
Probabilistic Databases: Introduction
EDBT-Intended Summer School

Antoine Amarilli

1/10

Uncertain data: Practical motivations

Numerous sources of uncertain data:

• Measurement errors
• Data integration from contradicting sources
• Imprecise mappings between heterogeneous schemata
• Imprecise automated processes (information extraction, NLP, etc.)
• Imperfect human judgment
• Lies, opinions, rumors

2/10

Use case: Web information extraction

Never-ending Language Learning (NELL, CMU), http://rtw.ml.cmu.edu/rtw/kbbrowser/
3/10

http://rtw.ml.cmu.edu/rtw/kbbrowser/

Use case: Web information extraction

Subject Predicate Object Confidence

Elvis Presley diedOnDate 1977-08-16 97.91%
Elvis Presley isMarriedTo Priscilla Presley 97.29%
Elvis Presley influences Carlo Wolff 96.25%

YAGO, https://www.yago-knowledge.org/

3/10

https://www.yago-knowledge.org/

Other use case: Information extraction from scientific articles

����������������

�������������� ��������� ���������� �����

�������������������������������� ���������������

����

���

���

��� �������� ��������� ��������� ���� �������
��

���
��

���� ����

������� ������� �������

�������� ��������� ��� ��

�������� ��������� ��� �������

������������������� ����������

��������������
�����
��� ���������

�������� ���������

From GeoDeepDive / xDD
4/10

Other use case: Crowdsourcing

5/10

Other use case: Speech recognition and OCR

6/10

Different types of uncertainty

• The uncertainty can be qualitative (e.g., NULL)...
• ... or quantitative (e.g., 95%)

Further, there are different types:

• Unknown value: NULL in an RDBMS
• Alternative between several possibilities: either A or B or C
• Imprecision on a numeric value: a sensor gives a value that is an approximation of

the actual value
• Confidence in a fact as a whole: cf. information extraction
• Structural uncertainty: the schema of the data itself is uncertain
• Missing data: we know that some data is missing (open-world semantics)

7/10

What happens to this uncertainty?

Naive solution
Forget about uncertainty, or apply a threshold after each computation step

Ideal solution
Instead of neglecting uncertainty, let’s manage it rigorously throughout the whole process
of answering a query

Also: it leads to interesting theoretical questions! :)

8/10

What happens to this uncertainty?

Naive solution
Forget about uncertainty, or apply a threshold after each computation step

Ideal solution
Instead of neglecting uncertainty, let’s manage it rigorously throughout the whole process
of answering a query

Also: it leads to interesting theoretical questions! :)

8/10

What happens to this uncertainty?

Naive solution
Forget about uncertainty, or apply a threshold after each computation step

Ideal solution
Instead of neglecting uncertainty, let’s manage it rigorously throughout the whole process
of answering a query

Also: it leads to interesting theoretical questions! :)

8/10

Possible worlds semantics

Idea: use a representation system

Possible world: A regular (deterministic) relational database

Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over

possible worlds, either:
finite: a set of possible worlds, each with their probability

continuous: more complicated

date teacher

08 Diego 0.9
09 Paolo 0.8
09 Floris 0.7

9/10

Possible worlds semantics

Idea: use a representation system

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds

Probabilistic database: (Compact) representation of a probability distribution over
possible worlds, either:

finite: a set of possible worlds, each with their probability
continuous: more complicated

date teacher

08 Diego 0.9
09 Paolo 0.8
09 Floris 0.7

9/10

Possible worlds semantics

Idea: use a representation system

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over

possible worlds,

either:
finite: a set of possible worlds, each with their probability

continuous: more complicated

date teacher

08 Diego 0.9
09 Paolo 0.8
09 Floris 0.7

9/10

Possible worlds semantics

Idea: use a representation system

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over

possible worlds, either:
finite: a set of possible worlds, each with their probability

continuous: more complicated

date teacher

08 Diego 0.9
09 Paolo 0.8
09 Floris 0.7

9/10

Possible worlds semantics

Idea: use a representation system

Possible world: A regular (deterministic) relational database
Uncertain database: (Compact) representation of a set of possible worlds
Probabilistic database: (Compact) representation of a probability distribution over

possible worlds, either:
finite: a set of possible worlds, each with their probability

continuous: more complicated

date teacher

08 Diego 0.9
09 Paolo 0.8
09 Floris 0.7

9/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
• Present the intensional approach to PQE and its connections to knowledge

compilation and circuit classes
• Present treewidth-based approaches to efficient PQE
• Give an overview of other topics on probabilistic databases

10/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
• Present the intensional approach to PQE and its connections to knowledge

compilation and circuit classes
• Present treewidth-based approaches to efficient PQE
• Give an overview of other topics on probabilistic databases

10/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs

• Present the intensional approach to PQE and its connections to knowledge
compilation and circuit classes

• Present treewidth-based approaches to efficient PQE
• Give an overview of other topics on probabilistic databases

10/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
• Present the intensional approach to PQE and its connections to knowledge

compilation and circuit classes

• Present treewidth-based approaches to efficient PQE
• Give an overview of other topics on probabilistic databases

10/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
• Present the intensional approach to PQE and its connections to knowledge

compilation and circuit classes
• Present treewidth-based approaches to efficient PQE

• Give an overview of other topics on probabilistic databases

10/10

Contents of this course

• Present the most common models of probabilistic data
→ Focus on the simplest one, tuple-independent databases (TID)

• Introduce the probabilistic query evaluation problem (PQE):
→ Central task: evaluating queries over probabilistic databases

• Present the dichotomy by Dalvi and Suciu on the complexity of PQE for UCQs
• Present the intensional approach to PQE and its connections to knowledge

compilation and circuit classes
• Present treewidth-based approaches to efficient PQE
• Give an overview of other topics on probabilistic databases

10/10

Probabilistic Databases: Models and PQE
EDBT-Intended Summer School

Antoine Amarilli

1/25

Relational model by example

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Reservation

id guest room arrival nights

1 1 504 2022-01-01 5
2 2 107 2022-01-10 3
3 3 302 2022-01-15 6
4 2 504 2022-01-15 2
5 2 107 2022-01-30 1

2/25

Relations and databases

Formally:

• A database schema D maps each relation name to an arity
(we add attribute names in our examples)

• A database instance over database schema D maps each relation name R of D with
arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com),
Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

3/25

Relations and databases

Formally:

• A database schema D maps each relation name to an arity
(we add attribute names in our examples)

• A database instance over database schema D maps each relation name R of D with
arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com),
Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

3/25

Relations and databases

Formally:

• A database schema D maps each relation name to an arity
(we add attribute names in our examples)

• A database instance over database schema D maps each relation name R of D with
arity k to a set of k-tuples

We can write tuples as table rows or as ground facts:

Guest

id name email

1 John Smith john.smith@gmail.com
2 Alice Black alice@black.name
3 John Smith john.smith@ens.fr

Guest(1, John Smith, john.smith@gmail.com),
Guest(2, Alice Black, alice@black.name),
Guest(3, John Smith, john.smith@ens.fr)

3/25

Queries

• A query is an arbitrary function over database instances over a fixed schema D
• We only study Boolean queries, i.e., queries returning only true or false

• Example of query languages:
• Conjunctive queries (CQ)

• ∃
∧

· · · : existentially quantified conjunctions of atoms
• Q : ∃x y z x′ y′ Guest(x, y, z) ∧ Guest(x′, y′, z)

• Unions of conjunctive queries (UCQ)
•
⋃

∃
∧

· · · : unions of CQs

• First-Order logic (FO)
• Monadic-Second Order logic (MSO)

4/25

Queries

• A query is an arbitrary function over database instances over a fixed schema D
• We only study Boolean queries, i.e., queries returning only true or false
• Example of query languages:

• Conjunctive queries (CQ)
• ∃

∧
· · · : existentially quantified conjunctions of atoms

• Q : ∃x y z x′ y′ Guest(x, y, z) ∧ Guest(x′, y′, z)

• Unions of conjunctive queries (UCQ)
•
⋃

∃
∧

· · · : unions of CQs

• First-Order logic (FO)
• Monadic-Second Order logic (MSO)

4/25

Queries

• A query is an arbitrary function over database instances over a fixed schema D
• We only study Boolean queries, i.e., queries returning only true or false
• Example of query languages:

• Conjunctive queries (CQ)
• ∃

∧
· · · : existentially quantified conjunctions of atoms

• Q : ∃x y z x′ y′ Guest(x, y, z) ∧ Guest(x′, y′, z)
• Unions of conjunctive queries (UCQ)

•
⋃

∃
∧

· · · : unions of CQs

• First-Order logic (FO)
• Monadic-Second Order logic (MSO)

4/25

Queries

• A query is an arbitrary function over database instances over a fixed schema D
• We only study Boolean queries, i.e., queries returning only true or false
• Example of query languages:

• Conjunctive queries (CQ)
• ∃

∧
· · · : existentially quantified conjunctions of atoms

• Q : ∃x y z x′ y′ Guest(x, y, z) ∧ Guest(x′, y′, z)
• Unions of conjunctive queries (UCQ)

•
⋃

∃
∧

· · · : unions of CQs

• First-Order logic (FO)
• Monadic-Second Order logic (MSO)

4/25

TID

Tuple-independent databases (TID)

• The simplest model: tuple-independent databases
• Annotate each instance fact with a probability

date teacher

08 Diego

90%

09 Paolo

80%

09 Floris

70%

→ Assume independence between facts

5/25

Tuple-independent databases (TID)

• The simplest model: tuple-independent databases
• Annotate each instance fact with a probability

date teacher

08 Diego

90%

09 Paolo

80%

09 Floris

70%

→ Assume independence between facts

5/25

Tuple-independent databases (TID)

• The simplest model: tuple-independent databases
• Annotate each instance fact with a probability

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

→ Assume independence between facts

5/25

Tuple-independent databases (TID)

• The simplest model: tuple-independent databases
• Annotate each instance fact with a probability

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

→ Assume independence between facts

5/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego

09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo

09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%

× (100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%×

(100%− 80%)× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)

× 70%

6/25

Semantics of TID

• Each fact is kept or discarded with the indicated probability
• Probabilistic choices are independent across facts

date teacher

08 Diego 90%
09 Paolo 80%
09 Floris 70%

date teacher

08 Diego
09 Paolo
09 Floris

What’s the probability of this possible world?

90%× (100%− 80%)× 70%

6/25

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...

→ the possible worlds are the subsets of facts of I

→ always keeping facts with probability 1

Formally, for a TID I, the probability of J ⊆ I is:

• product of Pr(F) for each fact F kept in J
• product of 1 − Pr(F) for each fact F not kept in J

7/25

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...

→ the possible worlds are the subsets of facts of I
→ always keeping facts with probability 1

Formally, for a TID I, the probability of J ⊆ I is:

• product of Pr(F) for each fact F kept in J
• product of 1 − Pr(F) for each fact F not kept in J

7/25

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...

→ the possible worlds are the subsets of facts of I
→ always keeping facts with probability 1

Formally, for a TID I, the probability of J ⊆ I is:

• product of Pr(F) for each fact F kept in J
• product of 1 − Pr(F) for each fact F not kept in J

7/25

Getting a probability distribution

The semantics of a TID I is a probability distribution on (non-probabilistic) databases...

→ the possible worlds are the subsets of facts of I
→ always keeping facts with probability 1

Formally, for a TID I, the probability of J ⊆ I is:

• product of Pr(F) for each fact F kept in J
• product of 1 − Pr(F) for each fact F not kept in J

7/25

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1?

• Let N be the number of facts
• There are 2N possible worlds
• The probability of a possible world is a product which involves a factor Pr(Fi) or

1 − Pr(Fi) for each fact F1, . . . , FN
→ The sum of these probabilities is the result of expanding the expression:

(Pr(F1) + (1− Pr(F1)))× · · · × (Pr(FN) + (1− Pr(FN)))

• All factors are equal to 1, so the probabilities sum to 1

8/25

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1?

• Let N be the number of facts
• There are 2N possible worlds

• The probability of a possible world is a product which involves a factor Pr(Fi) or
1 − Pr(Fi) for each fact F1, . . . , FN

→ The sum of these probabilities is the result of expanding the expression:
(Pr(F1) + (1− Pr(F1)))× · · · × (Pr(FN) + (1− Pr(FN)))

• All factors are equal to 1, so the probabilities sum to 1

8/25

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1?

• Let N be the number of facts
• There are 2N possible worlds
• The probability of a possible world is a product which involves a factor Pr(Fi) or

1 − Pr(Fi) for each fact F1, . . . , FN

→ The sum of these probabilities is the result of expanding the expression:
(Pr(F1) + (1− Pr(F1)))× · · · × (Pr(FN) + (1− Pr(FN)))

• All factors are equal to 1, so the probabilities sum to 1

8/25

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1?

• Let N be the number of facts
• There are 2N possible worlds
• The probability of a possible world is a product which involves a factor Pr(Fi) or

1 − Pr(Fi) for each fact F1, . . . , FN
→ The sum of these probabilities is the result of expanding the expression:

(Pr(F1) + (1− Pr(F1)))× · · · × (Pr(FN) + (1− Pr(FN)))

• All factors are equal to 1, so the probabilities sum to 1

8/25

Is it a probability distribution?

Do the probabilities of the possible words always sum to 1?

• Let N be the number of facts
• There are 2N possible worlds
• The probability of a possible world is a product which involves a factor Pr(Fi) or

1 − Pr(Fi) for each fact F1, . . . , FN
→ The sum of these probabilities is the result of expanding the expression:

(Pr(F1) + (1− Pr(F1)))× · · · × (Pr(FN) + (1− Pr(FN)))

• All factors are equal to 1, so the probabilities sum to 1

8/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane

10%

Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane 10%
Joe

80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane 10%
Joe 80%

→ We cannot forbid that both teach the class!

9/25

Expressiveness of TID

Can we represent all probabilistic instances with TID?

“The class is taught by Jane or Joe or no one but not both”

U1

teacher

Jane
π(U1) = 80%

U2

teacher

Joe
π(U2) = 10%

U3

teacher

π(U3) = 10%

teacher

Jane 10%
Joe 80%

→ We cannot forbid that both teach the class!
9/25

BID

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo

80%

09 AM Floris

10%

09 PM Floris

70%

09 PM Paolo

1%

• The blocks are the sets of tuples with the same key
• Each tuple has a probability
• Probabilities must sum up to ≤ 1 in each block

10/25

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo

80%

09 AM Floris

10%

09 PM Floris

70%

09 PM Paolo

1%

• The blocks are the sets of tuples with the same key
• Each tuple has a probability
• Probabilities must sum up to ≤ 1 in each block

10/25

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo

80%

09 AM Floris

10%

09 PM Floris

70%

09 PM Paolo

1%

• The blocks are the sets of tuples with the same key

• Each tuple has a probability
• Probabilities must sum up to ≤ 1 in each block

10/25

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo

80%

09 AM Floris

10%

09 PM Floris

70%

09 PM Paolo

1%

• The blocks are the sets of tuples with the same key
• Each tuple has a probability

• Probabilities must sum up to ≤ 1 in each block

10/25

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

• The blocks are the sets of tuples with the same key
• Each tuple has a probability

• Probabilities must sum up to ≤ 1 in each block

10/25

Block-independent disjoint instances

• A more expressive framework than TID
• Call some attributes the key (underlined)

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

• The blocks are the sets of tuples with the same key
• Each tuple has a probability
• Probabilities must sum up to ≤ 1 in each block

10/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:

• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities

• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID semantics

U

day time teacher

09 AM Paolo 80%
09 AM Floris 10%

09 PM Floris 70%
09 PM Paolo 1%

U

day time teacher

09 AM Paolo
09 AM Floris

09 PM Floris
09 PM Paolo

• For each block:
• Pick one fact according to probabilities
• Possibly no fact if probabilities sum up to < 1

→ Do choices independently in each block

11/25

BID captures TID

• Each TID can be expressed as a BID...

→ Take all attributes as key
→ Each block contains a single fact

U

date teacher

09 Diego

90%

09 Paolo

80%

09 Floris

70%

12/25

BID captures TID

• Each TID can be expressed as a BID...
→ Take all attributes as key
→ Each block contains a single fact

U

date teacher

09 Diego

90%

09 Paolo

80%

09 Floris

70%

12/25

BID captures TID

• Each TID can be expressed as a BID...
→ Take all attributes as key
→ Each block contains a single fact

U

date teacher

09 Diego 90%

09 Paolo 80%

09 Floris 70%

12/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID

→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact

→ We cannot represent this probabilistic instance as a BID

13/25

Expressiveness of BID

Can we represent all probabilistic instances with BID?

“The class is taught by exactly two among Diego, Paolo, Floris.”

U1

teacher

Diego
Paolo
π(U1) = 80%

U2

teacher

Diego
Floris
π(U2) = 10%

U3

teacher

Paolo
Floris
π(U3) = 10%

→ If teacher is a key teacher, then TID
→ If teacher is not a key, then only one fact
→ We cannot represent this probabilistic instance as a BID

13/25

pc-tables

Boolean c-tables

• Set of Boolean variables x1, x2, . . .

• Each fact has a condition: Variables, Boolean operators

date teacher room

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

x1 Jane is sick
x2 Amphi B is available

14/25

Boolean c-tables

• Set of Boolean variables x1, x2, . . .

• Each fact has a condition: Variables, Boolean operators

date teacher room

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

x1 Jane is sick
x2 Amphi B is available

14/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1

• The valuation ν defines a possible world Iν of I containing the tuples
whose Boolean function evaluates to true under ν

• The probability of a valuation ν is:
• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν

• The probability of a valuation ν is:
• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1

• Product of the 1 − pi for the xi with ν(xi) = 0
→ This is like TIDs

• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs

• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J

15/25

pc-tables

A (Boolean) pc-table is:

• a database I where each tuple is annotated by a Boolean function on variables xi
• a probability pi that each variable xi is true (assuming independence)

Formally:

• A Boolean valuation ν of the variables maps each variable xi to 0 or 1
• The valuation ν defines a possible world Iν of I containing the tuples

whose Boolean function evaluates to true under ν
• The probability of a valuation ν is:

• Product of the pi for the xi with ν(xi) = 1
• Product of the 1 − pi for the xi with ν(xi) = 0

→ This is like TIDs
• The probability of a possible world J ⊆ I is the total probability of the valuations ν

such that Iν = J 15/25

pc-table example

date teacher room

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

x1 Jane is sick

→ Probability 10%

x2 Amphi B is available

→ Probability 20%

16/25

pc-table example

date teacher room

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

x1 Jane is sick

→ Probability 10%

x2 Amphi B is available

→ Probability 20%

16/25

pc-table example

date teacher room

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

x1 Jane is sick
→ Probability 10%

x2 Amphi B is available
→ Probability 20%

16/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1

• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν :

(100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%

• Evaluate the conditions
→ Probability of possible world: sum over the valuations

→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations

→ Here: only this valuation, 18%

17/25

pc-table semantics example

date teacher room x1 : 10%, x2 : 20%

04 Jane Amphi A ¬x1

04 Joe Amphi A x1

11 Jane Amphi B x2 ∧ ¬x1

11 Joe Amphi B x2 ∧ x1

11 Jane Amphi C ¬x2 ∧ ¬x1

11 Joe Amphi C ¬x2 ∧ x1

date teacher room

04 Jane Amphi A
04 Joe Amphi A
11 Jane Amphi B
11 Joe Amphi B
11 Jane Amphi C
11 Joe Amphi C

• Take ν mapping x1 to 0 and x2 to 1
• Probability of ν : (100%− 10%)× 20% = 18%
• Evaluate the conditions

→ Probability of possible world: sum over the valuations
→ Here: only this valuation, 18%

17/25

Expressiveness of pc-tables

• pc-tables capture TIDs:
→ Simply give each fact its own probability value

• pc-tables capture BIDs:
→ Make a decision tree for every block

• In fact pc-tables can express arbitrary probability distributions

• Further, they are a strong representation system: the union, product, etc., of two
pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs → easier to characterize tractable queries

18/25

Expressiveness of pc-tables

• pc-tables capture TIDs:
→ Simply give each fact its own probability value

• pc-tables capture BIDs:
→ Make a decision tree for every block

• In fact pc-tables can express arbitrary probability distributions

• Further, they are a strong representation system: the union, product, etc., of two
pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs → easier to characterize tractable queries

18/25

Expressiveness of pc-tables

• pc-tables capture TIDs:
→ Simply give each fact its own probability value

• pc-tables capture BIDs:
→ Make a decision tree for every block

• In fact pc-tables can express arbitrary probability distributions

• Further, they are a strong representation system: the union, product, etc., of two
pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs → easier to characterize tractable queries

18/25

Expressiveness of pc-tables

• pc-tables capture TIDs:
→ Simply give each fact its own probability value

• pc-tables capture BIDs:
→ Make a decision tree for every block

• In fact pc-tables can express arbitrary probability distributions

• Further, they are a strong representation system: the union, product, etc., of two
pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs → easier to characterize tractable queries

18/25

Expressiveness of pc-tables

• pc-tables capture TIDs:
→ Simply give each fact its own probability value

• pc-tables capture BIDs:
→ Make a decision tree for every block

• In fact pc-tables can express arbitrary probability distributions

• Further, they are a strong representation system: the union, product, etc., of two
pc-tables, can be easily represented as a pc-table

Yet, in the rest of the talk, we focus on TIDs → easier to characterize tractable queries
18/25

PQE

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D?

• Probability that Q holds over D:

Pr(D |= Q) =
∑

D′⊆D
D′|=Q

Pr(D′)

• Intuitively: the probability that Q holds is the probability of drawing a possible
world D′ ⊆ D which satisfies Q

Probabilistic query evaluation (PQE) problem for a query Q over TIDs: given a TID,
compute the probability that Q holds

19/25

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D?

• Probability that Q holds over D:

Pr(D |= Q) =
∑

D′⊆D
D′|=Q

Pr(D′)

• Intuitively: the probability that Q holds is the probability of drawing a possible
world D′ ⊆ D which satisfies Q

Probabilistic query evaluation (PQE) problem for a query Q over TIDs: given a TID,
compute the probability that Q holds

19/25

Query evaluation on probabilistic databases (PQE)

How can we evaluate a query Q over a probabilistic database D?

• Probability that Q holds over D:

Pr(D |= Q) =
∑

D′⊆D
D′|=Q

Pr(D′)

• Intuitively: the probability that Q holds is the probability of drawing a possible
world D′ ⊆ D which satisfies Q

Probabilistic query evaluation (PQE) problem for a query Q over TIDs: given a TID,
compute the probability that Q holds

19/25

Example of PQE on TID

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

What is the probability to have a tuple with value New York?

• It is one minus the probability of not having such a tuple
• Not having such a tuple is the independent AND of not having each tuple
• So the result is 1 − (1 − 0.5)× (1 − 0.7) = 0.85

20/25

Example of PQE on TID

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

What is the probability to have a tuple with value New York?

• It is one minus the probability of not having such a tuple

• Not having such a tuple is the independent AND of not having each tuple
• So the result is 1 − (1 − 0.5)× (1 − 0.7) = 0.85

20/25

Example of PQE on TID

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

What is the probability to have a tuple with value New York?

• It is one minus the probability of not having such a tuple
• Not having such a tuple is the independent AND of not having each tuple

• So the result is 1 − (1 − 0.5)× (1 − 0.7) = 0.85

20/25

Example of PQE on TID

name position city classification prob

John Director New York unclassified 0.5
Paul Janitor New York restricted 0.7
Dave Analyst Paris confidential 0.3
Ellen Field agent Berlin secret 0.2
Magdalen Double agent Paris top secret 1.0
Nancy HR director Paris restricted 0.8
Susan Analyst Berlin secret 0.2

What is the probability to have a tuple with value New York?

• It is one minus the probability of not having such a tuple
• Not having such a tuple is the independent AND of not having each tuple
• So the result is 1 − (1 − 0.5)× (1 − 0.7) = 0.85

20/25

Complexity of PQE

Formal question:

• We fix a Boolean query, e.g., ∃xy R(x), S(x, y), T(y)

• We are given a tuple-independent database D, i.e., a relational database where
facts are independent and have probabilities

• Can we compute the total probability of the possible worlds of D that satisfy Q?

• Note that we study data complexity, i.e., Q is fixed and the input is D

21/25

Complexity of PQE

Formal question:

• We fix a Boolean query, e.g., ∃xy R(x), S(x, y), T(y)

• We are given a tuple-independent database D, i.e., a relational database where
facts are independent and have probabilities

• Can we compute the total probability of the possible worlds of D that satisfy Q?

• Note that we study data complexity, i.e., Q is fixed and the input is D

21/25

Complexity of PQE

Formal question:

• We fix a Boolean query, e.g., ∃xy R(x), S(x, y), T(y)

• We are given a tuple-independent database D, i.e., a relational database where
facts are independent and have probabilities

• Can we compute the total probability of the possible worlds of D that satisfy Q?

• Note that we study data complexity, i.e., Q is fixed and the input is D

21/25

Complexity of PQE

Formal question:

• We fix a Boolean query, e.g., ∃xy R(x), S(x, y), T(y)

• We are given a tuple-independent database D, i.e., a relational database where
facts are independent and have probabilities

• Can we compute the total probability of the possible worlds of D that satisfy Q?

• Note that we study data complexity, i.e., Q is fixed and the input is D

21/25

Naive probabilistic query evaluation

• Consider all possible worlds of the input

• Run the query over each possible world

• Sum the probabilities of all worlds that satisfy the query

22/25

Naive probabilistic query evaluation

• Consider all possible worlds of the input

• Run the query over each possible world

• Sum the probabilities of all worlds that satisfy the query

22/25

Naive probabilistic query evaluation

• Consider all possible worlds of the input

• Run the query over each possible world

• Sum the probabilities of all worlds that satisfy the query

22/25

Naive probabilistic query evaluation example

TID D Query Q

in out

A B 0.8
B C 0.2

R(x, y) ∧ R(y, z)

Possible worlds and probabilities:

in out

A B
B C

in out

A B
B C

in out

A B
B C

in out

A B
B C

0.8 × 0.2 (1 − 0.8)× 0.2 0.8 × (1 − 0.2) (1 − 0.8)× (1 − 0.2)

Total probability that Q holds: 0.8 × 0.2 = 0.16.

23/25

Naive probabilistic query evaluation example

TID D Query Q

in out

A B 0.8
B C 0.2

R(x, y) ∧ R(y, z)

Possible worlds and probabilities:

in out

A B
B C

in out

A B
B C

in out

A B
B C

in out

A B
B C

0.8 × 0.2 (1 − 0.8)× 0.2 0.8 × (1 − 0.2) (1 − 0.8)× (1 − 0.2)

Total probability that Q holds: 0.8 × 0.2 = 0.16.

23/25

Naive probabilistic query evaluation example

TID D Query Q

in out

A B 0.8
B C 0.2

R(x, y) ∧ R(y, z)

Possible worlds and probabilities:

in out

A B
B C

in out

A B
B C

in out

A B
B C

in out

A B
B C

0.8 × 0.2 (1 − 0.8)× 0.2 0.8 × (1 − 0.2) (1 − 0.8)× (1 − 0.2)

Total probability that Q holds: 0.8 × 0.2 = 0.16.
23/25

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• In fact, naive evaluation is in #P
→ Can be expressed (up to normalization) as the number of accepting paths of a

nondeterministic PTIME Turing machine
→ To see why: guess a possible world (with the right probabilities) and check the query

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ But some queries admit an efficient algorithm!

24/25

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• In fact, naive evaluation is in #P
→ Can be expressed (up to normalization) as the number of accepting paths of a

nondeterministic PTIME Turing machine
→ To see why: guess a possible world (with the right probabilities) and check the query

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ But some queries admit an efficient algorithm!

24/25

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• In fact, naive evaluation is in #P
→ Can be expressed (up to normalization) as the number of accepting paths of a

nondeterministic PTIME Turing machine
→ To see why: guess a possible world (with the right probabilities) and check the query

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ But some queries admit an efficient algorithm!

24/25

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• In fact, naive evaluation is in #P
→ Can be expressed (up to normalization) as the number of accepting paths of a

nondeterministic PTIME Turing machine
→ To see why: guess a possible world (with the right probabilities) and check the query

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general

→ But some queries admit an efficient algorithm!

24/25

Naive evaluation advantages and drawbacks

• Naive evaluation is always possible

• However, it takes exponential time in general
→ Even if the query output has few possible worlds!
→ Feasible if the input has few possible worlds (few tuples)

• In fact, naive evaluation is in #P
→ Can be expressed (up to normalization) as the number of accepting paths of a

nondeterministic PTIME Turing machine
→ To see why: guess a possible world (with the right probabilities) and check the query

• Probabilistic query evaluation is computationally intractable
so it is unlikely that we can beat naive evaluation in general
→ But some queries admit an efficient algorithm!

24/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?

• It asks: “do we have an R-fact?”
→ It is: 1 −

∏
R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is:

1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −

∏
R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a)

(1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?

• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”

• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x

• We get: 1 −
∏

a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get:

1 −
∏

a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a

(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 −

Pr(R(a))×
(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b

(1 − Pr(S(a,b)))
))

• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 −

Pr(S(a,b)))
))

• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))

• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?

• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?

25/25

Some examples of PQE

• What is the probability of the query: ∃x R(x)?
• It asks: “do we have an R-fact?”

→ It is: 1 −
∏

R(a) (1 − Pr(R(a)))

• What is the probability of the query: ∃xy R(x), S(x, y)?
• It asks: “is there an R-fact which also has an S-fact?”
• Idea: case disjunction based on the value of x
• We get: 1 −

∏
a
(
1 − Pr(R(a))×

(
1 −

∏
b (1 − Pr(S(a,b)))

))
• Make sure you understand why everything is independent in this case!

• What is the probability of the query: ∃xy R(x), S(x, y), T(y)?
• This one is #P-hard!

Research question: can we characterize the easy cases and prove hardness otherwise?
25/25

Probabilistic Databases: The Dichotomy of PQE
EDBT-Intended Summer School

Antoine Amarilli

1/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard

2/13

Research goal: Understanding the complexity of PQE

What is the complexity of PQE(Q) depending on the query Q?

→ Recall that we study data complexity, i.e., Q is fixed and the input is the data

For example:

• For Q : R(x) the problem is easy (PTIME)
• For Q : R(x), S(x, y), T(y) the problem is hard (#P-hard)

We will present the dichotomy of [Dalvi and Suciu, 2007, Dalvi and Suciu, 2012]:

• Small dichotomy: conjunctive queries that are self-join-free and arity-two

• Large dichotomy: arbitrary unions of conjunctive queries

Result of the form:

if Q has a certain form then PQE(Q) is in PTIME, otherwise it is #P-hard
2/13

The “small” Dalvi and Suciu dichotomy

• Conjunctive query (CQ): existentially quantified conjunction of atoms

• Arity-two: all relations are binary
• We represent the queries as graphs: R(x, y), S(y, z) is x y z

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])
Let Q be an arity-two self-join-free CQ:

• If Q is a conjunction of stars, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

3/13

The “small” Dalvi and Suciu dichotomy

• Conjunctive query (CQ): existentially quantified conjunction of atoms

• Arity-two: all relations are binary
• We represent the queries as graphs: R(x, y), S(y, z) is x y z

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])
Let Q be an arity-two self-join-free CQ:

• If Q is a conjunction of stars, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

3/13

The “small” Dalvi and Suciu dichotomy

• Conjunctive query (CQ): existentially quantified conjunction of atoms

• Arity-two: all relations are binary
• We represent the queries as graphs: R(x, y), S(y, z) is x y z

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])
Let Q be an arity-two self-join-free CQ:

• If Q is a conjunction of stars, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

3/13

The “small” Dalvi and Suciu dichotomy

• Conjunctive query (CQ): existentially quantified conjunction of atoms

• Arity-two: all relations are binary
• We represent the queries as graphs: R(x, y), S(y, z) is x y z

• Self-join-free CQ: only one edge of each color (no repeated color)

Theorem ([Dalvi and Suciu, 2007])
Let Q be an arity-two self-join-free CQ:

• If Q is a conjunction of stars, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

3/13

Conjunction of stars

• A star is a CQ with a separator variable that occurs in all edges

• A conjunction of stars is a conjunction of one or several stars

x y
z

w
u v

The following is not a star: x y z w

4/13

Proving the small dichotomy (upper bound, 1)

x y
z

w
u v How to solve PQE(Q) for Q a conjunction of stars?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a1
z

w

x a2
z

w

x a3
z

w

...

• We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

5/13

Proving the small dichotomy (upper bound, 1)

x y
z

w
u v How to solve PQE(Q) for Q a conjunction of stars?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a1
z

w

x a2
z

w

x a3
z

w

...

• We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

5/13

Proving the small dichotomy (upper bound, 1)

x y
z

w
u v How to solve PQE(Q) for Q a conjunction of stars?

x y
z

w • We consider each connected component separately
→ Independent conjunction over the connected components

x a1
z

w

x a2
z

w

x a3
z

w

...

• We can test all possible values of the separator variable
→ Independent disjunction over the values of the separator

5/13

Proving the small dichotomy (upper bound, 2)

x a
z

w

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b1 a
b2 a
b3 a

...

• We consider every value for the other variable
→ Independent disjunction over the possible assignments

b a
• We consider every fact
→ Independent conjunction over the facts
→ Just read the probability of the ground fact R(b,a).

6/13

Proving the small dichotomy (upper bound, 2)

x a
z

w

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b1 a
b2 a
b3 a

...

• We consider every value for the other variable
→ Independent disjunction over the possible assignments

b a
• We consider every fact
→ Independent conjunction over the facts
→ Just read the probability of the ground fact R(b,a).

6/13

Proving the small dichotomy (upper bound, 2)

x a
z

w

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b1 a
b2 a
b3 a

...

• We consider every value for the other variable
→ Independent disjunction over the possible assignments

b a
• We consider every fact
→ Independent conjunction over the facts
→ Just read the probability of the ground fact R(b,a).

6/13

Proving the small dichotomy (upper bound, 2)

x a
z

w

x a • For every match, we consider every other variable separately
→ Independent conjunction over the variables

b1 a
b2 a
b3 a

...

• We consider every value for the other variable
→ Independent disjunction over the possible assignments

b a
• We consider every fact
→ Independent conjunction over the facts
→ Just read the probability of the ground fact R(b,a).

6/13

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern
essentially like:

x y z w

We can add facts with probability 1 to instances so the other facts are always satisfied,
and focus on only these three facts

→ Let us show #P-hardness of this query

7/13

Proving the small dichotomy (lower bound, 1)

Every arity-two self-join-free CQ which is not a conjunction of stars contains a pattern
essentially like:

x y z w

We can add facts with probability 1 to instances so the other facts are always satisfied,
and focus on only these three facts

→ Let us show #P-hardness of this query

7/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:

• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym

• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 2)

Let us show that PQE(Q) is #P-hard for the CQ Q : x y z w

• Reduce from the problem of counting satisfying valuations of a Boolean formula
• e.g., given (x ∨ y) ∧ z, compute that it has 3 satisfying valuations

• This problem is already #P-hard for so-called PP2DNF formulas:
• Positive (no negation) and Partitioned variables: X1, . . . , Xn and Y1, . . . , Ym
• 2-DNF: disjunction of clauses like Xi ∧ Yj

• Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

8/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1
Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1
Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1

Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1
Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ

• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1
Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ
• A valuation satisfies ϕ iff the corresponding possible world satisfies Q

→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,
divided by the number of valuations (2−|Vars|)

9/13

Proving the small dichotomy (lower bound, 3)

Reduce from #PP2DNF to PQE(Q) for CQ Q : x y z w

Example: ϕ : (X1 ∧ Y1) ∨ (X1 ∧ Y2) ∨ (X2 ∧ Y2) ∨ (X3 ∧ Y1) ∨ (X3 ∧ Y2)

Build an instance Iϕ from ϕ:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1

1
1

1

1
Idea:

• Valuations of ϕ correspond to possible worlds of Iϕ
• A valuation satisfies ϕ iff the corresponding possible world satisfies Q
→ The probability of Q on Iϕ is the number of accepting valuations of ϕ,

divided by the number of valuations (2−|Vars|) 9/13

Extending beyond arity-two (1)

How can we extend beyond arity-two queries?

Theorem ([Dalvi and Suciu, 2007])
Let Q be a arity-two self-join-free CQ:

• If Q is a conjunction of stars hierarchical, then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

10/13

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

• A query with no variables is hierarchical

• A conjunction of hierarchical connected components is hierarchical

• Induction case: for a connected CQ:
• It must have a separator variable occurring in all atoms
• If we remove this separator variable, the query must be hierarchical

∃x
(
∃y (∃z R1(x, y, z)) ∧

(
∃z′ R2(x, y, z′)

))
∧
(
∃y′∃z′′ R3(x, y′, z′′)

)
∧ (∃u (∃v R4(u, v)) ∧ (∃w R5(u, v,w)))

11/13

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

• A query with no variables is hierarchical

• A conjunction of hierarchical connected components is hierarchical

• Induction case: for a connected CQ:
• It must have a separator variable occurring in all atoms
• If we remove this separator variable, the query must be hierarchical

∃x
(
∃y (∃z R1(x, y, z)) ∧

(
∃z′ R2(x, y, z′)

))
∧
(
∃y′∃z′′ R3(x, y′, z′′)

)
∧ (∃u (∃v R4(u, v)) ∧ (∃w R5(u, v,w)))

11/13

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

• A query with no variables is hierarchical

• A conjunction of hierarchical connected components is hierarchical

• Induction case: for a connected CQ:
• It must have a separator variable occurring in all atoms
• If we remove this separator variable, the query must be hierarchical

∃x
(
∃y (∃z R1(x, y, z)) ∧

(
∃z′ R2(x, y, z′)

))
∧
(
∃y′∃z′′ R3(x, y′, z′′)

)
∧ (∃u (∃v R4(u, v)) ∧ (∃w R5(u, v,w)))

11/13

Extending beyond arity-two (2)

Class of Hierarchical CQs defined inductively:

• A query with no variables is hierarchical

• A conjunction of hierarchical connected components is hierarchical

• Induction case: for a connected CQ:
• It must have a separator variable occurring in all atoms
• If we remove this separator variable, the query must be hierarchical

∃x
(
∃y (∃z R1(x, y, z)) ∧

(
∃z′ R2(x, y, z′)

))
∧
(
∃y′∃z′′ R3(x, y′, z′′)

)
∧ (∃u (∃v R4(u, v)) ∧ (∃w R5(u, v,w)))

11/13

Extending beyond arity-two (3)

How does the proof change?

• Upper bound: we can generalize the algorithm
• Independent AND of connected components
• Independent OR of possible choices for the separator variable
• Both cases use self-join-freeness!

• Lower bound: a non-hierarchical expression contains a pattern like
x y z w

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x

12/13

Extending beyond arity-two (3)

How does the proof change?

• Upper bound: we can generalize the algorithm
• Independent AND of connected components
• Independent OR of possible choices for the separator variable
• Both cases use self-join-freeness!

• Lower bound: a non-hierarchical expression contains a pattern like
x y z w

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x

12/13

Extending beyond arity-two (3)

How does the proof change?

• Upper bound: we can generalize the algorithm
• Independent AND of connected components
• Independent OR of possible choices for the separator variable
• Both cases use self-join-freeness!

• Lower bound: a non-hierarchical expression contains a pattern like
x y z w

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x

12/13

Extending beyond arity-two (3)

How does the proof change?

• Upper bound: we can generalize the algorithm
• Independent AND of connected components
• Independent OR of possible choices for the separator variable
• Both cases use self-join-freeness!

• Lower bound: a non-hierarchical expression contains a pattern like
x y z w

Via equivalent characterization: a non-hierarchical query has two variables x and y and:

• One atom containing x and y

• One atom containing x but not y

• One atom containing y but not x
12/13

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

• If Q is handled by a complicated algorithm then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more challenging:

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
(very challenging)

13/13

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

• If Q is handled by a complicated algorithm then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more challenging:

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
(very challenging)

13/13

The “big” Dalvi and Suciu dichotomy

Full dichotomy on the unions of conjunctive queries (UCQs):
Theorem ([Dalvi and Suciu, 2012])
Let Q be a UCQ:

• If Q is handled by a complicated algorithm then PQE(Q) is in PTIME

• Otherwise, PQE(Q) is #P-hard

This result is far more challenging:

• Upper bound:
• an algorithm generalizing the previous case with inclusion-exclusion
• many unpleasant details (e.g., a ranking transformation)

• Lower bound: hardness proof on minimal cases where the algorithm does not work
(very challenging)

13/13

References i

Dalvi, N. and Suciu, D. (2007).
The dichotomy of conjunctive queries on probabilistic structures.
In Proc. PODS.
Dalvi, N. and Suciu, D. (2012).
The dichotomy of probabilistic inference for unions of conjunctive queries.
J. ACM, 59(6).

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.96.5240&rep=rep1&type=pdf
https://homes.cs.washington.edu/~suciu/jacm-dichotomy.pdf

Probabilistic Databases: Provenance Circuits and Knowledge
Compilation
EDBT-Intended Summer School

Antoine Amarilli

1/13

Recall: Boolean Provenance

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Boolean provenance of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c
R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/13

Recall: Boolean Provenance

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Boolean provenance of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c
R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/13

Recall: Boolean Provenance

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Boolean provenance of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c

R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/13

Recall: Boolean Provenance

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Boolean provenance of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c

R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/13

Recall: Boolean Provenance

• Relational database instance I: set of facts

• Boolean query Q: take an instance and answer yes/no

• Boolean provenance of Q on I: a Boolean circuit over the facts of I
accepting exactly the subsets of I where Q is true

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b
a′ b

S

b c
R(a ,b) R(a′,b)

∨ S(b, c)

∧

2/13

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational
algebra query with a semiring expression

What is the difference?

• We only care about Boolean provenance
→ No multiplicity of facts or derivations

• Circuit representation: more concise

3/13

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational
algebra query with a semiring expression

What is the difference?

• We only care about Boolean provenance

→ No multiplicity of facts or derivations

• Circuit representation: more concise

3/13

Related work: Semiring provenance

Semiring provenance ([Green et al., 2007], on Tuesday): annotate results of a relational
algebra query with a semiring expression

What is the difference?

• We only care about Boolean provenance
→ No multiplicity of facts or derivations

• Circuit representation: more concise
3/13

The intensional approach to PQE

• Previously, for a tractable query Q: we can solve PQE(Q)
• Now, let’s see the intensional approach

• Compute a circuit representing the Boolean provenance of Q
• For tractable Q the circuit falls in a tractable class and we can compute the probability

• Why do that?
• More modular, no numerical computations, connect to known circuit classes
• Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A Task 1
Task 2

Setting B Task 1
Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit
Setting B Circuit

Circuit Task 1
Circuit Task 2

4/13

The intensional approach to PQE

• Previously, for a tractable query Q: we can solve PQE(Q)
• Now, let’s see the intensional approach

• Compute a circuit representing the Boolean provenance of Q
• For tractable Q the circuit falls in a tractable class and we can compute the probability

• Why do that?
• More modular, no numerical computations, connect to known circuit classes
• Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A Task 1
Task 2

Setting B Task 1
Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit
Setting B Circuit

Circuit Task 1
Circuit Task 2

4/13

The intensional approach to PQE

• Previously, for a tractable query Q: we can solve PQE(Q)
• Now, let’s see the intensional approach

• Compute a circuit representing the Boolean provenance of Q
• For tractable Q the circuit falls in a tractable class and we can compute the probability

• Why do that?
• More modular, no numerical computations, connect to known circuit classes
• Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A Task 1
Task 2

Setting B Task 1
Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit
Setting B Circuit

Circuit Task 1
Circuit Task 2

4/13

The intensional approach to PQE

• Previously, for a tractable query Q: we can solve PQE(Q)
• Now, let’s see the intensional approach

• Compute a circuit representing the Boolean provenance of Q
• For tractable Q the circuit falls in a tractable class and we can compute the probability

• Why do that?
• More modular, no numerical computations, connect to known circuit classes
• Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A Task 1
Task 2

Setting B Task 1
Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit
Setting B Circuit

Circuit Task 1
Circuit Task 2

4/13

The intensional approach to PQE

• Previously, for a tractable query Q: we can solve PQE(Q)
• Now, let’s see the intensional approach

• Compute a circuit representing the Boolean provenance of Q
• For tractable Q the circuit falls in a tractable class and we can compute the probability

• Why do that?
• More modular, no numerical computations, connect to known circuit classes
• Knowledge compilation: use circuits for other tasks, e.g., provenance, enumeration...

Without knowledge compilation:
O(n2) algorithms

Setting A Task 1
Task 2

Setting B Task 1
Task 2

With knowledge compilation:
O(n) algorithms

Setting A Circuit
Setting B Circuit

Circuit Task 1
Circuit Task 2 4/13

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

5/13

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

5/13

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

5/13

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}...

mapped to 1

5/13

Boolean circuit representations

Circuits are just a way to represent Boolean formulas
while factoring common subexpressions (more concise)

∨

¬

x

∧

y

• Directed acyclic graph of gates

• Output gate:

• Variable gates: x

• Internal gates: ∨ ∧ ¬

• Valuation: function from variables to {0, 1}
Example: ν = {x 7→ 0, y 7→ 1}... mapped to 1

5/13

Computing Boolean provenance: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its Boolean provenance in linear time

(following a join tree)

• Regular path queries (RPQ), Datalog, etc.
Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

6/13

Computing Boolean provenance: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its Boolean provenance in linear time

(following a join tree)

• Regular path queries (RPQ), Datalog, etc.
Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

6/13

Computing Boolean provenance: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its Boolean provenance in linear time

(following a join tree)

• Regular path queries (RPQ), Datalog, etc.
Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

6/13

Computing Boolean provenance: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its Boolean provenance in linear time

(following a join tree)

• Regular path queries (RPQ), Datalog, etc.
Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

6/13

Computing Boolean provenance: theory

• Unions of Conjunctive Queries (UCQ)

Theorem
For any UCQ, given an instance, we can construct its Boolean provenance in PTIME

(disjunction of all matches)

• Acyclic Conjunctive Queries (ACQ)
Theorem
For any ACQ, given an instance, we can construct its Boolean provenance in linear time

(following a join tree)

• Regular path queries (RPQ), Datalog, etc.
Theorem [Deutch et al., 2014]
For any Datalog query, given an instance, we can get its Boolean provenance in PTIME

6/13

Computing Boolean provenance: practice

• ProvSQL: PostgreSQL extension to compute provenance
• Keeps track of the provenance of query results as a circuit

You can run it! https://github.com/PierreSenellart/provsql

7/13

https://github.com/PierreSenellart/provsql

Computing Boolean provenance: practice

• ProvSQL: PostgreSQL extension to compute provenance
• Keeps track of the provenance of query results as a circuit

You can run it! https://github.com/PierreSenellart/provsql
7/13

https://github.com/PierreSenellart/provsql

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q

• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b

80%

a′ b

90%

S

b c

40%

R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q

• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b

80%

a′ b

90%

S

b c

40%

R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact

• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b

80%

a′ b

90%

S

b c

40%

R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact

• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b

80%

a′ b

90%

S

b c

40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact

• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%

R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I

• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%

R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I

• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability

• Each Boolean valuation of the circuit corresponds to a possible world J of I
and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability

• Each Boolean valuation of the circuit corresponds to a possible world J of I
and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff...

J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Summary: Boolean provenance for PQE

• We have fixed the Boolean query Q
• We are given an input TID I with a probability P of each fact
• We have computed a Boolean provenance circuit of Q on I
• Each variable of the circuit (fact of the database) has an independent probability
• Each Boolean valuation of the circuit corresponds to a possible world J of I

and the circuit evaluates to true iff... J satisfies Q

Example: query Q:
∃xyz R(x, y) ∧ S(y, z)

R

a b 80%
a′ b 90%

S

b c 40%
R(a ,b) R(a′,b)

∨ S(b, c)

∧

80% 90%

40%

8/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts

• Each variable x is true independently with probability P(x) (probability of the fact)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts

• Each variable x is true independently with probability P(x) (probability of the fact)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)

• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:

• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent

• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%

60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)

• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)

• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

Computing the probability of the circuit

• We now have a Boolean provenance circuit over the database facts
• Each variable x is true independently with probability P(x) (probability of the fact)
• What is the probability that the circuit evaluates to true?

∨

¬

x

∧

y

20%60%

80%

• P(x) = 40%

• P(y) = 50%

• In general, #P-hard (harder than SAT)

• Here it’s easy:
• The inputs to the ∧-gate are independent
• The ¬-gate has probability 1 − P(input)
• The ∨-gate has mutually exclusive inputs

→ The circuit that we constructed falls in a restricted class
satisfying such conditions

9/13

A tractable circuit class: d-DNNFs

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements

... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′

P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2

P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2

P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

A tractable circuit class: d-DNNFs

d-DNNF requirements ... make probability computation easy!

• ¬ gates only have variables as
inputs

¬ g

g′
P(g) := 1 − P(g′)

• ∨ gates always have mutually
exclusive inputs

∨ g

g′1 g′2
P(g) := P(g′1) + P(g′2)

• ∧ gates are all on
independent inputs

∧ g

g′1 g′2
P(g) := P(g′1)× P(g′2)

→ d-DNNFs are one of many tractable circuit classes in knowledge compilation

10/13

Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Restricted classes of d-DNNF:
• dec-DNNF: disjunction gates are of the form x ∧ α ∨ ¬x ∧ β

• d-SDNNF: the circuit uses variables in a structured way

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

11/13

Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Restricted classes of d-DNNF:
• dec-DNNF: disjunction gates are of the form x ∧ α ∨ ¬x ∧ β

• d-SDNNF: the circuit uses variables in a structured way

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

11/13

Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Restricted classes of d-DNNF:
• dec-DNNF: disjunction gates are of the form x ∧ α ∨ ¬x ∧ β

• d-SDNNF: the circuit uses variables in a structured way

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

11/13

Other tractable circuit classes

• Read-once formula: Boolean formula where each variable occurs at most once
→ If the Boolean provenance is written in this way, we can compute the probability

with independent AND, independent OR, negation

• Binary decision diagram, e.g., OBDDs

• Restricted classes of d-DNNF:
• dec-DNNF: disjunction gates are of the form x ∧ α ∨ ¬x ∧ β

• d-SDNNF: the circuit uses variables in a structured way

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

11/13

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]
For any hierarchical self-join-free CQ Q, given a TID I,

we can compute in linear time a
read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary
For any hierarchical self-join-free CQ Q, the problem PQE(Q) is in linear time up to the
cost of arithmetic operations

12/13

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]
For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a
read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary
For any hierarchical self-join-free CQ Q, the problem PQE(Q) is in linear time up to the
cost of arithmetic operations

12/13

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]
For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a
read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary
For any hierarchical self-join-free CQ Q, the problem PQE(Q) is in linear time up to the
cost of arithmetic operations

12/13

The intensional approach for self-join-free CQs

Theorem [Olteanu and Huang, 2008]
For any hierarchical self-join-free CQ Q, given a TID I, we can compute in linear time a
read-once formula representing the Boolean provenance of Q on I

Proof: just follow the previous algorithm and its independent ANDs and ORs

Corollary
For any hierarchical self-join-free CQ Q, the problem PQE(Q) is in linear time up to the
cost of arithmetic operations

12/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance

• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance

• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

Other results for the intensional approach

• For UCQs, results in [Jha and Suciu, 2013]:
• Characterization of the queries for which we can compute read-once provenance
• Characterization of the queries for which we can compute OBDD provenance
• Sufficient conditions to have FBDDs and d-DNNFs

• For some safe UCQs we cannot compute provenance as DLDDs [Beame et al., 2017]

• For some safe UCQs we cannot compute d-SDNNFs [Bova and Szeider, 2017]

• Good candidate: d-DNNF, or d-D (allows arbitrary negations)
→ Note: it’s open whether d-DNNFs and d-Ds are indeed different :)

• Crux of the problem: capture arithmetic operations on probabilities with a d-D
circuit, specifically inclusion-exclusion; see [Monet, 2020]

13/13

References i

Amarilli, A., Capelli, F., Monet, M., and Senellart, P. (2019).
Connecting knowledge compilation classes and width parameters.
In ToCS, number 2019.
Beame, P., Li, J., Roy, S., and Suciu, D. (2017).
Exact model counting of query expressions: Limitations of propositional methods.
TODS, 42(1):1.
Bova, S. and Szeider, S. (2017).
Circuit treewidth, sentential decision, and query compilation.
In PODS. ACM.

https://arxiv.org/abs/1811.02944
https://www.springer.com/computer/theoretical+computer+science/journal/224

References ii

Deutch, D., Milo, T., Roy, S., and Tannen, V. (2014).
Circuits for Datalog provenance.
In ICDT.
Green, T. J., Karvounarakis, G., and Tannen, V. (2007).
Provenance semirings.
In PODS.
Jha, A. and Suciu, D. (2013).
Knowledge compilation meets database theory: Compiling queries to decision
diagrams.
Theory of Computing Systems, 52(3).

http://openproceedings.org/ICDT/2014/paper_36.pdf
http://db.cis.upenn.edu/DL/07/pods07.pdf

References iii

Monet, M. (2020).
Solving a special case of the intensional vs extensional conjecture in probabilistic
databases.
In PODS.
Olteanu, D. and Huang, J. (2008).
Using OBDDs for efficient query evaluation on probabilistic databases.
In SUM. Springer.

http://mikael-monet.net/publications/monet2020solving.pdf
http://mikael-monet.net/publications/monet2020solving.pdf

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

. . .

0

1

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

. . .

. . .

0
1

1

0

1
0

1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

. . .

0
1

1

0

1

0
1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

. . .0
1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

→ We can compute the probability of an OBDD bottom-up

Ordered Binary Decision Diagram (OBDD)

OBDD for a Boolean query Q on database I:
ordered decision diagram on the facts of I to decide whether Q holds

Q : π∅(R ▷◁ S ▷◁ T)

R

a r1
b r2
c r3

S

a a s1
b v s2
b w s3

T

v t1
w t2
b t3

r2?

0

s2?

0

1

t1?

s3?

0
1

1

0

1

t2?0
1

0 1

→ We can compute the probability of an OBDD bottom-up

Probabilistic Databases: Width-Based Approaches
EDBT-Intended Summer School

Antoine Amarilli

1/15

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/15

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/15

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/15

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/15

Going back to more restricted instances

OK, PQE is intractable for essentially all queries. What now?

• We could restrict the structure of instances: instead of arbitrary graphs, focus on:
• probabilistic words
• probabilistic trees
• probabilistic graphs with bounded treewidth

• In the non-probabilistic case, this ensures tractability for complex queries
→ Could the same be true in the probabilistic case?

Theorem (A., Bourhis, Senellart, 2015, 2016)
Fix a bound k ∈ N and fix a Boolean monadic second-order query Q. Then
PQE(Q) is in PTIME on input TID instances of treewidth ≤ k

Conversely, there is a query Q for which PQE(Q) is intractable on any input
instance family of unbounded treewidth (under some technical assumptions)

2/15

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/15

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/15

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/15

Non-probabilistic query evaluation on words

Database: a word w where nodes have a color from an
alphabet

? Query Q: a sentence (yes/no question)
in monadic second-order logic (MSO)

“Is there both a pink and
a blue node?”

i Result: TRUE/FALSE indicating if the word w satisfies the query Q

Computational complexity as a function of w
(the query Q is fixed)

3/15

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/15

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/15

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node”

4/15

Monadic second-order logic (MSO)

• P (x) means “x is blue”; also P (x), P (x)

• x → y means “x is the predecessor of y”

• Propositional logic: formulas with AND ∧, OR ∨, NOT ¬
• P (x) ∧ P (y) means “Node x is pink and node y is blue”

• First-order logic: adds existential quantifier ∃ and
universal quantifier ∀

• ∃x y P (x) ∧ P (y) means “There is both a pink and a blue node”

• Monadic second-order logic (MSO): adds quantifiers over sets
• ∃S ∀x S(x) means “there is a set S containing every element x”
• Can express transitive closure x →∗ y, i.e., “x is before y”
• ∀x P (x) ⇒ ∃y P (y) ∧ x →∗ y

means “There is a blue node after every pink node” 4/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥

P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥

P P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P

P ⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P

⊤ ⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤

⊤

Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Word automata

Translate the query Q to a deterministic word automaton
Alphabet: w:

⊥ P P ⊤ ⊤
Q: ∃x y P (x) ∧ P (y)

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples): ⊥
P

P
⊤

⊤
⊤

Theorem (Büchi, 1960)
MSO and word automata have the same expressive power on words

Corollary
Query evaluation of MSO on words is in linear time (in data complexity)

5/15

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/15

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/15

Non-probabilistic query evaluation on trees

Database: a tree T where nodes have a color from an
alphabet

? Query Q: in monadic second-order logic (MSO)
• P (x) means “x is blue”
• x → y means “x is the parent of y”

“Is there both a pink and
a blue node?”
∃x y P (x) ∧ P (y)

i Result: YES/NO indicating if the tree T satisfies the query Q

6/15

Tree automata

Tree alphabet:

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet: • Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet:

B⊥⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet:

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet:
⊤

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Tree automata

Tree alphabet:
⊤

B

B⊥

P

⊥P

• Bottom-up deterministic tree automaton

• “Is there both a pink and a blue node?”

• States: {⊥,B,P,⊤}

• Final states: {⊤}

• Initial function: ⊥ P B

• Transitions (examples):

P

⊥P

⊤

BP

⊥

⊥⊥

Theorem ([Thatcher and Wright, 1968])
MSO and tree automata have the same expressive power on trees

7/15

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/15

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/15

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/15

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/15

Probabilistic query evaluation on trees

Let’s now define the PQE problem for MSO queries on trees:

Database: a tree T where each node has a probability
of keeping its color (vs taking the default color) 60%

20%
80%

? Query Q: in monadic second-order logic (MSO) ∃x y P (x) ∧ P (y)

i Result: probability that the probabilistic tree T satisfies the query Q

Theorem
For any fixed MSO query Q, the problem PQE(Q) on trees is in linear time assuming
constant-time arithmetics

8/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 3, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns NO

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Valuation: {2, 7 7→ 1, ∗ 7→ 0}

Q: “Is there both a pink and a blue node?”

The query Q returns YES

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Uncertain trees: capturing how the query result depends on the choices

1

5

76

2

43

A valuation of a tree decides whether to keep (1) or
discard (0) node labels

Q: “Is there both a pink and a blue node?”

→ This is just a Boolean provenance circuit on the “color facts” of the tree nodes!

9/15

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

10/15

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

10/15

Example: Provenance circuit

1

5

76

2

43

Query: Is there both a pink and a blue node?

Provenance circuit:
∧

∨ 7

2 3

Formal definition of provenance circuits:

• Boolean query Q, uncertain tree T, circuit C

• Variable gates of C: nodes of T

• Condition: Let ν be a valuation of T, then ν(C) iff ν(T) satisfies Q

10/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧

∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up

unambiguous

tree automaton A and input tree T,
we can build a Boolean

d-

SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Provenance circuits on trees

Theorem
For any bottom-up unambiguous tree automaton A and input tree T,
we can build a Boolean d-SDNNF provenance circuit of A on T in O(|A| × |T|)

• Alphabet:

• Automaton: “Is there both a pink
and a blue node?”

• States:
{⊥,B,P,⊤}

• Final: {⊤}

• Transitions:
⊤

⊥P

P

⊥P

n

n

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∨ ∨ ∨ ∨
⊥ B P ⊤

∧

∧∧
¬

11/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]
→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]
→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]
→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous

• Of width bounded by the number of states of the automaton
[Capelli and Mengel, 2019]

→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]

→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]
→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Connections to knowledge compilation

The provenance circuits of automata on trees are...

• DNNF circuits:
→ Negations only at the leaves
→ Conjunctions are between disjoint subtrees

• Structured circuits
→ The v-tree follows the shape of the input tree

• d-SDNNFs when the input automaton is unambiguous
• Of width bounded by the number of states of the automaton

[Capelli and Mengel, 2019]
→ Remark: for words, we obtain diagrams (OBDDs, etc.)

Corollary
For any MSO query Q, the problem PQE(Q) on probabilistic trees is in linear time
assuming constant-time arithmetics

12/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant

13/15

Treewidth

We have shown tractability of PQE on trees; let us extend to bounded treewidth

Treewidth by example:

• Trees have treewidth 1

• Cycles have treewidth 2

• k-cliques and (k − 1)-grids have treewidth k − 1

→ Treelike: the treewidth is bounded by a constant
13/15

Courcelle’s theorem and extension to PQE

MSO query

Treelike data

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

Treelike data

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data

linear

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

Tree encoding

MSO query

Treelike data
Query

answer
TRUE

linear linear

Theorem ([Courcelle, 1990])
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

MSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automatonMSO query

treelike data
Probabilistic

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data

linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can compute in linear time in D whether D satisfies Q

14/15

Courcelle’s theorem and extension to PQE

Tree automaton

tree encoding

MSO query

treelike data
d-DNNF circuit

with probabilities

linear linear

Probabilistic Probabilistic

50% 30%

50%20%

10%

80%
50%

30%

Probability
95%

linear

50% 30%

Theorem (A., Bourhis, Senellart, 2015, 2016)
For any fixed Boolean MSO query Q and k ∈ N, given a database D of treewidth ≤ k,
we can solve the PQE problem in linear time (assuming constant-time arithmetics)

14/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

Why is this a dichotomy? Where’s the lower bound?

Theorem (A., Bourhis, Senellart, 2016)
For any arity-two signature, there is a first-order query Q such that
for any constructible unbounded-treewidth family I of probabilistic graphs,
the PQE problem for Q and I is #P-hard under RP reductions

• Family: an infinite set of graphs allowed as input (with arbitrary probabilities)
so in particular closed under subgraphs

• Unbounded-treewidth: for all k ∈ N, there is Ik ∈ I of treewidth ≥ k

• Constructible: given k, we can compute such an instance Ik in PTIME

• Under RP reductions: reduce in PTIME with high probability

→ This result does not generalize to higher-arity!

→ Proof idea: extract wall graphs as topological minors ([Chekuri and Chuzhoy, 2014])
and use them for a lower bound

15/15

References i

Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.
Capelli, F. and Mengel, S. (2019).
Tractable QBF by knowledge compilation.
In STACS.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/
https://drops.dagstuhl.de/opus/volltexte/2019/10257/

References ii

Chekuri, C. and Chuzhoy, J. (2014).
Polynomial bounds for the grid-minor theorem.
In STOC.
Courcelle, B. (1990).
The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Inf. Comput., 85(1).

Thatcher, J. W. and Wright, J. B. (1968).
Generalized finite automata theory with an application to a decision problem of
second-order logic.
Mathematical systems theory, 2(1).

Probabilistic Databases: Other Topics and Conclusion
EDBT-Intended Summer School

Antoine Amarilli

1/18

Table of contents

Recursive and homomorphism-closed queries

Uniform probabilities

Approximate evaluation

Repairs

Incompleteness: Open-World Query Answering

Incompleteness: NULLs

Summary and directions

2/18

Recursive and
homomorphism-closed queries

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/18

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/18

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/18

Going to more general queries

The case of UCQs is settled! But what about more expressive queries?

• Work by [Fink and Olteanu, 2016] about negation
• Some work on ontology-mediated query answering ([Jung and Lutz, 2012])

We study the case of queries closed under homomorphisms

→ We restrict to arity-two signatures (work in progress...)

3/18

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/18

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/18

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)

4/18

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed

• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs
(corresponding to their models)

4/18

Homomorphism-closed queries

• A homomorphism from a graph G to a graph G′ maps the vertices of G to those of G′

while preserving the edges

has a homomorphism to

• Homomorphism-closed query Q: for any graph G, if G satisfies Q and G has a
homomorphism to G′ then G′ also satisfies Q

• Homomorphism-closed queries include all CQs, all UCQs, some recursive queries
like regular path queries (RPQs), Datalog, etc.

• Queries with negations or inequalities are not homomorphism-closed
• Homomorphism-closed queries can equivalently be seen as infinite unions of CQs

(corresponding to their models)
4/18

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/18

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/18

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/18

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N

• Hence, PQE(Q) is #P-hard

5/18

Our result

We show:

Theorem (A., Ceylan, 2020)
For any query Q closed under homomorphisms on an arity-two signature:

• Either Q is equivalent to a tractable UCQ and PQE(Q) is in PTIME
• In all other cases, PQE(Q) is #P-hard

• The same holds for RPQs, Datalog queries, etc.

• Example: the RPQ Q:
()∗

• It is not equivalent to a UCQ: infinite disjunction
()i

for all i ∈ N
• Hence, PQE(Q) is #P-hard

5/18

Uniform probabilities

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/18

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/18

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/18

Uniform probabilities: Problem statement

What if we restricted probabilities on input instances to always be 1/2?

• The PQE problem becomes the uniform reliability (UR) problem:
→ UR(Q): given a graph, how many of its subgraphs satisfy Q

• The UR problem reduces to PQE, but no obvious reduction in the other direction

We limit to self-join-free CQs and extend the “small” Dalvi and Suciu dichotomy to UR:

Theorem (A., Kimelfeld, 2022)
Let Q be a self-join-free CQ:

• If Q is hierarchical, then PQE(Q) is in PTIME
• Otherwise, even UR(Q) is #P-hard

6/18

Approximate evaluation

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(Pr(ϕ),Pr(ψ)) ≤ Pr(ϕ ∨ ψ) ≤ min(Pr(ϕ) + Pr(ψ), 1)
• max(0,Pr(ϕ) + Pr(ψ)− 1) ≤ Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ)) (by duality)
• Pr(¬ϕ) = 1 − Pr(ϕ) (reminder)

7/18

Approximation

• When it’s too hard to compute the exact probability,
we can approximate it

• One possibility is to compute a lower bound and upper bound:
• max(Pr(ϕ),Pr(ψ)) ≤ Pr(ϕ ∨ ψ) ≤ min(Pr(ϕ) + Pr(ψ), 1)
• max(0,Pr(ϕ) + Pr(ψ)− 1) ≤ Pr(ϕ ∧ ψ) ≤ min(Pr(ϕ),Pr(ψ)) (by duality)
• Pr(¬ϕ) = 1 − Pr(ϕ) (reminder)

7/18

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/18

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/18

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm

8/18

Approximation by sampling

Another possibility is to approximate via Monte-Carlo sampling:

• Pick a random possible world according to the fact probabilities:
→ Keep F with probability Pr(F) and discard it otherwise
→ Repeat for the other variables

• Evaluate the lineage formula ϕ under this valuation

• Approximate the probability of the formula ϕ as the proportion of times when it
was true

• Theoretical guarantees: on how many samples suffice so that, with high probability,
the estimated probability is almost correct

Other method for a multiplicative approximation: Karp-Luby algorithm
8/18

Using external tools

• Specialized software to compute the probability of a formula: weighted model
counters

• Examples (ongoing research):
• c2d: http://reasoning.cs.ucla.edu/c2d/download.php
• d4: https://www.cril.univ-artois.fr/KC/d4.html
• dsharp: https://bitbucket.org/haz/dsharp

9/18

http://reasoning.cs.ucla.edu/c2d/download.php
https://www.cril.univ-artois.fr/KC/d4.html
https://bitbucket.org/haz/dsharp

Repairs

Repairs

• Another kind of uncertainty: we know that the database must satisfy some
constraints (e.g., functionality)

• The data that we have does not satisfy it
• Reason about the ways to repair the data, e.g., removing a minimal subset of tuples
• Can we evaluate queries on this representation? E.g., is a query true on every

maximal repair? See, e.g., [Koutris and Wijsen, 2015].

→ Tutorial by Jef Wijsen

10/18

Incompleteness: Open-World Query
Answering

Open-world query answering

• Most data sources are incomplete, e.g., Wikidata

• Idea: see an incomplete data source as representing all possible completions

• A query result is certain if it is true on every possible completion

• We also assume constraints to restrict the possible completions (e.g., IDs and FDs,
see Andreas’s talk)

11/18

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

• Given:
• An incomplete database D
• Logical constraints Σ on the true state of the world
• A query Q

• Determine if Q is true in every completion of D that satisfies Σ

• Equivalently: satisfiability of D ∧ Σ ∧ ¬Q

Note: We assume that the incomplete database D satisfies the constraints.
(Otherwise we need to repair it.)

12/18

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

• Given:
• An incomplete database D
• Logical constraints Σ on the true state of the world
• A query Q

• Determine if Q is true in every completion of D that satisfies Σ

• Equivalently: satisfiability of D ∧ Σ ∧ ¬Q

Note: We assume that the incomplete database D satisfies the constraints.
(Otherwise we need to repair it.)

12/18

Open-world query answering problem

Definition of the open-world query answering problem (OWQA):

• Given:
• An incomplete database D
• Logical constraints Σ on the true state of the world
• A query Q

• Determine if Q is true in every completion of D that satisfies Σ

• Equivalently: satisfiability of D ∧ Σ ∧ ¬Q

Note: We assume that the incomplete database D satisfies the constraints.
(Otherwise we need to repair it.)

12/18

Results on OWQA

• The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
• It is also undecidable for common database constraint languages, e.g.,

tuple-generating dependencies
• It is decidable for better-behaved logical fragments, e.g., the guarded fragment

• Two main techniques:
• Forward chaining, aka the “chase”: add data to satisfy the constraints:

• If the process terminates, use the result to satisfy the query
• If it is infinite but has bounded treewidth, reason over it, e.g., with automata

• Backward chaining, aka “query rewriting”: change the query to reflect the constraints

13/18

Results on OWQA

• The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
• It is also undecidable for common database constraint languages, e.g.,

tuple-generating dependencies
• It is decidable for better-behaved logical fragments, e.g., the guarded fragment
• Two main techniques:

• Forward chaining, aka the “chase”: add data to satisfy the constraints:

• If the process terminates, use the result to satisfy the query
• If it is infinite but has bounded treewidth, reason over it, e.g., with automata

• Backward chaining, aka “query rewriting”: change the query to reflect the constraints

13/18

Results on OWQA

• The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
• It is also undecidable for common database constraint languages, e.g.,

tuple-generating dependencies
• It is decidable for better-behaved logical fragments, e.g., the guarded fragment
• Two main techniques:

• Forward chaining, aka the “chase”: add data to satisfy the constraints:
• If the process terminates, use the result to satisfy the query

• If it is infinite but has bounded treewidth, reason over it, e.g., with automata
• Backward chaining, aka “query rewriting”: change the query to reflect the constraints

13/18

Results on OWQA

• The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
• It is also undecidable for common database constraint languages, e.g.,

tuple-generating dependencies
• It is decidable for better-behaved logical fragments, e.g., the guarded fragment
• Two main techniques:

• Forward chaining, aka the “chase”: add data to satisfy the constraints:
• If the process terminates, use the result to satisfy the query
• If it is infinite but has bounded treewidth, reason over it, e.g., with automata

• Backward chaining, aka “query rewriting”: change the query to reflect the constraints

13/18

Results on OWQA

• The OWQA problem can be undecidable if we allow arbitrary first-order logic for Σ
• It is also undecidable for common database constraint languages, e.g.,

tuple-generating dependencies
• It is decidable for better-behaved logical fragments, e.g., the guarded fragment
• Two main techniques:

• Forward chaining, aka the “chase”: add data to satisfy the constraints:
• If the process terminates, use the result to satisfy the query
• If it is infinite but has bounded treewidth, reason over it, e.g., with automata

• Backward chaining, aka “query rewriting”: change the query to reflect the constraints

13/18

Incompleteness: NULLs

Codd tables, a.k.a. SQL NULLs

Patient Examin. 1 Examin. 2 Diagnosis

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D 15 15 ⊥2

E ⊥3 17 β

• Most simple form of incomplete database
• Widely used in practice, in DBMS since the mid-1970s!
• All NULLs (⊥) are considered distinct
• Possible world semantics: all possible completions of the table (infinitely many)
• In SQL, three-valued logic, weird semantics:

SELECT * FROM Tel WHERE tel_nr = ’333’ OR tel_nr <> ’333’
14/18

Problem: Codd tables and query evaluation

Appointment

Doctor Patient

D1 A
D2 A

Illness

Patient Diagnosis

A ⊥

Let’s join the two tables...

Appointment ▷◁ Illness

Doctor Patient Diagnosis

D1 A ⊥1

D2 A ⊥2

• We know that ⊥1 = ⊥2, but we cannot represent it
• Simple solution: named nulls aka v-tables
• More expressive solution: c-tables

15/18

Problem: Codd tables and query evaluation

Appointment

Doctor Patient

D1 A
D2 A

Illness

Patient Diagnosis

A ⊥

Let’s join the two tables...
Appointment ▷◁ Illness

Doctor Patient Diagnosis

D1 A ⊥1

D2 A ⊥2

• We know that ⊥1 = ⊥2, but we cannot represent it
• Simple solution: named nulls aka v-tables
• More expressive solution: c-tables

15/18

Problem: Codd tables and query evaluation

Appointment

Doctor Patient

D1 A
D2 A

Illness

Patient Diagnosis

A ⊥

Let’s join the two tables...
Appointment ▷◁ Illness

Doctor Patient Diagnosis

D1 A ⊥1

D2 A ⊥2

• We know that ⊥1 = ⊥2, but we cannot represent it
• Simple solution: named nulls aka v-tables
• More expressive solution: c-tables

15/18

Problem: Codd tables and query evaluation

Appointment

Doctor Patient

D1 A
D2 A

Illness

Patient Diagnosis

A ⊥

Let’s join the two tables...
Appointment ▷◁ Illness

Doctor Patient Diagnosis

D1 A ⊥1

D2 A ⊥2

• We know that ⊥1 = ⊥2, but we cannot represent it
• Simple solution: named nulls aka v-tables
• More expressive solution: c-tables

15/18

Summary and directions

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

16/18

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

16/18

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

16/18

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

16/18

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...

16/18

Summary of what we have seen

• Probabilistic database model: TIDs, facts have independent probabilities
→ Also more expressive models: BIDs, pc-tables

• Probabilistic query evaluation (PQE) for queries on probabilistic databases
→ Research question: for which queries is PQE tractable?

• Dichotomy on self-join free CQs: PQE is tractable precisely for hierarchical queries
→ Extends to a more complex dichotomy on UCQs

• We can solve PQE for hierarchical self-join-free CQs with d-DNNF circuits
→ This is open for UCQs: intensional–extensional conjecture

• We can make all queries in MSO tractable by bounding the instance treewidth
→ And MSO is intractable if you do not bound treewidth (under some conditions)

• Extensions: homomorphism-closed queries, uniform reliability...
16/18

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]
• (Others? talk to me :))

17/18

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]

• (Others? talk to me :))

17/18

Other topics of research

• Queries with negation [Fink and Olteanu, 2016]
• Queries with inequalities [Olteanu and Huang, 2009]
• Symmetric model counting [Beame et al., 2015]
• A summary: Dan Suciu, Probabilistic Databases for All [Suciu, 2020]

And recently:

• Infinite domains [Carmeli et al., 2021]
• PQE under updates [Berkholz and Merz, 2021]
• Open-world probabilistic databases [Ceylan et al., 2021]
• Active probabilistic databases [Drien et al., 2022]
• (Others? talk to me :))

17/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

18/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

18/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

18/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention!

18/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches

Thanks for your attention!

18/18

Future research directions

• Reusability of techniques : repairs (see talk by Jef), Shapley values (see talk by
Benny), graphical models, probabilistic programming, probabilistic constraints...

• Connection to theoretical research, e.g., CSP
→ Conjecture: for any homomorphism-closed query Q, given an instance, the uniform

reliability problem for Q is either #P-hard or PTIME
→ Working on unbounded queries, UCQ case also open [Kenig and Suciu, 2021]

• Practical implementation: ProvSQL, but what about aggregates? numerical
imprecision? approximations?
→ Can we compute multiplicative approximations for recursive queries?

• Connections to knowledge compilation and intensional–extensional conjecture
→ Can we compute the provenance of tractable UCQs in a tractable formalism, e.g., d-Ds?

• Combining the query-based and structure-based approaches
Thanks for your attention! 18/18

References i

Abiteboul, S., Kimelfeld, B., Sagiv, Y., and Senellart, P. (2009).
On the expressiveness of probabilistic XML models.
VLDB Journal, 18(5).
Amarilli, A., Bourhis, P., and Senellart, P. (2015).
Provenance circuits for trees and treelike instances.
In ICALP.
Amarilli, A., Bourhis, P., and Senellart, P. (2016).
Tractable lineages on treelike instances: Limits and extensions.
In PODS.

https://arxiv.org/abs/1511.08723
http://www.kurims.kyoto-u.ac.jp/icalp2015/
https://arxiv.org/abs/1604.02761
http://sigmod2016.org/

References ii

Amarilli, A. and Ceylan, I. I. (2020).
A dichotomy for homomorphism-closed queries on probabilistic graphs.
In ICDT.
Amarilli, A. and Kimelfeld, B. (2022).
Uniform Reliability of Self-Join-Free Conjunctive Queries.
Under review.
Beame, P., Van den Broeck, G., Gribkoff, E., and Suciu, D. (2015).
Symmetric weighted first-order model counting.
In PODS.
Benedikt, M., Kharlamov, E., Olteanu, D., and Senellart, P. (2010).
Probabilistic XML via Markov chains.
PVLDB, 3(1).

https://drops.dagstuhl.de/opus/volltexte/2020/11939/
https://diku-dk.github.io/edbticdt2020/
https://arxiv.org/abs/1908.07093
https://arxiv.org/abs/1412.1505

References iii

Berkholz, C. and Merz, M. (2021).
Probabilistic databases under updates: Boolean query evaluation and ranked
enumeration.
In PODS.
Carmeli, N., Grohe, M., Lindner, P., and Standke, C. (2021).
Tuple-independent representations of infinite probabilistic databases.
In PODS.
Ceylan, I. I., Darwiche, A., and Van den Broeck, G. (2021).
Open-world probabilistic databases: Semantics, algorithms, complexity.
Artificial Intelligence, 295.

References iv

Cohen, S., Kimelfeld, B., and Sagiv, Y. (2009).
Running tree automata on probabilistic xml.
In PODS.
Dalvi, N., Ré, C., and Suciu, D. (2009).
Probabilistic databases: Diamonds in the dirt.
Communications of the ACM, 52(7).

Dalvi, N. N. and Suciu, D. (2004).
Efficient query evaluation on probabilistic databases.
In VLDB.
Drien, O., Freiman, M., and Amsterdamer, Y. (2022).
ActivePDB: Active probabilistic databases.
Working draft.

References v

Fink, R. and Olteanu, D. (2016).
Dichotomies for queries with negation in probabilistic databases.
ACM Transactions on Database Systems, 41(1).

Imielinski, T. and Lipski, W. (1984).
Incomplete information in relational databases.
Journal of the ACM, 31(4).

Jung, J. C. and Lutz, C. (2012).
Ontology-based access to probabilistic data with OWL QL.
In ISWC.

http://www.cs.ox.ac.uk/people/Dan.Olteanu/papers/fo-tods16.pdf
https://iswc2012.semanticweb.org/sites/default/files/76490177.pdf

References vi

Kenig, B. and Suciu, D. (2021).
A dichotomy for the generalized model counting problem for unions of conjunctive
queries.
In PODS.
Koutris, P. and Wijsen, J. (2015).
The data complexity of consistent query answering for self-join-free conjunctive
queries under primary key constraints.
In SIGMOD.
Olteanu, D. and Huang, J. (2009).
Secondary-storage confidence computation for conjunctive queries with
inequalities.
In SIGMOD.

https://arxiv.org/abs/2008.00896
https://arxiv.org/abs/2008.00896
http://pages.cs.wisc.edu/~paris/papers/repairs_all.pdf
http://pages.cs.wisc.edu/~paris/papers/repairs_all.pdf

References vii

Suciu, D. (2020).
Probabilistic databases for all.
In PODS.
Widom, J. (2005).
Trio: A system for integrated management of data, accuracy, and lineage.
In Proc. CIDR.

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but

•

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Basic idea: finding a tight pattern

The challenging part is to show:

Theorem
For any query Q closed under homomorphisms and unbounded, PQE(Q) is #P-hard

Idea: find a tight pattern, i.e., a graph with three distinguished edges such that:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Theorem
Any unbounded query closed under homomorphisms has a tight pattern

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...

... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Using tight patterns to show hardness of PQE

• Fix the query Q and the tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

AND •

•
•

•
•

•
violates Q

• We reduce from PQE for the intractable CQ: Q0 : x y z w

a′1

a′2

a′3

a1

a2

a3

b1

b2

b′1

b′2

1/2

1/2

1/2

1/2

1/2

is coded as

•••

•
•
•

•

•

•

1/2
1/2
1/2

1/2
1/2

Idea: possible worlds at the left have a path that matches Q0

iff the corresponding possible world of the TID at the right satisfies the query Q...
... except we need more from the tight pattern!

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•

to
•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
•

to •
•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern

• Otherwise, we have found a contradiction:
• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates

• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q

• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D

• This contradicts the minimality of the large D

Why can we always find tight patterns?

• Unbounded queries have arbitrarily large minimal models
• Take a large minimal model D and disconnect its edges:

•

•

•
to

•
•

•

•
•

to
•
•

•

•
•

•
• to •

•

•

•

•
•

•
•

•

• If Q becomes false at one step, then we have found a tight pattern
• Otherwise, we have found a contradiction:

• The disconnection process terminates
• At the end of the process, we obtain a star D′

• It is homomorphically equivalent to a constant-sized D′′ satisfying Q
• D′′ has a homomorphism back to D
• This contradicts the minimality of the large D

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates

for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q

→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Rescuing the proof

We know that we have a tight pattern:

•

• •

•
satisfies Q

but •

•
•

•
•

•
violates Q

Consider its iterates for each n ∈ N:

•

• • • •

•

()n

Case 1: some iterate violates the query:

•

• • • •

•

()i
satisfies Q

but
•

• • • •

•

()i+1

violates Q
→ Reduce from PQE(Q0) as we explained

Case 2: all iterates satisfy the query:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

→ Call this an iterable pattern

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2
is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Using iterable patterns to show hardness of PQE

We have an iterable pattern:

•

• • • •

•

()n
satisfies Q for all n ∈ N

but
•

•
•

•
•

•
violates Q

Idea: reduce from the #P-hard problem source-to-target connectivity:

• Input: undirected graph with a source s and target t, all edges have probability 1/2
• Output: what is the probability that the source and target are connected?

s

u

t

1/2 1/2

1/2

is coded as

•

•
•

•
•

• • •

•

1/2
1/2

1/2

Idea: There is a path connecting s and t in a possible world of the graph at the left
iff the query Q is satisfied in the corresponding possible world of the TID at the right

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk

• Create unweighted copies of G modified with some parameterized gadgets
→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk

• Show that each Ni is a linear function of X1, . . . , Xk, so:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• Show invertibility of this matrix to recover the Xi from the Ni

Proof technique

Hard part: show hardness for (variants of) the query Q: x y z w

We reduce from PQE(Q), on probabilistic graphs G
of the following form:

a′1

a′2

a′3

a1

a2

a3

1/2

1/2

1/2

b1

b2

b′1

b′2

1/2

1/2

1
1

1
1

1

Task: count the number X of red-blue edge subsets that violate Q

• Split the subsets on some parameter e.g., the number of nodes: X = X1 + · · ·+ Xk
• Create unweighted copies of G modified with some parameterized gadgets

→ Call the oracle for SC(Q) on each to get answers N1, . . . ,Nk
• Show that each Ni is a linear function of X1, . . . , Xk, so:N1

...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk


• Show invertibility of this matrix to recover the Xi from the Ni

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk

• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction
→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

Using the equation system

We have obtained the system:N1
...
Nk

 =

α1,1 · · · α1,k
...

αk,1 · · · αk,k

 ·

X1
...
Xk



• The oracle for MC has given us N1, . . . ,Nk
• We need X = X1 + · · ·+ Xk to solve PQE and finish the reduction

→ If the matrix is invertible, then we have succeeded

We can choose gadgets and parameters to get a Vandermonde matrix,
and show invertibility via several arithmetical tricks

The semistructured model and XML

A

B C

D

<a>

...

<c>

<d>...</d>

</c>

• Tree-like structuring of data
• No (or less) schema constraints
• Allow mixing tags (structured data) and text (unstructured content)
• Particularly adapted to tagged or heterogeneous content

Simple probabilistic annotations

A

B C

D

0.24

0.70

• Probabilities associated to tree nodes
• Express parent/child dependencies
• Impossible to express more complex dependencies
• ⇒ some sets of possible worlds are not expressible this

way!

Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilistic c-tables

Annotations with event variables

A

B C

D

w1,¬w2

w2

Event Prob.

w1 0.8
w2 0.7

semantics

A

C

D

p2 = 0.70

A

C

p1 = 0.06

A

B C

p3 = 0.24

• Expresses arbitrarily complex dependencies

• Obviously, analogous to probabilistic c-tables

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]

• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model

• This generalizes to PQE for MSO on relational databases (TID) when assuming that
the treewidth is bounded [Amarilli et al., 2015]

• Bounding the treewidth is necessary for tractability in a certain
sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]

• Bounding the treewidth is necessary for tractability in a certain
sense [Amarilli et al., 2016]

Query evaluation on probabilistic XML

• Query evaluation for probabilistic XML: what is the probability that a (fixed) tree
automaton accepts?

• Can be computed bottom-up in the simple model [Cohen et al., 2009]
• #P-hard in the general model
• This generalizes to PQE for MSO on relational databases (TID) when assuming that

the treewidth is bounded [Amarilli et al., 2015]
• Bounding the treewidth is necessary for tractability in a certain

sense [Amarilli et al., 2016]

A general probabilistic XML model
[Abiteboul et al., 2009]

root

sensor

id

i25

mes
e

t

1

vl

30

mes

t

2

vl

N(70, 4)

sensor

id

i35

mes
e

t

1

vl

mux

17
.6

23
.1

20
.3

• e: event “it did not rain” at
time 1

• mux: mutually exclusive
options

• N(70, 4): normal
distribution

• Compact representation of a set of possible worlds
• Two kinds of dependencies: global (e) and local (mux)
• Generalizes all previously proposed models of the literature

Recursive Markov chains [Benedikt et al., 2010]

<!ELEMENT directory (person*)>

<!ELEMENT person (name,phone*)>

• •
• • •

D: directory

P

1
0.8

1

0.2

• • • • • •
•

P: person

N T1 1 0.5

1

0.5

• Probabilistic model that extends PXML with local dependencies
• Generate documents of unbounded width or depth

C-tables [Imielinski and Lipski, 1984]

Patient Examin. 1 Examin. 2 Diagnosis Condition

A 23 12 α

B 10 23 ⊥1

C 2 4 γ

D ⊥2 15 ⊥1

E ⊥3 17 β 18 < ⊥3 < ⊥2

• NULLs are labeled, and can be reused inside and across tuples
• Arbitrary correlations across tuples
• Closed under the relational algebra
• Every set of possible worlds can be represented as a database with c-tables

	Introduction
	Models and PQE
	TID
	BID
	

	pc-tables
	

	PQE

	The Dichotomy of PQE
	Appendix

	Provenance Circuits and Knowledge Compilation
	Appendix

	Width-Based Approaches
	Appendix

	Other Topics and Conclusion
	Recursive and homomorphism-closed queries
	Uniform probabilities
	Approximate evaluation
	Repairs
	Incompleteness: Open-World Query Answering
	Incompleteness: NULLs
	Summary and directions
	Appendix

