
Smallest Witnesses for RPQs

Antoine Amarilli1

Joint work with Benoı̂t Groz, Nicole Wein
May 28, 2025
1Inria Lille

1/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q

→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q

→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D

→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D

→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f3} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D

• We focus on Boolean queries
→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)

2/11

Smallest Witness for Boolean Queries

• Fix a Boolean query Q
→ Take Q monotone: if D ⊆ D′ and D |= Q then D′ |= Q

• Receive as input a database D
→ We will always require that D |= Q

• Witness: a subdatabase D′ ⊆ D such that D′ |= Q

• Smallest witness: a witness of minimum size (#facts)

Q : ∃xyz R(x, y),R(y, z)

R
a b f1
b c f2
a a f3
d e f4

{f1, f2, f3, f4} |= Q

• We study data complexity: the query Q is fixed, the input is the database D
• We focus on Boolean queries

→ Complexity is different when we have a set of answers [Hu and Sintos, 2024]

• For a UCQ Q the task is always PTIME (smallest witnesses have size ≤ |Q|)
2/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ

• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ

• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L

• Note: w is not necessarily a simple path
• We can check in PTIME whether D |= RPQL(s, t)

→ Evaluate in Datalog, or do product construction of D
with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L
• Note: w is not necessarily a simple path

• We can check in PTIME whether D |= RPQL(s, t)
→ Evaluate in Datalog, or do product construction of D

with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Regular Path Queries (RPQs)

• Fix an finite alphabet Σ
• Regular path query RPQL

→ Given by a regular language L on Σ

• Graph database D = (V, E)
→ Vertices V and edges E ⊆ V × Σ× V

• We have D |= RPQL(s, t) with constants s, t if:
• We have a walk w in D from the source s to the target t
• The concatenation of the edge labels of w is in L
• Note: w is not necessarily a simple path

• We can check in PTIME whether D |= RPQL(s, t)
→ Evaluate in Datalog, or do product construction of D

with automaton for L

Σ = {a,b}

L = a∗ ba∗

s t

a a
a

a a
a a

b

3/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N

• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is...

in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Smallest Witness for RPQs

• Decision problem SWL for a fixed regular language L:
• Input: graph database D, vertices s and t integer k ∈ N
• Output: is there a subdatabase D′ ⊆ D with ≤ k edges that satisfies RPQL(s, t)

→ What is the complexity of SWL depending on the language L?

First results:

• SWL is always in NP
→ Guess the subdatabase D′ with |D′| ≤ k and verify D′ |= RPQL(s, t)

• If L is a finite language, then SWL is in PTIME
→ Follows from tractability for UCQs

• For L = a∗, we have that SWL is... in PTIME
→ Compute the shortest path from s to t and check that it has ≤ k edges

4/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)

• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)

• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t

• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t

• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ...

Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:

• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ

• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path
from si to ti for each 1 ≤ i ≤ ℓ

5/11

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about L = a∗ ba∗?

• First guess the b-edge b(u, v)
• Idea: compute shortest a-paths p1

from s to u and p2 from v to t
• Problem: p1 and p2 may share edges

• What matters is to minimize
|p1 ∪ p2|

s

t

D

u

v
b

p1 : a∗

p2 : a∗

Theorem (Feldman and Ruhl, 2006)
The following Directed Steiner Network problem is in PTIME for any fixed ℓ ∈ N:
• Input: directed graph G, vertices s1, t1, . . . , sℓ, tℓ
• Output: subgraph G′ ⊆ G of minimum cardinality that has a directed path

from si to ti for each 1 ≤ i ≤ ℓ 5/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path,

and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path,

and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path,

and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!

• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!

• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!

• Is this problem in PTIME?

6/11

Parity Constraints

What about L = (aa)∗?

“Given a graph G, source s, and target t, find an st-walk of even length that uses
the least number of distinct edges”

s s′

a

b

c

d

e

t

f g h

i

j

k

Length = 7

Length = 5

Length = 12, #edges = 8

Length = 10, #edges = 9

• It may not be a simple path, and it may not be a shortest walk!
• Is this problem in PTIME?

6/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w

• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w

• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C

• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C

• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · ·

C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t

7/11

Tractability for Parity Constraints (Sketch)

“Find an st-walk w of even length that uses the least number of distinct edges”

• There are no even-length cycles in w
• There are no two odd-length cycles in w

→ Case 1: w has no cycle (and length = #edges)

→ Case 2: w is a path P1 then an odd cycle C then a path P2

• When P2 leaves C it does not re-enter C
• P2 cannot enter P1, leave P1, and re-enter later

P
1

P
2

C
odd

C
odd

P
2

P
1

So Case 2 must be:

s · · · C

· · ·

· · ·

t 7/11

Tractability for Modularity Constraints

What about L = (aq)∗ar?

(st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length

• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)

• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

Tractability for Modularity Constraints

What about L = (aq)∗ar? (st-walk of length r mod q with min. #distinct edges)

Theorem (A., Groz, Wein, ITCS’25)
For any fixed q > 0 and 0 ≤ r < q, letting L = (aq)∗ar , the problem SWL is in PTIME

Proof sketch:
• An optimal walk w will not have too many detours

• Detour: taking a new edge (u, v) then going back to a
vertex already reachable from u

• Only useful to change the remainder of the length
• After O(log q) detours, all possible remainders achieved

u

vnew edge

existing path

• The cutwidth of a graph spanned by walk w is bounded by O(#detours of w)
• Bounded-cutwidth subgraphs can be found by dynamic programming

8/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗?

Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3

· · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits

9/11

An Intractable Case

What about L = (a+ c)∗ b (a+ d)∗? Then SWL is NP-complete (from 3-SAT)

Variable guess gadget

Clause check gadget

s

t

¬x1

x1

¬x2

x2

¬x3

x3 · · ·

Clause x1 ∨ ¬x2 ∨ x3

· · ·

Minimizing #distinct edges forces that all a-edges in the clause checks are revisits
9/11

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoı̂t Groz)
For every regular language L, then SWL is either in PTIME or NP-complete

Current status:

• Tractability via Directed Steiner Network or by the r mod q argument
• These two techniques can be combined
• Similar techniques seem to cover:

• Arbitrary groups, beyond Z/qZ
• The “multilevel” case: a1

∗ b1 (a1 + a2)
∗ b2 · · · (a1 + · · ·+ an)∗

Reminiscent of CSP/VSCP but no clear connection:

SWL: “For fixed RHS structure HL, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to HL”

10/11

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoı̂t Groz)
For every regular language L, then SWL is either in PTIME or NP-complete

Current status:

• Tractability via Directed Steiner Network or by the r mod q argument
• These two techniques can be combined

• Similar techniques seem to cover:
• Arbitrary groups, beyond Z/qZ
• The “multilevel” case: a1

∗ b1 (a1 + a2)
∗ b2 · · · (a1 + · · ·+ an)∗

Reminiscent of CSP/VSCP but no clear connection:

SWL: “For fixed RHS structure HL, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to HL”

10/11

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoı̂t Groz)
For every regular language L, then SWL is either in PTIME or NP-complete

Current status:

• Tractability via Directed Steiner Network or by the r mod q argument
• These two techniques can be combined
• Similar techniques seem to cover:

• Arbitrary groups, beyond Z/qZ
• The “multilevel” case: a1

∗ b1 (a1 + a2)
∗ b2 · · · (a1 + · · ·+ an)∗

Reminiscent of CSP/VSCP but no clear connection:

SWL: “For fixed RHS structure HL, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to HL”

10/11

Open Question 1: Dichotomy on Smallest Witness for RPQs?

Conjecture (with Benoı̂t Groz)
For every regular language L, then SWL is either in PTIME or NP-complete

Current status:

• Tractability via Directed Steiner Network or by the r mod q argument
• These two techniques can be combined
• Similar techniques seem to cover:

• Arbitrary groups, beyond Z/qZ
• The “multilevel” case: a1

∗ b1 (a1 + a2)
∗ b2 · · · (a1 + · · ·+ an)∗

Reminiscent of CSP/VSCP but no clear connection:

SWL: “For fixed RHS structure HL, given a LHS structure G, find a minimal
substructure of G that does not have a homomorphism to HL”

10/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q

• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]

• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut

• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]
• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!

11/11

Open Question 2: Connections to Resilience?

Fix a monotone Boolean query Q, read as input a database D

• Smallest Witness for Q: a subdatabase D′ ⊆ D of minimum size with D′ |= Q
• Resilience for Q: a subdatabase D′ ⊆ D of maximum size with D′ ̸|= Q

What is the complexity of computing resilience?

• sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
• in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
• Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]

• But for databases with weighted facts, and opaque (but decidable) criterion

→ Is there a unified understanding of the tractability frontier of both problems?

Thanks for your attention!
11/11

Acknowledgements

Slide 7: Thanks to Nicole Wein for preparing some of the drawings.

References i

Amarilli, A., Gatterbauer, W., Makhija, N., and Monet, M. (2025a).
Resilience for regular path queries: Towards a complexity classification.
In PODS.
Amarilli, A., Groz, B., and Wein, N. (2025b).
Edge-minimum walk of modular length in polynomial time.
In ITCS.
Bodirsky, M., Semanišinová, Ž., and Lutz, C. (2024).
The complexity of resilience problems via valued constraint satisfaction
problems.
In LICS.

https://arxiv.org/abs/2412.09411
https://2025.sigmod.org/
https://arxiv.org/abs/2412.01614
http://itcs-conf.org/itcs25/itcs25-cfp.html

References ii

Feldman, J. and Ruhl, M. (2006).
The directed steiner network problem is tractable for a constant number of
terminals.
SIAM Journal on Computing, 36(2).

Freire, C., Gatterbauer, W., Immerman, N., and Meliou, A. (2015).
The complexity of resilience and responsibility for self-join-free conjunctive
queries.
PVLDB, 9(3).
Hu, X. and Sintos, S. (2024).
Finding smallest witnesses for conjunctive queries.
In ICDT.

References iii

Miao, Z., Roy, S., and Yang, J. (2019).
Explaining wrong queries using small examples.
In SIGMOD.

	Appendix

