
Leveraging the structure of uncertain data

Antoine Amarilli
May 26, 2017

1/27

Example application: Subway routing

2/27

Example application: Subway routing

2/27

Example application: Subway routing

2/27

Example application: Subway routing

2/27

Example application: Subway routing

(Metro|RER)*|(Bus|Tram)*
2/27

Database theory and query evaluation

136

23 14

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

3/27

Database theory and query evaluation

136

23 14

Query?

+

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

3/27

Database theory and query evaluation

136

23 14

Query?

+

Database

• (Hyper)graph

• Collection of
 ground facts
G(aa1, ab2), G(ab2, ac3),
S(aa1, m4), S(ab2, rB), ...

• Regular path

∀X(rm ∈ X ∧ ∀xy

i Result

• TRUE/FALSE
↔ Model checking(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

3/27

Probabilistic query evaluation

136

23 14

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

4/27

Probabilistic query evaluation

136

23 14

4/27

Probabilistic query evaluation

136

23 1495%

5% 60

98%

2% 60

4/27

Probabilistic query evaluation

• (Hyper)graph

• Collection of
 ground facts

Probabilistic
database

+ independent
probabilities

136

23 1495%

5% 60

98%

2% 60

4/27

Probabilistic query evaluation

Query?

+

• (Hyper)graph

• Collection of
 ground facts

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

Probabilistic
database

+ independent
probabilities

136

23 1495%

5% 60

98%

2% 60

4/27

Probabilistic query evaluation

Query?

+

• (Hyper)graph

• Collection of
 ground facts

• Regular path

∀X(rm ∈ X ∧ ∀xy

(Metro|RER)*

• Logic formula
(x ∈ X ∧ G(x, y) →
y ∈ X)) → gn ∈ X

|(Bus|Tram)*

Probabilistic
database

+ independent
probabilities

i
Probabilistic
Result

• Probability
 according to
 the input
 distribution

136

23 1495%

5% 60

98%

2% 60

proba to be on time: 98%

4/27

Computational complexity

• Computing paths on a large graph:
→ Well-studied problem, e�cient algorithms

→ #P-hard computational complexity in the database

5/27

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ ???

→ #P-hard computational complexity in the database

5/27

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ Exponential number of possibilities

→ #P-hard computational complexity in the database

5/27

Computational complexity

50%

90%

42%

37%

90%

83%

78%

72%

• Computing paths on a large probabilistic graph:
→ Exponential number of possibilities
→ #P-hard computational complexity in the database 5/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree

6/27

Idea: use the structure of data

→ Shortest path: very easy on a large tree
6/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:

• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees

• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”

• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:

• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees

• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...

7/27

Leveraging the structure of uncertain data

Does query evaluation on probabilistic data have lower complexity
when the structure of the data is close to a tree?

In this talk:

• Existing results on non-probabilistic data:
• Tree automata, to evaluate queries on trees
• Treewidth, formalizes the notion of being “close to a tree”
• Courcelle’s theorem

• Introduce new tools and results:
• Provenance circuits of tree automata on uncertain trees
• Applications to probabilistic query evaluation

• Other applications: Counting, enumeration, provenance...
7/27

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

8/27

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

9/27

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

9/27

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

9/27

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if the tree T satis�es the query Q

Computational complexity as a function of T
(the query Q is �xed)

9/27

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”

• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}

• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}

• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.

10/27

Tree automata

Tree alphabet:

>

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton
• “Is there both a pink and a blue node?”
• States: {⊥,B,P,>}
• Final states: {>}
• Initial function: ⊥ P B

• Transitions (examples):
P

⊥P

>

BP

⊥

⊥⊥

Theorem [Thatcher and Wright, 1968]
MSO and tree automata have the same expressive power on trees

Corollary
Non-probabilistic query evaluation of MSO on trees is in linear time.10/27

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a
color from an alphabet

? Query Q: a sentence in monadic
second-order logic (MSO)
• P (x) means “x is blue”
• x→ y means “x is the parent of y”

“Is there both a pink
and a blue node?”
∃x y P (x) ∧ P (y)

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

11/27

Non-probabilistic query evaluation on treelike data

Database: a treelike database T ???

? Query Q: a sentence in monadic
second-order logic (MSO)

• P (x) means “x is blue”
• x→ y means “x is the parent of y”

(Metro|RER)∗

| (Bus|Tram)∗

i Result: TRUE/FALSE indicating if T satis�es the query Q

Computational complexity as a function of the tree T
(the query Q is �xed)

11/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant

12/27

Treewidth

Treewidth by example:

• Trees have treewidth 1
• Cycles have treewidth 2
• k-cliques and (k− 1)-grids have treewidth k− 1

→ Treelike: the treewidth is bounded by a constant
12/27

Courcelle’s theorem

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

13/27

Courcelle’s theorem

Tree automaton
(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

13/27

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

13/27

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

13/27

Courcelle’s theorem

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem [Courcelle, 1990]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satis�es Q

13/27

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

14/27

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

15/27

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

15/27

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

15/27

Probabilistic query evaluation on treelike data

• Database D with treewidth ≤ k
for some constant k

• Probability of each fact of D
to be actually present in the data
(independently from other facts)

? Query Q: a sentence in monadic
second-order logic (MSO)

(Metro|RER)∗

| (Bus|Tram)∗

i Result: Probability that the database D satis�es query Q

Computational complexity as a function of the database D
(the query Q is �xed)

15/27

Roadmap

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear

16/27

Roadmap

Tree automaton

Tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Treelike data

linear linear

Provenance
circuit

16/27

Roadmap

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities

16/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A rejects

17/27

Uncertain trees

1

5

76

2

43

A valuation of a tree decides whether to
keep (1) or discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

A: “Is there both a pink and a blue node?”

The tree automaton A accepts

17/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

18/27

Boolean circuit

∨

¬

x

∧

y

• Directed acyclic graph of gates
• Output gate:
• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

18/27

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

19/27

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

19/27

Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:

∧

∨ 7

2 3

Formally:

• Tree automaton A, uncertain tree T, circuit C
• Variable gates of C: nodes of T
• Condition: Let ν be a valuation of T, then ν(C) i� A accepts ν(T)

19/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧

∧
¬

20/27

Building provenance circuits on trees

Theorem
For any bottom-up tree automaton A and input tree T,
we can build a provenance circuit of A on T in O(|A| × |T|)

• Alphabet:
• Automaton: “Is there both
a pink and a blue node?”

• States:
{⊥,B,P,>}

• Final: {>}
• Transitions:

>

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∨ ∨ ∨ ∨
⊥ B P >

∧

∧∧
¬

20/27

Probabilistic query evaluation

Tree automaton

Uncertain
tree encoding

(RER|metro)*
|(bus|tram)*

MSO query

Probabilistic
treelike data

linear linear

Provenance
circuit

Probability
95%

linear

+probabilities

21/27

Details of the approach

Probabilistic
treelike data

Each fact can
disappear
with some
probability

→ How to compute e�ciently the probability of the circuit?

22/27

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

→ How to compute e�ciently the probability of the circuit?

22/27

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

22/27

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Probability

95%

Probability
that the circuit
evaluates
to true

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

22/27

Details of the approach

Uncertain
tree encoding

Probabilistic
treelike data

Each fact can
disappear
with some
probability

Each node label
can disappear with
the probability
of the coded fact

Each variable
can be true with
the probability of
the coded fact

Probability

95%

Probability
that the circuit
evaluates
to true

Provenance
circuit

+probabilities

→ How to compute e�ciently the probability of the circuit?

22/27

Computing the circuit probability

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF...

... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′

P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q

23/27

Computing the circuit probability

The circuit is a d-DNNF... ... so probability computation is easy!

• ¬ gates only have
variables as inputs

¬ g

g′
P(g) := 1− P(g′)

• ∨ gates always have
mutually exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

Theorem [Amarilli et al., 2015]
For any �xed Boolean MSO query Q and k ∈ N,
given a database D of treewidth ≤ k with independent probabilities,
we can compute in linear time the probability that D satis�es Q 23/27

Table of contents

Introduction

Existing tools

Provenance circuits and probabilistic query evaluation

Other applications

24/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables

• Query result: all tuples ~a such that D satis�es Q(~a)
This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts

→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Circuits as factorized representations of query results

• Query Q(~X) with free variables
• Query result: all tuples ~a such that D satis�es Q(~a)

This task can also be solved e�ciently! Make the query Boolean again

→ Add special facts to materialize all possible assignments (linear)
• e.g., Xi(aj): means element ai is mapped to variable Xj

→ Rewrite Q to a Boolean query that reads the special facts
→ Provenance circuit: factorized representation of the query result

X Y

a b
a b′

represented by

×

X(a) ∪

Y(b) Y(b′)

{Y(b), Y(b′)}

{(X(a), Y(b)), (X(a), Y(b′))}

25/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]

26/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]

• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]

26/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]

26/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results

• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]

26/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]

26/27

Application of factorized representations

Factorized representation computable in linear time in the data

• Application: Counting query results [Arnborg et al., 1991]
• Exclusive ∨ means +, independent ∧ means ×
• Reproves existing result: [Arnborg et al., 1991]

• Application: Constant-delay enumeration of query results
• Requires some linear-time preprocessing of the input circuit
• Exclusive ∨ means disjoint ∪, independent ∧ means relational ×
• New modular proof of existing enumeration result
[Bagan, 2006, Kazana and Segou�n, 2013, Amarilli et al., 2017a]

• Application: Semiring provenance [Green et al., 2007]
26/27

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• E�cient enumeration algorithms under updates
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation
• Connections to message passing probabilistic algorithms

Pierre Louis Stefan Mikaël Pierre

Thanks for
your attention!

27/27

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• E�cient enumeration algorithms under updates
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation
• Connections to message passing probabilistic algorithms

Pierre Louis Stefan Mikaël Pierre

Thanks for
your attention!

27/27

Conclusion and perspectives

• Other results:
• Lower bounds: probabilistic query evaluation is hard unless
treewidth is bounded (modulo assumptions) [Amarilli et al., 2016]

• Complexity in the query: generally nonelementary but can be
improved [Amarilli et al., 2017b, Amarilli et al., 2017c]

• Ongoing work (with my wonderful co-authors):
• E�cient enumeration algorithms under updates
• More lower bounds results, connections to knowledge compilation
• More expressive provenance: cycluits (circuits with cycles)
• Combined tractability for probabilistic query evaluation
• Connections to message passing probabilistic algorithms

Pierre Louis Stefan Mikaël Pierre

Thanks for
your attention!

27/27

References i

Amarilli, A., Bourhis, P., Jachiet, L., and Mengel, S. (2017a).
A Circuit-Based Approach to E�cient Enumeration.
In ICALP.
Amarilli, A., Bourhis, P., Monet, M., and Senellart, P. (2017b).
Combined Tractability of Query Evaluation via Tree Automata
and Cycluits.
In ICDT.
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance Circuits for Trees and Treelike Instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable Lineages on Treelike Instances: Limits and Extensions.
In PODS.

https://arxiv.org/abs/1702.05589
http://icalp17.mimuw.edu.pl/
https://arxiv.org/abs/1612.04203
https://arxiv.org/abs/1612.04203
http://edbticdt2017.unive.it/
https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/

References ii

Amarilli, A., Monet, M., and Senellart, P. (2017c).
Conjunctive Queries on Probabilistic Graphs: Combined
Complexity.
In PODS.
Arnborg, S., Lagergren, J., and Seese, D. (1991).
Easy problems for tree-decomposable graphs.
J. Algorithms, 12(2):308–340.

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable
with linear delay.
In CSL.

https://arxiv.org/abs/1703.03201
https://arxiv.org/abs/1703.03201
http://sigmod2017.org/

References iii

Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets
of �nite graphs.
Inf. Comput., 85(1).

Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.
Kazana, W. and Segou�n, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

https://hal.archives-ouvertes.fr/docs/00/90/70/85/PDF/cdlin-survey.pdf

References iv

Thatcher, J. W. and Wright, J. B. (1968).
Generalized �nite automata theory with an application to a
decision problem of second-order logic.
Mathematical systems theory, 2(1):57–81.

Image credits

• Slides 2 and 5–6:
• Subway map: https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg (edited), by user Umx on Wikimedia
Commons, public domain

• Ticket t+: http://www.parisvoyage.com/images/cartoon18.jpg, ParisVoyage, fair use
• Terms and conditions: http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf (cropped), RATP, fair use

• Slides 3–4: screenshots from http://lab.vianavigo.com, Stif, fair use

• Slide 4: newpaper articles (fair use) :
• http://www.leparisien.fr/transports/

circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
• http:

//www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
• https://www.rerb-leblog.fr/incident-rer-b-sest-passe-matin/
• http://www.huffingtonpost.fr/2016/12/06/le-rer-b-en-panne-les-voyageurs-nont-pas-eu-dautres-choix-que/
• http://www.lexpress.fr/actualite/societe/trafic/

rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
• http://www.lemonde.fr/entreprises/article/2016/12/07/

ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html

• Slides 6, 13, 16, 21–22: Train map https://commons.wikimedia.org/wiki/File:Carte_TGV.svg?uselang=fr (edited), by users
Jack ma, Muselaar, Benjism89, Pic-Sou, Uwe Dedering, Madcap on Wikimedia Commons, license CC-BY-SA 3.0

• Slide 27: Photos http://www.lifl.fr/~bourhis/pb.png, http://tyrex.inria.fr/people/img/jachiet.png,
http://www.cril.univ-artois.fr/~mengel/snap.jpeg, http://mikael-monet.net/images/moi.jpg,
http://pierre.senellart.com/bubu.jpg, fair use

https://commons.wikimedia.org/wiki/File:Paris_Metro_map.svg
http://www.parisvoyage.com/images/cartoon18.jpg
http://www.vianavigo.com/fileadmin/galerie/pdf/CGU_t_.pdf
http://lab.vianavigo.com
http://www.leparisien.fr/transports/circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
http://www.leparisien.fr/transports/circulation-alternee-a-paris-et-en-banlieue-une-panne-de-rer-et-des-bouchons-06-12-2016-6419610.php
http://www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
http://www.rtl.fr/actu/societe-faits-divers/paris-le-trafic-totalement-interrompu-gare-du-nord-7786171150
https://www.rerb-leblog.fr/incident-rer-b-sest-passe-matin/
http://www.huffingtonpost.fr/2016/12/06/le-rer-b-en-panne-les-voyageurs-nont-pas-eu-dautres-choix-que/
http://www.lexpress.fr/actualite/societe/trafic/rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
http://www.lexpress.fr/actualite/societe/trafic/rer-b-en-panne-retards-du-d-circulation-alternee-deuxieme-journee-de-galere_1857905.html
http://www.lemonde.fr/entreprises/article/2016/12/07/ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html
http://www.lemonde.fr/entreprises/article/2016/12/07/ile-de-france-le-trafic-toujours-interrompu-sur-le-rer-b-en-direction-de-roissy_5044717_1656994.html
https://commons.wikimedia.org/wiki/File:Carte_TGV.svg?uselang=fr
http://www.lifl.fr/~bourhis/pb.png
http://tyrex.inria.fr/people/img/jachiet.png
http://www.cril.univ-artois.fr/~mengel/snap.jpeg
http://mikael-monet.net/images/moi.jpg
http://pierre.senellart.com/bubu.jpg

	Introduction
	Existing tools
	Provenance circuits and probabilistic query evaluation
	Other applications

