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- Smallest witness: a witness of minimum size (#facts) {f.fo,f3,. 4} EQ

- We study data complexity: the query Q is fixed, the input is the database D
- We focus on Boolean queries
— Complexity is different when we have a set of answers [Hu and Sintos, 2024]

- For a UCQ Q the task is always PTIME (smallest witnesses have size < |Q|)
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- Regular path query RPQ; L=a*ba*
— Given by a regular language L on X

- Graph database D = (V,E) a ('&

— Vertices Vand edges ECV x L xV / \\{ a

- We have D = RPQ(s,t) with constants s, t if: ° % —t
- We have a walk w in D from the source s to the target t a\\ / .
- The concatenation of the edge labels of wis in L
- Note: w is not necessarily a simple path

- We can check in PTIME whether D = RPQ(s, t)

— Evaluate in Datalog, or do product construction of D
with automaton for L

a //,/
—a
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First results:
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— Guess the subdatabase D’ with |D’| < k and verify D' = RPQ, (s, t)
- If Lis a finite language, then SW is in PTIME
— Follows from tractability for UCQs
- For L = a*, we have that SW, is... in PTIME
— Compute the shortest path from s to t and check that it has < k edges

4/



Tractability by Reducing to ...

What about L = a* b a*?

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D
- ldea: compute shortest a-paths p4 < s
fromstouandp, fromvtot Jb
t v

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < p,:a* U
fromstouandp, fromvtot Jb
t< ................................................................... Vv
p2 - a

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < an _______ U
fromstouandp, fromvtot
- Problem: p, and p, may share edges Jb
b Lo p2a ............................. Vv

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u,v) D
- Idea: compute shortest a-paths p, < an _______ U
fromstouandp, fromvtot
- Problem: p, and p, may share edges Jb
- What matters is to minimize EE p, a* Y

|p1 U p.|

5/1



Tractability by Reducing to ...

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

5/1



Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:

5/1



Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:

- Input: directed graph G, vertices s;,t;,...,5p,ty

5/1



Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a* b a*?

- First guess the b-edge b(u, v) D

- Idea: compute shortest a-paths p,
fromstouandp, fromvtot
- Problem: p, and p, may share edges
- What matters is to minimize
P2 U po|

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed £ € N:
- Input: directed graph G, vertices s;,t;,...,5p,ty
- Output: subgraph G' C G of minimum cardinality that has a directed path
froms;tot; foreach1<i</ 5/
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“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

o k
*
f > 9

- It may not be a simple path, and it may not be a shortest walk!

i
A~
h

\
4 Length =10, #fedges = 9
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Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

aé———e
' AN )
b d Py

Length = 12, #edges = 8

) . e : )
- 1 4
o f g h -~

- It may not be a simple path, and it may not be a shortest walk!
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Parity Constraints

What about L = (aa)*?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

P a <« e —
I c kR i >

- It may not be a simple path, and it may not be a shortest walk!
- Is this problem in PTIME?
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Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

+ There are no even-length cycles in W ,‘( B

- There are no two odd-length cycles in w
— Case 1: w has no cycle (and length = #edges)

— Case 2: wis a path P, then an odd cycle C then a path P,

- When P, leaves C it does not re-enter C

- P, cannot enter P,, leave P,, and re-enter later

So Case 2 must t{{e
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Theorem (A., Groz, Wein, ITCS'25)
For any fixed q > o and o <r < g, letting L = (a9)*a", the problem SW is in PTIME

Proof sketch:
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Proof sketch:
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L : new edge \
- Detour: taking a new edge (u, v) then going back to a /\
vertex already reachable from u Y A N
existing pat

- Only useful to change the remainder of the length
- After O(log q) detours, all possible remainders achieved

- The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)

- Bounded-cutwidth subgraphs can be found by dynamic programming
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An Intractable Case

What about L = (a +¢)*b(a+d)*? Then SW, is NP-complete (from 3-SAT)

—X3 Variable guess gadget

Clause xq V =X, V X3 Clause check gadget

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits
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- These two techniques can be combined
- Similar techniques seem to cover:
- Arbitrary groups, beyond Z/qZ
-+ The “multilevel” case: a:* by (a; + a,)* by -+ (a, + -+ - + a,)*

Reminiscent of CSP/VSCP but no clear connection:

SW,: “For fixed RHS structure H;, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to H,”
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What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al.,, 2015]

- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanisinova, Lutz, 2024]
- But for databases with weighted facts, and opaque (but decidable) criterion

— Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!
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