Reducing to ...

What about L = a* b a*?

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D
- ldea: compute shortest a-paths p4 < s
fromstouandp, fromvtot Jb
t v

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < p,:a* U
fromstouandp, fromvtot Jb
t< ... Vv
p2 - a

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < an _______ U
fromstouandp, fromvtot
- Problem: p, and p, may share edges Jb
b Lo p2a Vv

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < an _______ U
fromstouandp, fromvtot
- Problem: p, and p, may share edges Jb
- What matters is to minimize EE p, a* Y

|p1 U p.|

5/1

Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

5/1

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:

5/1

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:

- Input: directed graph G, vertices s;,t;,...,5p,ty

5/1

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:
- Input: directed graph G, vertices s;,t;,...,5p,ty
- Output: subgraph G' C G of minimum cardinality that has a directed path
froms;tot; foreach1<i</ 5/

Parity Constraints

What about L = (aa)*?

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

L ac e
| X
e b d J .
S s’ t
i c P ’ B
I !
f - g h

- It may not be a simple path,

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

Length =7

- It may not be a simple path,

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses

the least number of distinct edges”

> a <«
l

g b

- It may not be a simple path,

k- K /
4 h
> g > h e

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

L Q- e
1 "
e b d J .
S s’ t
\ c kR i -
[} \
f - g h

- It may not be a simple path, and it may not be a shortest walk!

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

o k
*
f > 9

- It may not be a simple path, and it may not be a shortest walk!

i
A~
h

\
4 Length =10, #fedges = 9

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

aé———e
' AN)
b d Py

Length = 12, #edges = 8

) . e :)
- 1 4
o f g h -~

- It may not be a simple path, and it may not be a shortest walk!

6/1

Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

P a <« e —
I c kR i >

- It may not be a simple path, and it may not be a shortest walk!
- Is this problem in PTIME?

6/1

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w
- There are no two odd-length cyclesinw

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w ,7,7 ——

- There are no two odd-length cycles in w

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w ,7,7 ——

- There are no two odd-length cycles in w

— Case 1: w has no cycle (and length = #edges)

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”
- There are no even-length cycles in w
- There are no two odd-length cyclesinw

— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w 7‘77 -

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w 7‘77 -

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges) @ /

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

- There are no even-length cycles in w 7‘77 -

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges) @ /

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w

— Case 1: w has no cycle (and length = #edges) @ ¥
P P
— Case 2: wis a path P, then an odd cycle C then a path P, 1 ’
P1
- When P, leaves C it does not re-enter C @

- P, cannot enter P,, leave P,, and re-enter later ap

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w

— Case 1: w has no cycle (and length = #edges) @ ¥
P P
— Case 2: wis a path P, then an odd cycle C then a path P, 1 ’
P1
- When P, leaves C it does not re-enter C @

- P, cannot enter P,, leave P,, and re-enter later ap

So Case 2 must be:

7/

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w

— Case 1: w has no cycle (and length = #edges) @ ¥
P P
— Case 2: wis a path P, then an odd cycle C then a path P, 1 ’
P1
- When P, leaves C it does not re-enter C @

- P, cannot enter P,, leave P,, and re-enter later ap

So Case 2 must be:

S — s

v
~
~
v
~
~
v
v
~

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w

— Case 1: w has no cycle (and length = #edges) @ ¥
P P
— Case 2: wis a path P, then an odd cycle C then a path P, 1 ’
F>1
- When P, leaves C it does not re-enter C @
- P, cannot enter P,, leave P,, and re-enter later ap

So Case 2 must be:

S — s

v
~
~
v
~
~
v
v
~

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

So Case 2 must be:

S — s

v
~
~
v
~
~
v

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

So Case 2 must be:

S — s

v
~
~
v
~
~
N

ot

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

* There are no even-length cycles in w ‘(o

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

So Case 2 must be:

S — s

v
~
~
v

ot

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

+ There are no even-length cycles in W ,‘(B

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

So Case 2 must t{{e

--------- et o,
% ., \:5:‘ ., <
t ("""" k (........ {.

Tractability for Modularity Constraints

What about L = (a%)*a"?

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:

- An optimal walk w will not have too many detours

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME
Proof sketch:

- An optimal walk w will not have too many detours

- Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:

- An optimal walk w will not have too many detours
new edge

- Detour: taking a new edge (u, v) then going back to a /\
vertex already reachable from u U
existing path

vV -

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:

- An optimal walk w will not have too many detours
new edge

- Detour: taking a new edge (u, v) then going back to a /\ .
vertex already reachable from u

- Only useful to change the remainder of the length existing pat

V-

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:

- An optimal walk w will not have too many detours
- Detour: taking a new edge (u, v) then going back to a ew edge/\
vertex already reachable from u T R SO0
- Only useful to change the remainder of the length existing pat
- After O(log q) detours, all possible remainders achieved

V-

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:
- An optimal walk w will not have too many detours Voo
L : new edge \
- Detour: taking a new edge (u, v) then going back to a /\
vertex already reachable from u Y A N
existing pat

- Only useful to change the remainder of the length
- After O(log q) detours, all possible remainders achieved

- The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)

8/1

Tractability for Modularity Constraints

What about L = (a9)*a"? (st-walk of length r mod g with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:
- An optimal walk w will not have too many detours Voo
L : new edge \
- Detour: taking a new edge (u, v) then going back to a /\
vertex already reachable from u Y A N
existing pat

- Only useful to change the remainder of the length
- After O(log q) detours, all possible remainders achieved

- The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)

- Bounded-cutwidth subgraphs can be found by dynamic programming
8/1

An Intractable Case

What about L = (a +¢)*b(a + d)*?

9/M

An Intractable Case

What about L = (a +¢)*b(a + d)*? Then SW, is NP-complete (from 3-SAT)

9/M

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

Variable guess gadget

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X4 Variable guess gadget

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 Variable guess gadget
——— ———

& . N . N
\ ! N § /!

——— ———

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 —X3 Variable guess gadget
——— ——— ———
/ NS NS N\,
N SN LR NS /
——— ——— ———

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 —X3 Variable guess gadget
——— ——— ———
/ NS NS N
N SN LR NS /
——— ——— ———

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 —X3 Variable guess gadget
——— ——— ———
/ NS NS N\,
N SN LR NS /
——— ——— ———

t
Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 —X3 Variable guess gadget
——— ——— ———
/ NS NS N\,
N SN LR NS /
——— ——— ———
N t

Clause xq V =X, V X3 Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—Xq —X5 —X3 Variable guess gadget
——— ——— ———
/ N\
*>
/

g><% |

Clause xq V =X, V X3 Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X3 Variable guess gadget

_ t

Clause xq V =X, V X3 Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X3 Variable guess gadget

- s t

Clause xq V =X, V X3 Clause check gadget

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X3 Variable guess gadget

Clause xq V =X, V X3 Clause check gadget

9/M

An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X3 Variable guess gadget

Clause xq V =X, V X3 Clause check gadget

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/M

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoit Groz)
For every regular language L, then SW, is either in PTIME or NP-complete

10/1

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoit Groz)
For every regular language L, then SW, is either in PTIME or NP-complete

Current status:

- Tractability via Directed Steiner Network or by the r mod g argument
- These two techniques can be combined

10/1

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoit Groz)
For every regular language L, then SW, is either in PTIME or NP-complete

Current status:

- Tractability via Directed Steiner Network or by the r mod g argument

- These two techniques can be combined
- Similar techniques seem to cover:
- Arbitrary groups, beyond Z/qZ
-+ The “multilevel” case: a:* by (a; + a,)* by -+ (a, + -+ - + a,)*

10/1

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoit Groz)
For every regular language L, then SW, is either in PTIME or NP-complete

Current status:

- Tractability via Directed Steiner Network or by the r mod g argument

- These two techniques can be combined
- Similar techniques seem to cover:
- Arbitrary groups, beyond Z/qZ
-+ The “multilevel” case: a:* by (a; + a,)* by -+ (a, + -+ - + a,)*

Reminiscent of CSP/VSCP but no clear connection:

SW,: “For fixed RHS structure H;, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to H,”

10/1

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q
- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q
- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

What is the complexity of computing resilience?

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q
- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q
- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q
- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanisinova, Lutz, 2024]
- But for databases with weighted facts, and opaque (but decidable) criterion

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q

- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q

What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanisinova, Lutz, 2024]
- But for databases with weighted facts, and opaque (but decidable) criterion

— Is there a unified understanding of the tractability frontier of both problems?

1/m

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

- Smallest Witness for Q: a subdatabase D’ C D of minimum size with D’ = Q

- Resilience for Q: a subdatabase D' C D of maximum size with D’ |~ Q
What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanisinova, Lutz, 2024]
- But for databases with weighted facts, and opaque (but decidable) criterion

— Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

1/m

Acknowledgements

Slide 7: Thanks to Nicole Wein for preparing some of the drawings.

References i

@ Amarilli, A, Gatterbauer, W., Makhija, N., and Monet, M. (2025a).
Resilience for regular path queries: Towards a complexity classification.
In PODS.

[4 Amarilli, A, Groz, B., and Wein, N. (2025b).
Edge-minimum walk of modular length in polynomial time.
In ITCS.

[@ Bodirsky, M., Semanisinova, Z., and Lutz, C. (2024).
The complexity of resilience problems via valued constraint satisfaction
problems.
In LICS.

https://arxiv.org/abs/2412.09411
https://2025.sigmod.org/
https://arxiv.org/abs/2412.01614
http://itcs-conf.org/itcs25/itcs25-cfp.html

References ii

[Feldman,). and Ruhl, M. (2006).

The directed steiner network problem is tractable for a constant number of
terminals.
SIAM Journal on Computing, 36(2).

W Freire, C, Gatterbauer, W., Immerman, N., and Meliou, A. (2015).
The complexity of resilience and responsibility for self-join-free conjunctive
queries.
PVLDB, 9(3).

[Hu, X. and Sintos, S. (2024).
Finding smallest witnesses for conjunctive queries.
In ICDT.

References iii

[Miao, Z, Roy, S., and Yang, J. (2019).
Explaining wrong queries using small examples.
In SIGMOD.

	Appendix

