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Does query evaluation on probabilistic data have lower complexity
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In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation
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Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)
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Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P
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Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27



Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.10/27



Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

11/27



Non-probabilistic query evaluation on treelike data

Database: a treelike database T ???

? Query Q: a sentence in monadic
second-order logic (MSO)

• P (x) means “x is blue”
• x→ y means “x is the parent of y”

(Metro|RER)∗

| (Bus|Tram)∗

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

11/27



Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
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Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)
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keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

17/27



Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

17/27



Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1
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Provenance circuit
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2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)
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Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬
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Probabilistic query evaluation

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities
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Details of the approach

Probabilistic
treelike data

Each fact can
disappear
with some
probability

→ How to compute e�ciently the probability of the circuit?
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Computing the circuit probability

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q
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Circuits as factorized representations of query results

• Query Q(~X) with free variables

• Query result: all tuples ~a such that D satis�es Q(~a)
This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}
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Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]
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Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• E�cient enumeration algorithms under updates
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation
• Connections to message passing probabilistic algorithms

Pierre Louis Stefan Mikaël Pierre

Thanks for
your attention!
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