

Antoine Amarilli¹

Joint work with Benoît Groz, Nicole Wein

May 28, 2025

¹Inria Lille

• Fix a Boolean query Q

• Fix a Boolean query Q

 $Q: \exists xyz \ R(x,y), R(y,z)$

• Fix a Boolean query Q

 $Q: \exists xyz \ R(x,y), R(y,z)$

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Fix a Boolean query Q

$$Q: \exists xyz \ R(x,y), R(y,z)$$

 \rightarrow Take *Q* monotone: if $D \subseteq D'$ and $D \models Q$ then $D' \models Q$

• Receive as input a **database D**

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a database D

 $Q: \exists xyz \ R(x,y), R(y,z)$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a database D

 \rightarrow We will always require that $D \models Q$

Q : $\exists xyz \ R(x,y), R(y,z)$

• Fix a Boolean query Q

 \rightarrow Take *Q* monotone: if $D \subseteq D'$ and $D \models Q$ then $D' \models Q$

• Receive as input a database D

 \rightarrow We will always require that $D \models Q$

Q : $\exists xyz \ R(x, y), R(y, z)$

 $\{f_1,f_2,f_3,f_4\}\models Q$

• Fix a Boolean query Q

 \rightarrow Take *Q* monotone: if $D \subseteq D'$ and $D \models Q$ then $D' \models Q$

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

• Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$

Q : $\exists xyz \ R(x, y), R(y, z)$

 $\{f_1,f_2,f_3,f_4\}\models Q$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

• Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$

Q : $\exists xyz \ R(x, y), R(y, z)$

 $\{f_1, f_2\} \models Q$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

- Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$
- Smallest witness: a witness of minimum size (#facts)

Q : $\exists xyz \ R(x, y), R(y, z)$

 $\{f_1,f_2,f_3,f_4\}\models Q$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

- Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$
- Smallest witness: a witness of minimum size (#facts)

Q : $\exists xyz \ R(x, y), R(y, z)$

 $\{f_3\} \models Q$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

- Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$
- Smallest witness: a witness of minimum size (#facts)
- We study data complexity: the query **Q** is fixed, the input is the database **D**

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a database D

 \rightarrow We will always require that $D \models Q$

- Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$
- Smallest witness: a witness of minimum size (#facts)
- We study data complexity: the query **Q** is fixed, the input is the database **D**
- We focus on Boolean queries
 - ightarrow Complexity is different when we have a set of answers [Hu and Sintos, 2024]

Q : $\exists xyz \ R(x,y), R(y,z)$

• Fix a Boolean query Q

 \rightarrow Take **Q** monotone: if **D** \subseteq **D**' and **D** \models **Q** then **D**' \models **Q**

• Receive as input a **database D**

 \rightarrow We will always require that $D \models Q$

- Witness: a subdatabase $D' \subseteq D$ such that $D' \models Q$
- Smallest witness: a witness of minimum size (#facts)
- We study data complexity: the query **Q** is fixed, the input is the database **D**
- We focus on Boolean queries
 - \rightarrow Complexity is different when we have a set of answers [Hu and Sintos, 2024]
- + For a UCQ Q the task is always PTIME (smallest witnesses have size $\leq |Q|$)

• Fix an finite alphabet Σ

· Fix an finite alphabet Σ

 $\boldsymbol{\Sigma} = \{ \boldsymbol{a}, \boldsymbol{b} \}$

- $\cdot\,$ Fix an finite alphabet Σ
- Regular path query RPQL
 - $\rightarrow\,$ Given by a regular language L on $\Sigma\,$

$$\Sigma = \{ \mathbf{a}, \mathbf{b} \}$$

- $\cdot\,$ Fix an finite $alphabet\,\Sigma$
- Regular path query RPQL

 $\rightarrow\,$ Given by a regular language L on $\Sigma\,$

 $\Sigma = \{a, b\}$ $L = a^* b a^*$

- $\cdot\,$ Fix an finite alphabet Σ
- Regular path query RPQ_L
 - $\rightarrow~$ Given by a regular language L on Σ
- Graph database D = (V, E)
 - $\rightarrow~$ Vertices V and edges $\textit{E} \subseteq \textit{V} \times \Sigma \times \textit{V}$

 $\Sigma = \{a, b\}$ $L = a^* b a^*$

- $\cdot\,$ Fix an finite alphabet Σ
- Regular path query RPQ_L

 $\rightarrow~$ Given by a regular language L on Σ

• Graph database D = (V, E)

 \rightarrow Vertices V and edges $E \subseteq V \times \Sigma \times V$

- $\cdot\,$ Fix an finite alphabet Σ
- Regular path query RPQ_L
 - $\rightarrow~$ Given by a regular language L on Σ
- Graph database D = (V, E)
 - $\rightarrow~Vertices~V$ and $edges~E\subseteq V\times\Sigma\times V$
- We have $D \models \mathsf{RPQ}_L(s, t)$ with constants s, t if:
 - We have a walk w in D from the source s to the target t
 - The concatenation of the edge labels of **w** is in **L**

 $\Sigma = \{a, b\}$ $I = a^* b a^*$

- $\cdot\,$ Fix an finite alphabet Σ
- \cdot Regular path query RPQ_L
 - $\rightarrow~$ Given by a regular language L on Σ
- Graph database D = (V, E)
 - $\rightarrow~$ Vertices V and edges $\textit{E} \subseteq \textit{V} \times \Sigma \times \textit{V}$
- We have $D \models \operatorname{RPQ}_L(s, t)$ with constants s, t if:
 - We have a walk w in D from the source s to the target t
 - The concatenation of the edge labels of **w** is in **L**

 $\Sigma = \{ a, b \}$ $I = a^* b a^*$

- $\cdot\,$ Fix an finite alphabet Σ
- \cdot Regular path query RPQ_L
 - $\rightarrow~$ Given by a regular language L on Σ
- Graph database D = (V, E)
 - $\rightarrow~$ Vertices V and edges $\textit{E} \subseteq \textit{V} \times \Sigma \times \textit{V}$
- We have $D \models \operatorname{RPQ}_L(s, t)$ with constants s, t if:
 - We have a walk w in D from the source s to the target t
 - The concatenation of the edge labels of **w** is in **L**
 - Note: **w** is not necessarily a **simple path**

 $\Sigma = \{a, b\}$ $I = a^* b a^*$

- $\cdot\,$ Fix an finite alphabet Σ
- \cdot Regular path query RPQ_L
 - $\rightarrow~$ Given by a regular language L on Σ
- Graph database D = (V, E)
 - $\rightarrow~$ Vertices V and edges $\textit{E} \subseteq \textit{V} \times \Sigma \times \textit{V}$
- We have $D \models \operatorname{RPQ}_L(s, t)$ with constants s, t if:
 - We have a walk w in D from the source s to the target t
 - The concatenation of the edge labels of **w** is in **L**
 - Note: **w** is not necessarily a **simple path**
- We can check in PTIME whether $D \models \operatorname{RPQ}_L(s, t)$
 - $\rightarrow\,$ Evaluate in Datalog, or do product construction of D with automaton for L

 $\Sigma = \{a, b\}$ $I = a^* b a^*$

- **Decision problem SW**_L for a fixed regular language L:
 - Input: graph database *D*, vertices *s* and *t* integer $k \in \mathbb{N}$

- **Decision problem SW**_L for a fixed regular language L:
 - Input: graph database *D*, vertices *s* and *t* integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$

- **Decision problem SW**_L for a fixed regular language L:
 - Input: graph database *D*, vertices *s* and *t* integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$
- \rightarrow What is the complexity of SW_L depending on the language L?

- **Decision problem SW**_L for a fixed regular language L:
 - Input: graph database *D*, vertices *s* and *t* integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$
- \rightarrow What is the complexity of SW_L depending on the language L?

First results:

• SW_L is always in NP

 \rightarrow Guess the subdatabase D' with $|D'| \leq k$ and verify $D' \models \mathsf{RPQ}_L(s,t)$

- Decision problem SW_L for a fixed regular language L:
 - Input: graph database *D*, vertices *s* and *t* integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$
- \rightarrow What is the complexity of SW_L depending on the language L?

First results:

- SW_L is always in NP
 - \rightarrow Guess the subdatabase *D*' with $|D'| \leq k$ and verify $D' \models \mathsf{RPQ}_L(s,t)$
- If *L* is a finite language, then SW_L is in PTIME
 - ightarrow Follows from tractability for UCQs

- Decision problem SW_L for a fixed regular language L:
 - Input: graph database D, vertices s and t integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$
- \rightarrow What is the complexity of SW_L depending on the language L?

First results:

- SW_L is always in NP
 - \rightarrow Guess the subdatabase *D*' with $|D'| \leq k$ and verify $D' \models \mathsf{RPQ}_L(s,t)$
- If *L* is a finite language, then SW_L is in PTIME
 - $\rightarrow~$ Follows from tractability for UCQs
- For $L = a^*$, we have that SW_L is...

- Decision problem SW_L for a fixed regular language L:
 - Input: graph database D, vertices s and t integer $k \in \mathbb{N}$
 - Output: is there a subdatabase $D' \subseteq D$ with $\leq k$ edges that satisfies $\operatorname{RPQ}_L(s, t)$
- \rightarrow What is the complexity of SW_L depending on the language L?

First results:

- SW_L is always in NP
 - \rightarrow Guess the subdatabase *D*' with $|D'| \leq k$ and verify $D' \models \mathsf{RPQ}_L(s,t)$
- If *L* is a finite language, then SW_L is in PTIME
 - ightarrow Follows from tractability for UCQs
- For $L = a^*$, we have that SW_L is... in PTIME
 - ightarrow Compute the shortest path from s to t and check that it has $\leq k$ edges

What about $L = a^* b a^*$?

What about $L = a^* b a^*$?

• First guess the *b*-edge b(u, v)

What about $L = a^* b a^*$?

• First guess the *b*-edge b(u, v)

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges
 - What matters is to minimize $|p_1 \cup p_2|$

 $\begin{array}{c}
 p_1: a^* \\
s & \downarrow b \\
t & \downarrow v \\
p_2: a^*
\end{array}$

D

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges
 - What matters is to minimize $|p_1 \cup p_2|$

D

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges
 - What matters is to minimize $|p_1 \cup p_2|$

Theorem (Feldman and Ruhl, 2006)

The following **Directed Steiner Network** problem is in PTIME for any fixed $\ell \in \mathbb{N}$:

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges
 - What matters is to minimize $|p_1 \cup p_2|$

D

Theorem (Feldman and Ruhl, 2006)

The following **Directed Steiner Network** problem is in PTIME for any fixed $\ell \in \mathbb{N}$:

- Input: directed graph G, vertices $s_1, t_1, \ldots, s_\ell, t_\ell$

Tractability by Reducing to ... Directed Steiner Network (DSN)

What about $L = a^* b a^*$?

- First guess the b-edge b(u, v)
- Idea: compute shortest *a*-paths p_1 from *s* to *u* and p_2 from *v* to *t*
- Problem: *p*₁ and *p*₂ may share edges
 - What matters is to minimize $|p_1 \cup p_2|$

D

Theorem (Feldman and Ruhl, 2006)

The following **Directed Steiner Network** problem is in PTIME for any fixed $\ell \in \mathbb{N}$:

- \cdot Input: directed graph **G**, vertices $s_1, t_1, \ldots, s_\ell, t_\ell$
- Output: subgraph $G' \subseteq G$ of minimum cardinality that has a directed path from s_i to t_i for each $1 \le i \le \ell$

Parity Constraints

What about $L = (aa)^*$?

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path,

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path,

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path,

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path, and it may not be a shortest walk!

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path, and it may not be a shortest walk!

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

• It may not be a simple path, and it may not be a shortest walk!

"Given a graph *G*, source *s*, and target *t*, find an *st*-walk of even length that uses the least number of distinct edges"

- It may not be a simple path, and it may not be a shortest walk!
- Is this problem in PTIME?

"Find an **st**-walk **w** of even length that uses the least number of distinct edges"

• There are no **even-length cycles** in **w**

"Find an **st**-walk **w** of even length that uses the least number of distinct edges"

• There are no **even-length cycles** in **w**

- There are no even-length cycles in w
- There are no two odd-length cycles in w

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w

- There are no even-length cycles in w
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)

- There are no even-length cycles in w
- There are no two odd-length cycles in w

- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P_1 then an odd cycle C then a path P_2

- There are no even-length cycles in w
- There are no two odd-length cycles in w

- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P_1 then an odd cycle C then a path P_2
 - When P₂ leaves C it does not re-enter C

- There are no even-length cycles in w
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When P₂ leaves C it does not re-enter C

"Find an *st*-walk *w* of even length that uses the least number of distinct edges"

even

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P_1 then an odd cycle C then a path P_2
 - When *P*₂ leaves *C* it does not re-enter *C*
 - P₂ cannot enter P₁, leave P₁, and re-enter later

"Find an *st*-walk *w* of even length that uses the least number of distinct edges"

even

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When *P*₂ leaves *C* it does not re-enter *C*
 - P₂ cannot enter P₁, leave P₁, and re-enter later

"Find an *st*-walk *w* of even length that uses the least number of distinct edges"

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When *P*² leaves *C* it does not re-enter *C*
 - P₂ cannot enter P₁, leave P₁, and re-enter later

So Case 2 must be:

even

"Find an *st*-walk *w* of even length that uses the least number of distinct edges"

even

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When P₂ leaves C it does not re-enter C
 - P_2 cannot enter P_1 , leave P_1 , and re-enter later

So Case 2 must be:

$s \longrightarrow \longrightarrow \longrightarrow \cdots \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow$

"Find an **st**-walk **w** of even length that uses the least number of distinct edges"

ever

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When *P*₂ leaves *C* it does not re-enter *C*
 - P₂ cannot enter P₁, leave P₁, and re-enter later

So Case 2 must be:

 $i \longrightarrow \longrightarrow \longrightarrow \longrightarrow \cdots \longrightarrow \longrightarrow \longrightarrow \longrightarrow$

"Find an **st**-walk **w** of even length that uses the least number of distinct edges"

ever

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When P₂ leaves C it does not re-enter C
 - P₂ cannot enter P₁, leave P₁, and re-enter later

So Case 2 must be:

 $s \longrightarrow \longrightarrow \longrightarrow \longrightarrow \cdots \longrightarrow \longrightarrow \longrightarrow -$

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When *P*² leaves *C* it does not re-enter *C*
 - P₂ cannot enter P₁, leave P₁, and re-enter later

"Find an *st*-walk *w* of even length that uses the least number of distinct edges"

ever

- There are no even-length cycles in w
- There are no **two odd-length cycles** in **w**
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When P₂ leaves C it does not re-enter C
 - P_2 cannot enter P_1 , leave P_1 , and re-enter later

- There are no **even-length cycles** in **w**
- There are no two odd-length cycles in w
- \rightarrow Case 1: w has no cycle (and length = #edges)
- \rightarrow Case 2: w is a path P₁ then an odd cycle C then a path P₂
 - When P₂ leaves C it does not re-enter C
 - P₂ cannot enter P₁, leave P₁, and re-enter later

Tractability for Modularity Constraints

What about $L = (a^q)^* a^r$?
Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

Proof sketch:

• An optimal walk **w** will not have too many detours

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (*u*, *v*) then going back to a vertex already reachable from *u*

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (u, v) then going back to a vertex already reachable from u

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (*u*, *v*) then going back to a vertex already reachable from *u*
 - Only useful to change the remainder of the length

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (u, v) then going back to a vertex already reachable from u
 - Only useful to change the remainder of the length
 - After $O(\log q)$ detours, all possible remainders achieved

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

Proof sketch:

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (u, v) then going back to a vertex already reachable from u
 - Only useful to change the remainder of the length
 - After $O(\log q)$ detours, all possible remainders achieved
- The cutwidth of a graph spanned by walk w is bounded by O(# detours of w)

new edge $v \rightarrow v$

existing path

Theorem (A., Groz, Wein, ITCS'25)

For any fixed q > o and $o \le r < q$, letting $L = (a^q)^* a^r$, the problem SW_L is in PTIME

Proof sketch:

- An optimal walk **w** will not have too many detours
 - **Detour**: taking a new edge (u, v) then going back to a vertex already reachable from u
 - Only useful to change the remainder of the length
 - After $O(\log q)$ detours, all possible remainders achieved
- The cutwidth of a graph spanned by walk w is bounded by O(# detours of w)
- Bounded-cutwidth subgraphs can be found by dynamic programming

new edge

existing path

What about $L = (a + c)^* b (a + d)^*$?

Variable guess gadget

Minimizing #distinct edges forces that all *a*-edges in the clause checks are revisits

Conjecture (with Benoît Groz)

For every regular language **L**, then **SW**_L is either **in PTIME** or **NP-complete**

Conjecture (with Benoît Groz)

For every regular language $L\!\!,$ then SW_L is either in PTIME or NP-complete

Current status:

- Tractability via **Directed Steiner Network** or by the *r* mod *q* argument
- These two techniques can be combined

Conjecture (with Benoît Groz)

For every regular language L, then SW_L is either in $\ensuremath{\mathsf{PTIME}}$ or $\ensuremath{\mathsf{NP-complete}}$

Current status:

- Tractability via **Directed Steiner Network** or by the *r* mod *q* argument
- These two techniques can be combined
- Similar techniques seem to cover:
 - Arbitrary groups, beyond $\mathbb{Z}/q\mathbb{Z}$
 - The "multilevel" case: $a_1 * b_1 (a_1 + a_2) * b_2 \cdots (a_1 + \cdots + a_n) * b_2 \cdots (a_n + \cdots + a_n) * b_n \cdots (a_n + \cdots + a_n) * b_n$

Conjecture (with Benoît Groz)

For every regular language L, then SW_L is either in $\ensuremath{\mathsf{PTIME}}$ or $\ensuremath{\mathsf{NP-complete}}$

Current status:

- Tractability via **Directed Steiner Network** or by the *r* mod *q* argument
- These two techniques can be combined
- Similar techniques seem to cover:
 - Arbitrary groups, beyond $\mathbb{Z}/q\mathbb{Z}$
 - The "multilevel" case: $a_1 * b_1 (a_1 + a_2) * b_2 \cdots (a_1 + \cdots + a_n) * b_2 \cdots (a_n + \cdots + a_n) * b_n \cdots (a_n + \cdots + a_n) * b_n$

Reminiscent of CSP/VSCP but no clear connection:

SW_L: "For fixed RHS structure H_L, given a LHS structure G, find a minimal substructure of G that does not have a homomorphism to H_L"

Fix a monotone Boolean query **Q**, read as input a database **D**

• Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$

Fix a monotone Boolean query **Q**, read as input a database **D**

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

Fix a monotone Boolean query **Q**, read as input a database **D**

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

Fix a monotone Boolean query **Q**, read as input a database **D**

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

What is the complexity of computing resilience?

• **sometimes NP-complete** for CQ/UCQs

[Freire et al., 2015]

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

- sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

- sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]
 - But for databases with weighted facts, and opaque (but decidable) criterion

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

- sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]
 - But for databases with weighted facts, and opaque (but decidable) criterion
- \rightarrow Is there a **unified understanding** of the tractability frontier of both problems?

- Smallest Witness for Q: a subdatabase $D' \subseteq D$ of minimum size with $D' \models Q$
- **Resilience** for **Q**: a subdatabase $D' \subseteq D$ of maximum size with $D' \not\models Q$

What is the complexity of computing resilience?

- sometimes NP-complete for CQ/UCQs [Freire et al., 2015]
- in PTIME for some Boolean RPQs, e.g., by computing a minimum cut
- Dichotomy for (2)RPQs via VCSPs [Bodirsky, Semanišinová, Lutz, 2024]
 - But for databases with weighted facts, and opaque (but decidable) criterion
- \rightarrow Is there a **unified understanding** of the tractability frontier of both problems?

Thanks for your attention!

Slide 7: Thanks to Nicole Wein for preparing some of the drawings.
- Amarilli, A., Gatterbauer, W., Makhija, N., and Monet, M. (2025a).
 Resilience for regular path queries: Towards a complexity classification.
 In PODS.
- Amarilli, A., Groz, B., and Wein, N. (2025b).
 Edge-minimum walk of modular length in polynomial time. In *ITCS*.
- Bodirsky, M., Semanišinová, Ž., and Lutz, C. (2024).
 The complexity of resilience problems via valued constraint satisfaction problems.

In LICS.

References ii

Feldman, J. and Ruhl, M. (2006). The directed steiner network problem is tractable for a constant number of terminals.

SIAM Journal on Computing, 36(2).

Freire, C., Gatterbauer, W., Immerman, N., and Meliou, A. (2015).
 The complexity of resilience and responsibility for self-join-free conjunctive queries.

PVLDB, 9(3).

Hu, X. and Sintos, S. (2024).

Finding smallest witnesses for conjunctive queries. In *ICDT*.

