
Efficient Enumeration via Factorized Representations

Antoine Amarilli
August 2nd, 2022

Télécom Paris

1/21

Dramatis Personae

Antoine Amarilli Pierre Bourhis Louis Jachiet Stefan Mengel Matthias Niewerth

And our recent co-authors: Martín Muñoz, Cristian Riveros

2/21

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S.
A Circuit-Based Approach to Efficient Enumeration. ICALP 2017.

Amarilli, A., Bourhis, P., and Mengel, S.
Enumeration on Trees under Relabelings. ICDT 2018.

Niewerth, M.
MSO Queries on Trees: Enumerating Answers under Updates Using Forest Algebras. LICS 2018.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. ICDT 2019.

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M.
Constant-Delay Enumeration for Nondeterministic Document Spanners. TODS 2020.

Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C.
Efficient Enumeration for Annotated Grammars. PODS 2022

3/21

https://arxiv.org/abs/1709.06185
https://arxiv.org/abs/1709.06185

Problem statement

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|)

Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c
a’ b’ c

Results

State

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c
a b’ c
a’ b’ c

Results

State

0011

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c

a’ b c

a b’ c
a’ b’ c

Results

State

010001

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c

a b’ c

a’ b’ c

Results

State

01100111

4/21

Enumeration algorithm

Input

Step 1:
Indexing

in O(|input|) Indexed
input

Step 2:
Enumeration
in O(|result|)

A B C

a b c
a’ b c
a b’ c

a’ b’ c

Results

State

⊥

4/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results

5/21

The knowledge compilation approach to enumeration

Currently:

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Input Enumeration

A B C

a b c
a b’ c

Results

Our idea:

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit

Input Compilation

∪

×

x⊤

×

z

Circuit
∪

×

x⊤

×

z

Circuit Enumeration

A B C

a b c
a b’ c

Results 5/21

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

6/21

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

6/21

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

6/21

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

6/21

Set circuits

∪

×

x⊤

×

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Constant gates: ⊤ ⊥

• Internal gates: × ∪

6/21

Semantics of set circuits

∪

×

x⊤

×

y

{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}

{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Semantics of set circuits

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}
Every gate g captures a set S(g) of sets (called assignments)

• Variable gate with label x: S(g) := {{x}}

• ⊤-gates: S(g) = {{}}

• ⊥-gates: S(g) = ∅

• ×-gate with children g1,g2:
S(g) := {s1 ∪ s2 | s1 ∈ S(g1), s2 ∈ S(g2)}

• ∪-gate with children g1,g2:
S(g) := S(g1) ∪ S(g2)

Task: Enumerate the assignments of the set S(g) captured by a gate g
→E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

7/21

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

8/21

Circuit restrictions

d-DNNF set circuit:

• ∪ are all deterministic:
The inputs are disjoint
(= no assignment is captured by two inputs)

• × are all decomposable:
The inputs are independent
(= no variable x has a path to two different inputs)

∪

×

x⊤

×

y
{{x}} {{y}}{{}}

{{x}} {{x, y}}

{{x}, {x, y}}

8/21

Set circuits vs factorized representations

A B C

a b c
a1 b′ c′

a2 b′ c′

∪

× ×

× ⟨C : c⟩

⟨A : a⟩ ⟨B : b⟩

∪

⟨A : a1⟩ ⟨A : a2⟩

×

⟨B : b′⟩ ⟨C : c′⟩

• Set circuits can be seen as factorized representations
→ Not necessarily well-typed, height and/or assignment size may be non-constant

• Determinism: unions are disjoint
• Decomposability: no duplicate attribute names in products
• Structuredness: always the same decomposition of the attributes

9/21

Main results

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

10/21

Main results

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments with
preprocessing linear in |C| and delay linear in each assignment

Also: restrict to assignments of constant size k ∈ N

Theorem
Given a d-DNNF set circuit C, we can enumerate its captured assignments of size ≤ k
with preprocessing linear in |C| and constant delay

10/21

Proof techniques

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/21

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/21

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/21

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/21

Proof overview

Preprocessing phase:
∪

×

x z

d-DNNF
set circuit

Normalization
(linear-time)

×

x z

Normalized
circuit

Indexing
(linear-time)

×

x z

Indexed
normalized

circuit

Enumeration phase:
×

x z

Indexed
normalized

circuit

Enumeration
(linear delay

in each result)

A B C

a b c
a b’ c

Results

11/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x :

enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates

12/21

Enumerating captured assignments of d-DNNF set circuits

Task: Enumerate the assignments of the set S(g) captured by a gate g

→ E.g., for S(g) = {{x}, {x, y}}, enumerate {x} and then {x, y}

Base case: variable x : enumerate {x} and stop

∪-gate
∪

g g′

Concatenation: enumerate S(g) and
then enumerate S(g′)

Determinism: no duplicates

×-gate
×

g g′

Lexicographic product: enumerate S(g) and for
each result t enumerate S(g′) and concatenate t
with each result

Decomposability: no duplicates
12/21

Normalization: handling ∅

×

×

x ⊥

y

{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅

• then get rid of the gate

13/21

Normalization: handling ∅

×

×

x ⊥

y
{{x}} ∅

{{y}}∅

∅

• Problem: if S(g) = ∅ we waste time

• Solution: in preprocessing
• compute bottom-up if S(g) = ∅
• then get rid of the gate

13/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:

• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)

• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}} {{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates

• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Normalization: handling empty assignments

×

×

×

x

×

×

×

{{}}

{{}}

{{}}

{{x}}

{{x}}

{{x}}

{{x}}

• Problem: if S(g) contains {} we waste time in
chains of ×-gates

• Solution:
• split g between S(g) ∩ {{}} and S(g) \ {{}} (homogenization)
• remove inputs with S(g) = {{}} for ×-gates
• collapse ×-chains with fan-in 1

→ Now, when traversing a ×-gate we make progress: non-trivial split of each set

14/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g

15/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
15/21

Indexing: handling ∪-hierarchies

∪

g1 ∪

∪

g2 g3

g4

∪ • Problem: we waste time in ∪-hierarchies
to find a reachable exit (non-∪ gate)

• Solution: compute reachability index

• Problem: must be done in linear time

• Solution: Determinism ensures we have a multitree
(we cannot have the pattern at the right)

• Custom constant-delay reachability index for multitrees

∪

g
15/21

Applications

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/21

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/21

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)

16/21

Application 1: MSO query evaluation on trees

Data: a tree T where nodes have a color from an
alphabet

1
5

76
2

43

? Query Q in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Find the pairs of a pink
node and a blue node?”
Q(x, y) := P (x) ∧ P (y)

i Result: Enumerate all pairs (a,b) of nodes of T such
that Q(a,b) holds

results: (2, 7), (3, 7)

Data complexity: Measure efficiency as a function of T (the query Q is fixed)
16/21

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’15, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/21

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’15, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/21

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’15, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/21

Application 1: Results

Theorem [Bagan, 2006, Kazana and Segoufin, 2013]
We can enumerate the answers of MSO queries on trees with linear-time preprocessing
and constant delay.

We can prove this with our methods:

Theorem (A., Bourhis, Jachiet, Mengel, ICALP’15, ICALP’17)
For any bottom-up deterministic tree automaton A and input tree T,
we can build a d-DNNF set circuit capturing the results of A on T in O(|A| × |T|)

• Can be extended to support relabeling updates to the tree in O(log n) time
(A., Bourhis, Mengel, ICDT’18)

• Same result for leaf insertion/deletion (A., Bourhis, Mengel, Niewerth, PODS’19)
up to fixing a buggy result [Niewerth, 2018]

17/21

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/21

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/21

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)

18/21

Application 2: Enumerating matches of nondeterministic document spanners

Data: a text T
Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer
science (office C201-4) in the DIG team of Télécom ParisTech, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies
PhD in computer science awarded by Télécom ParisTech on March 14, 2016. Former student of the École normale supérieure.
test@example.com More Résumé Location Other sites Blogging: a3nm.net/blog Git: a3nm.net/git ...

? Query: a pattern P given as a regular expression

P := ␣ [a-z0-9.]∗ @ [a-z0-9.]∗ ␣

i Output: the list of substrings of T that match P:

[186, 200⟩, [483, 500⟩, . . .

Goal:

• be very efficient in T (constant-delay)

• be reasonably efficient in P (polynomial-time)
18/21

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width structured DNNFs
→ Actually equivalent to MSO evaluation on text; generalizes to trees

19/21

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width structured DNNFs
→ Actually equivalent to MSO evaluation on text; generalizes to trees

19/21

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width structured DNNFs

→ Actually equivalent to MSO evaluation on text; generalizes to trees

19/21

Application 2: Results

Theorem (A., Bourhis, Mengel, Niewerth, ICDT’19)
We can enumerate all matches of an input nondeterministic automaton with captures
on an input text with

• Preprocessing linear in the text and polynomial in the automaton

• Delay constant in the text and polynomial in the automaton

→ Generalizes earlier result on deterministic automata [Florenzano et al., 2018]

• Does not really use d-DNNFs, but bounded-width structured DNNFs
→ Actually equivalent to MSO evaluation on text; generalizes to trees

19/21

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/21

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/21

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators)

20/21

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]

• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic
pushdown annotators)

20/21

Application 3: Enumerating matches of annotated grammars

Data: a text T, e.g., source code
long elt, prev, elt2, prev2=-1;
int ret = fscanf(fi, "%ld%ld", &elt, &prev);
if (ret != 2) {
fprintf(stderr, "Bad offsets after position %ld in index!\n", pi);
exit(1);

}

? Query: a pattern P given as a context-free grammar with annotated terminals

P := “find all quoted strings in the program”

Theorem (A., Jachiet, Muñoz, Riveros, PODS’22)
Given an unambiguous annotation grammar G and input text w, we can enumerate the
matches with preprocessing O(|G| × |w|3) and delay linear in each assignment

• Improves on a quintic preprocessing result [Peterfreund, 2021]
• Quadratic and linear preprocessing for subclasses (rigid grammars, deterministic

pushdown annotators) 20/21

Conclusion

Summary and conclusion

• Enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant size

→ Applies to MSO enumeration on words and trees
→ Applies to enumeration of the matches of annotated context-free grammars (with

more expensive preprocessing)

Future work:

• In-order enumeration
• Linear-time preprocessing on more general context-free grammar classes
• Connect results on updates to incremental maintenance for regular languages

(A., Jachiet, Paperman, ICALP’21)
Thanks for your attention!

21/21

Summary and conclusion

• Enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant size

→ Applies to MSO enumeration on words and trees
→ Applies to enumeration of the matches of annotated context-free grammars (with

more expensive preprocessing)

Future work:

• In-order enumeration
• Linear-time preprocessing on more general context-free grammar classes
• Connect results on updates to incremental maintenance for regular languages

(A., Jachiet, Paperman, ICALP’21)

Thanks for your attention!

21/21

Summary and conclusion

• Enumerate the captured assignments of d-DNNF set circuits
→ with preprocessing linear in the d-DNNF
→ in delay linear in each assignment
→ in constant delay for constant size

→ Applies to MSO enumeration on words and trees
→ Applies to enumeration of the matches of annotated context-free grammars (with

more expensive preprocessing)

Future work:

• In-order enumeration
• Linear-time preprocessing on more general context-free grammar classes
• Connect results on updates to incremental maintenance for regular languages

(A., Jachiet, Paperman, ICALP’21)
Thanks for your attention!

21/21

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017).
A Circuit-Based Approach to Efficient Enumeration.
In ICALP.
Amarilli, A., Bourhis, P., and Mengel, S. (2018).
Enumeration on Trees under Relabelings.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document Spanners.
In ICDT.

https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1709.06185
https://edbticdt2018.at/
https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/

References ii

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates.
In PODS.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.
Amarilli, A., Jachiet, L., Muñoz, M., and Riveros, C. (2022).
Efficient Enumeration for Annotated Grammars.
In PODS.
Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.

https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/2201.00549
https://2022.sigmod.org/
http://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/

References iii

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant delay algorithms for regular document spanners.
In PODS.
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).
Niewerth, M. (2018).
MSO queries on trees: Enumerating answers under updates using forest algebras.
In LICS.

https://arxiv.org/abs/1803.05277
https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iv

Peterfreund, L. (2021).
Grammars for document spanners.
In ICDT.

https://drops.dagstuhl.de/opus/volltexte/2021/13715/pdf/LIPIcs-ICDT-2021-7.pdf

	Problem statement
	Proof techniques
	Applications
	Conclusion
	Appendix

