
Uncertainty and Incompleteness

Uncertainty and Incompleteness

Antoine Amarilli

Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI

May 19th, 2015

1/4



Uncertainty and Incompleteness

Motivation

Traditional data management: data is correct and complete
How realistic is this?

Noisy extractors
Untrustworthy contributors
Crappy crowd answers
Non-exhaustive sources

→ How to adapt to uncertain and incomplete data?

2/4



Uncertainty and Incompleteness

Motivation

Traditional data management: data is correct and complete
How realistic is this?

Noisy extractors
Untrustworthy contributors
Crappy crowd answers
Non-exhaustive sources

→ How to adapt to uncertain and incomplete data?

2/4



Uncertainty and Incompleteness

Motivation

Traditional data management: data is correct and complete
How realistic is this?

Noisy extractors
Untrustworthy contributors
Crappy crowd answers
Non-exhaustive sources

→ How to adapt to uncertain and incomplete data?

2/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds

→ Provenance!
Quantitative models: probabilities on the database
→ #P-hardness lurks

→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds
→ Provenance!

Quantitative models: probabilities on the database
→ #P-hardness lurks

→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds
→ Provenance!

Quantitative models: probabilities on the database

→ #P-hardness lurks
→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds
→ Provenance!

Quantitative models: probabilities on the database
→ #P-hardness lurks

→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds
→ Provenance!

Quantitative models: probabilities on the database
→ #P-hardness lurks

→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Uncertain data (aka. closed world)

The truth is a subset of our database
Find out in which cases our query holds
→ Provenance!

Quantitative models: probabilities on the database
→ #P-hardness lurks

→ Our idea: show tractability for restricted databases

Provenance Circuits for Trees and Treelike Instances

Antoine Amarilli1, Pierre Bourhis2, and Pierre Senellart1,3

1 Institut Mines-Télécom; Télécom ParisTech; CNRS LTCI
first.last@telecom-paristech.fr

2 CNRS CRIStAL; Université Lille 1; INRIA Lille
pierre.bourhis@univ-lille1.fr

3 National University of Singapore; CNRS IPAL

Abstract. Query evaluation in monadic second-order logic is known to be tractable
on trees and treelike instances, even though it is hard for arbitrary instances. This
tractability result has been extended to several tasks related to query evaluation,
such as counting query results [2] or performing query evaluation on probabilistic
trees [8]. We see counting and probability evaluation as two examples of the
more general problem of computing augmented query output, that is referred to as
provenance. This article presents a provenance framework for trees and treelike
instances, by describing a linear-time construction of a circuit provenance repre-
sentation for MSO queries. We show how this provenance can be connected to the
usual definitions of semiring provenance on relational instances [17], even though
we compute it in an unusual way, using tree automata; we do so via intrinsic
definitions of provenance for general semirings, that are independent from the
operational details of query evaluation. We show applications of this provenance to
capture existing counting and probabilistic results on trees and treelike instances,
and give novel consequences for probability evaluation.

1 Introduction
A celebrated result by Courcelle [9] has shown that evaluating a fixed monadic second-
order (MSO) query on relational instances, while generally hard in the input instance,
can be performed in linear time on input instances of bounded treewidth (or treelike
instances), by encoding the query to an automaton on tree encodings of instances. This
general idea has been extended more recently to monadic Datalog [14]. In addition to
query evaluation, it is also possible to count in linear time the number of query answers
over treelike instances [2, 22].

However, query evaluation and counting are special cases of the more general prob-
lem of capturing provenance information [7, 17] associated to query results, which
describes the link between input and output tuples. Provenance information can be
expressed through various formalisms, such as provenance semirings [17] or (non-
monotone) Boolean formulae [26]. Besides counting, provenance can be exploited for
many practically important tasks such as answering queries in incomplete databases,
maintaining access rights, or computing the probability of a query [26]. To our knowl-
edge, no previous work has looked at the general question of efficient evaluation of
expressive queries on treelike instances while keeping track of provenance.

Indeed, no proper definition of provenance for queries evaluated via tree automata
has been put forward. The first contribution of this work (Section 3) is thus to introduce a

3/4



Uncertainty and Incompleteness

Incomplete data (aka. open world)

The truth is a superset of our database
Harder to formalize...

→ Impose logical constraints
→ Ask whether the query is certain

→ Idea 1: combine existing approaches
(description logics, existential rules)

→ Idea 2: what about assuming finiteness?

Combining Existential Rules and Description Logics

Antoine Amarilli Michael Benedikt
Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI University of Oxford

antoine.amarilli@telecom-paristech.fr michael.benedikt@cs.ox.ac.uk

Abstract

Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-

Finite Open-World Query Answering
with Number Restrictions

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
Email: antoine.amarilli@telecom-paristech.fr

Michael Benedikt
Oxford University

Oxford, United Kingdom
Email: michael.benedikt@cs.ox.ac.uk

Abstract—Open-world query answering is the problem of
deciding, given a set of facts, conjunction of constraints, and
query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts
and satisfy the constraints. We study finite open-world query
answering (FQA), which assumes that the underlying world
is finite and thus only considers the finite completions of the
instance. The major known decidable cases of FQA derive from
the following: the guarded fragment of first-order logic, which
can express referential constraints (data in one place points to
data in another) but cannot express number restrictions such as
functional dependencies; and the guarded fragment with number
restrictions but on a signature of arity only two. In this paper,
we give the first decidability results for FQA that combine
both referential constraints and number restrictions for arbitrary
signatures: we show that, for unary inclusion dependencies and
functional dependencies, the finiteness assumption of FQA can
be lifted up to taking the finite implication closure of the
dependencies [5]. Our result relies on new techniques to construct
finite universal models of such constraints, for any bound on the
maximal query size.

I. INTRODUCTION

A longstanding goal in computational logic is to design
logical languages that are both decidable and expressive. One
approach is to distinguish integrity constraints and queries,
and have separate languages for them. We would then seek
decidability of the query answering with constraints problem:
given a query q, a conjunction of constraints Σ, and a finite
instance I, determine which answers to q are certain to hold
over any instance I′ that extends I and satisfies Σ. This problem
is often called open-world query answering. It is fundamental
for deciding query containment under constraints, querying
in the presence of ontologies, or reformulating queries with
constraints. Thus it has been the subject of intense study within
several communities for decades (e.g. [8], [3], [2], [12], [7]).

In many cases (e.g., in databases) the instances I′ of interest
are the finite ones, and hence we can define finite open-
world query answering (denoted here as FQA), which restricts
the quantification to finite extensions I′ of I. In contrast, by
unrestricted open-world query answering (UQA) we refer to
the problem where I′ can be either finite or infinite. Generally
the class of queries is taken to be the conjunctive queries
(CQs) — queries built up from relational atoms via existential
quantification and conjunction. We will restrict to CQs here,

and thus omit explicit mention of the query language, focusing
on the constraint language.

A first constraint class known to have tractable open-world
query answering problems are inclusion dependencies (IDs) —
constraints of the form, e.g., ∀xyz R(x,y,z)→∃vw S(z,v,w,y).
The fundamental results of Johnson and Klug [8] and
Rosati [15] show that both FQA and UQA are decidable
for ID and that, in fact, they coincide. When this happens,
the constraints are said to be finitely controllable. These results
have been generalized by Bárány et al. [2] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important
kind of constraints, namely number restrictions, which express,
e.g., uniqueness. We represent them by the class of functional
dependencies (FDs) — of the form ∀xy (R(x1, . . . ,xn) ∧
R(y1, . . . ,yn)∧

∧
i∈L xi = yi)→ xr = yr. The implication problem

(does one FD follow from a set of others) is decidable for FDs,
and coincides with implication restricted to finite instances [1].
Trivially, the FQA and UQA problems are also decidable for
FDs alone, and coincide.

Trying to combine IDs and FDs makes both UQA and FQA
undecidable in general [3]. However, UQA is known to be
decidable when the FDs and the IDs are non-conflicting [8],
[3]. Intuitively, this condition guarantees that the FDs can be
ignored, as long as they hold on the initial instance I, and one
can then solve the query answering problem by considering
the IDs alone. But the non-conflicting condition only applies
to UQA and not to FQA. In fact it is known that even for
very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [15] showed that
FQA is undecidable for non-conflicting IDs and FDs (indeed,
for IDs and keys, which are less rich than FDs).

Thus a general question is to what extent these classes, FDs
and IDs, can be combined while retaining decidable FQA.
The only decidable cases impose very severe requirements.
For example, the constraint class of “single KDs and FKs”
introduced in [15] has decidable FQA, but such constraints
cannot model, e.g., FDs which are not keys. Further, in contrast
with the general case of FDs and IDs, single KDs and FKs are
always finitely controllable, which limits their expressiveness.
Indeed, we know of no tools to deal with FQA for non-finitely-
controllable constraints on relations of arbitrary arity.

A second decidable case is where all relation symbols and

4/4



Uncertainty and Incompleteness

Incomplete data (aka. open world)

The truth is a superset of our database
Harder to formalize...
→ Impose logical constraints
→ Ask whether the query is certain

→ Idea 1: combine existing approaches
(description logics, existential rules)

→ Idea 2: what about assuming finiteness?

Combining Existential Rules and Description Logics

Antoine Amarilli Michael Benedikt
Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI University of Oxford

antoine.amarilli@telecom-paristech.fr michael.benedikt@cs.ox.ac.uk

Abstract

Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-

Finite Open-World Query Answering
with Number Restrictions

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
Email: antoine.amarilli@telecom-paristech.fr

Michael Benedikt
Oxford University

Oxford, United Kingdom
Email: michael.benedikt@cs.ox.ac.uk

Abstract—Open-world query answering is the problem of
deciding, given a set of facts, conjunction of constraints, and
query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts
and satisfy the constraints. We study finite open-world query
answering (FQA), which assumes that the underlying world
is finite and thus only considers the finite completions of the
instance. The major known decidable cases of FQA derive from
the following: the guarded fragment of first-order logic, which
can express referential constraints (data in one place points to
data in another) but cannot express number restrictions such as
functional dependencies; and the guarded fragment with number
restrictions but on a signature of arity only two. In this paper,
we give the first decidability results for FQA that combine
both referential constraints and number restrictions for arbitrary
signatures: we show that, for unary inclusion dependencies and
functional dependencies, the finiteness assumption of FQA can
be lifted up to taking the finite implication closure of the
dependencies [5]. Our result relies on new techniques to construct
finite universal models of such constraints, for any bound on the
maximal query size.

I. INTRODUCTION

A longstanding goal in computational logic is to design
logical languages that are both decidable and expressive. One
approach is to distinguish integrity constraints and queries,
and have separate languages for them. We would then seek
decidability of the query answering with constraints problem:
given a query q, a conjunction of constraints Σ, and a finite
instance I, determine which answers to q are certain to hold
over any instance I′ that extends I and satisfies Σ. This problem
is often called open-world query answering. It is fundamental
for deciding query containment under constraints, querying
in the presence of ontologies, or reformulating queries with
constraints. Thus it has been the subject of intense study within
several communities for decades (e.g. [8], [3], [2], [12], [7]).

In many cases (e.g., in databases) the instances I′ of interest
are the finite ones, and hence we can define finite open-
world query answering (denoted here as FQA), which restricts
the quantification to finite extensions I′ of I. In contrast, by
unrestricted open-world query answering (UQA) we refer to
the problem where I′ can be either finite or infinite. Generally
the class of queries is taken to be the conjunctive queries
(CQs) — queries built up from relational atoms via existential
quantification and conjunction. We will restrict to CQs here,

and thus omit explicit mention of the query language, focusing
on the constraint language.

A first constraint class known to have tractable open-world
query answering problems are inclusion dependencies (IDs) —
constraints of the form, e.g., ∀xyz R(x,y,z)→∃vw S(z,v,w,y).
The fundamental results of Johnson and Klug [8] and
Rosati [15] show that both FQA and UQA are decidable
for ID and that, in fact, they coincide. When this happens,
the constraints are said to be finitely controllable. These results
have been generalized by Bárány et al. [2] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important
kind of constraints, namely number restrictions, which express,
e.g., uniqueness. We represent them by the class of functional
dependencies (FDs) — of the form ∀xy (R(x1, . . . ,xn) ∧
R(y1, . . . ,yn)∧

∧
i∈L xi = yi)→ xr = yr. The implication problem

(does one FD follow from a set of others) is decidable for FDs,
and coincides with implication restricted to finite instances [1].
Trivially, the FQA and UQA problems are also decidable for
FDs alone, and coincide.

Trying to combine IDs and FDs makes both UQA and FQA
undecidable in general [3]. However, UQA is known to be
decidable when the FDs and the IDs are non-conflicting [8],
[3]. Intuitively, this condition guarantees that the FDs can be
ignored, as long as they hold on the initial instance I, and one
can then solve the query answering problem by considering
the IDs alone. But the non-conflicting condition only applies
to UQA and not to FQA. In fact it is known that even for
very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [15] showed that
FQA is undecidable for non-conflicting IDs and FDs (indeed,
for IDs and keys, which are less rich than FDs).

Thus a general question is to what extent these classes, FDs
and IDs, can be combined while retaining decidable FQA.
The only decidable cases impose very severe requirements.
For example, the constraint class of “single KDs and FKs”
introduced in [15] has decidable FQA, but such constraints
cannot model, e.g., FDs which are not keys. Further, in contrast
with the general case of FDs and IDs, single KDs and FKs are
always finitely controllable, which limits their expressiveness.
Indeed, we know of no tools to deal with FQA for non-finitely-
controllable constraints on relations of arbitrary arity.

A second decidable case is where all relation symbols and

4/4



Uncertainty and Incompleteness

Incomplete data (aka. open world)

The truth is a superset of our database
Harder to formalize...
→ Impose logical constraints
→ Ask whether the query is certain

→ Idea 1: combine existing approaches
(description logics, existential rules)

→ Idea 2: what about assuming finiteness?

Combining Existential Rules and Description Logics

Antoine Amarilli Michael Benedikt
Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI University of Oxford

antoine.amarilli@telecom-paristech.fr michael.benedikt@cs.ox.ac.uk

Abstract

Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-

Finite Open-World Query Answering
with Number Restrictions

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
Email: antoine.amarilli@telecom-paristech.fr

Michael Benedikt
Oxford University

Oxford, United Kingdom
Email: michael.benedikt@cs.ox.ac.uk

Abstract—Open-world query answering is the problem of
deciding, given a set of facts, conjunction of constraints, and
query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts
and satisfy the constraints. We study finite open-world query
answering (FQA), which assumes that the underlying world
is finite and thus only considers the finite completions of the
instance. The major known decidable cases of FQA derive from
the following: the guarded fragment of first-order logic, which
can express referential constraints (data in one place points to
data in another) but cannot express number restrictions such as
functional dependencies; and the guarded fragment with number
restrictions but on a signature of arity only two. In this paper,
we give the first decidability results for FQA that combine
both referential constraints and number restrictions for arbitrary
signatures: we show that, for unary inclusion dependencies and
functional dependencies, the finiteness assumption of FQA can
be lifted up to taking the finite implication closure of the
dependencies [5]. Our result relies on new techniques to construct
finite universal models of such constraints, for any bound on the
maximal query size.

I. INTRODUCTION

A longstanding goal in computational logic is to design
logical languages that are both decidable and expressive. One
approach is to distinguish integrity constraints and queries,
and have separate languages for them. We would then seek
decidability of the query answering with constraints problem:
given a query q, a conjunction of constraints Σ, and a finite
instance I, determine which answers to q are certain to hold
over any instance I′ that extends I and satisfies Σ. This problem
is often called open-world query answering. It is fundamental
for deciding query containment under constraints, querying
in the presence of ontologies, or reformulating queries with
constraints. Thus it has been the subject of intense study within
several communities for decades (e.g. [8], [3], [2], [12], [7]).

In many cases (e.g., in databases) the instances I′ of interest
are the finite ones, and hence we can define finite open-
world query answering (denoted here as FQA), which restricts
the quantification to finite extensions I′ of I. In contrast, by
unrestricted open-world query answering (UQA) we refer to
the problem where I′ can be either finite or infinite. Generally
the class of queries is taken to be the conjunctive queries
(CQs) — queries built up from relational atoms via existential
quantification and conjunction. We will restrict to CQs here,

and thus omit explicit mention of the query language, focusing
on the constraint language.

A first constraint class known to have tractable open-world
query answering problems are inclusion dependencies (IDs) —
constraints of the form, e.g., ∀xyz R(x,y,z)→∃vw S(z,v,w,y).
The fundamental results of Johnson and Klug [8] and
Rosati [15] show that both FQA and UQA are decidable
for ID and that, in fact, they coincide. When this happens,
the constraints are said to be finitely controllable. These results
have been generalized by Bárány et al. [2] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important
kind of constraints, namely number restrictions, which express,
e.g., uniqueness. We represent them by the class of functional
dependencies (FDs) — of the form ∀xy (R(x1, . . . ,xn) ∧
R(y1, . . . ,yn)∧

∧
i∈L xi = yi)→ xr = yr. The implication problem

(does one FD follow from a set of others) is decidable for FDs,
and coincides with implication restricted to finite instances [1].
Trivially, the FQA and UQA problems are also decidable for
FDs alone, and coincide.

Trying to combine IDs and FDs makes both UQA and FQA
undecidable in general [3]. However, UQA is known to be
decidable when the FDs and the IDs are non-conflicting [8],
[3]. Intuitively, this condition guarantees that the FDs can be
ignored, as long as they hold on the initial instance I, and one
can then solve the query answering problem by considering
the IDs alone. But the non-conflicting condition only applies
to UQA and not to FQA. In fact it is known that even for
very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [15] showed that
FQA is undecidable for non-conflicting IDs and FDs (indeed,
for IDs and keys, which are less rich than FDs).

Thus a general question is to what extent these classes, FDs
and IDs, can be combined while retaining decidable FQA.
The only decidable cases impose very severe requirements.
For example, the constraint class of “single KDs and FKs”
introduced in [15] has decidable FQA, but such constraints
cannot model, e.g., FDs which are not keys. Further, in contrast
with the general case of FDs and IDs, single KDs and FKs are
always finitely controllable, which limits their expressiveness.
Indeed, we know of no tools to deal with FQA for non-finitely-
controllable constraints on relations of arbitrary arity.

A second decidable case is where all relation symbols and

4/4



Uncertainty and Incompleteness

Incomplete data (aka. open world)

The truth is a superset of our database
Harder to formalize...
→ Impose logical constraints
→ Ask whether the query is certain

→ Idea 1: combine existing approaches
(description logics, existential rules)

→ Idea 2: what about assuming finiteness?

Combining Existential Rules and Description Logics

Antoine Amarilli Michael Benedikt
Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI University of Oxford

antoine.amarilli@telecom-paristech.fr michael.benedikt@cs.ox.ac.uk

Abstract

Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-

Finite Open-World Query Answering
with Number Restrictions

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
Email: antoine.amarilli@telecom-paristech.fr

Michael Benedikt
Oxford University

Oxford, United Kingdom
Email: michael.benedikt@cs.ox.ac.uk

Abstract—Open-world query answering is the problem of
deciding, given a set of facts, conjunction of constraints, and
query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts
and satisfy the constraints. We study finite open-world query
answering (FQA), which assumes that the underlying world
is finite and thus only considers the finite completions of the
instance. The major known decidable cases of FQA derive from
the following: the guarded fragment of first-order logic, which
can express referential constraints (data in one place points to
data in another) but cannot express number restrictions such as
functional dependencies; and the guarded fragment with number
restrictions but on a signature of arity only two. In this paper,
we give the first decidability results for FQA that combine
both referential constraints and number restrictions for arbitrary
signatures: we show that, for unary inclusion dependencies and
functional dependencies, the finiteness assumption of FQA can
be lifted up to taking the finite implication closure of the
dependencies [5]. Our result relies on new techniques to construct
finite universal models of such constraints, for any bound on the
maximal query size.

I. INTRODUCTION

A longstanding goal in computational logic is to design
logical languages that are both decidable and expressive. One
approach is to distinguish integrity constraints and queries,
and have separate languages for them. We would then seek
decidability of the query answering with constraints problem:
given a query q, a conjunction of constraints Σ, and a finite
instance I, determine which answers to q are certain to hold
over any instance I′ that extends I and satisfies Σ. This problem
is often called open-world query answering. It is fundamental
for deciding query containment under constraints, querying
in the presence of ontologies, or reformulating queries with
constraints. Thus it has been the subject of intense study within
several communities for decades (e.g. [8], [3], [2], [12], [7]).

In many cases (e.g., in databases) the instances I′ of interest
are the finite ones, and hence we can define finite open-
world query answering (denoted here as FQA), which restricts
the quantification to finite extensions I′ of I. In contrast, by
unrestricted open-world query answering (UQA) we refer to
the problem where I′ can be either finite or infinite. Generally
the class of queries is taken to be the conjunctive queries
(CQs) — queries built up from relational atoms via existential
quantification and conjunction. We will restrict to CQs here,

and thus omit explicit mention of the query language, focusing
on the constraint language.

A first constraint class known to have tractable open-world
query answering problems are inclusion dependencies (IDs) —
constraints of the form, e.g., ∀xyz R(x,y,z)→∃vw S(z,v,w,y).
The fundamental results of Johnson and Klug [8] and
Rosati [15] show that both FQA and UQA are decidable
for ID and that, in fact, they coincide. When this happens,
the constraints are said to be finitely controllable. These results
have been generalized by Bárány et al. [2] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important
kind of constraints, namely number restrictions, which express,
e.g., uniqueness. We represent them by the class of functional
dependencies (FDs) — of the form ∀xy (R(x1, . . . ,xn) ∧
R(y1, . . . ,yn)∧

∧
i∈L xi = yi)→ xr = yr. The implication problem

(does one FD follow from a set of others) is decidable for FDs,
and coincides with implication restricted to finite instances [1].
Trivially, the FQA and UQA problems are also decidable for
FDs alone, and coincide.

Trying to combine IDs and FDs makes both UQA and FQA
undecidable in general [3]. However, UQA is known to be
decidable when the FDs and the IDs are non-conflicting [8],
[3]. Intuitively, this condition guarantees that the FDs can be
ignored, as long as they hold on the initial instance I, and one
can then solve the query answering problem by considering
the IDs alone. But the non-conflicting condition only applies
to UQA and not to FQA. In fact it is known that even for
very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [15] showed that
FQA is undecidable for non-conflicting IDs and FDs (indeed,
for IDs and keys, which are less rich than FDs).

Thus a general question is to what extent these classes, FDs
and IDs, can be combined while retaining decidable FQA.
The only decidable cases impose very severe requirements.
For example, the constraint class of “single KDs and FKs”
introduced in [15] has decidable FQA, but such constraints
cannot model, e.g., FDs which are not keys. Further, in contrast
with the general case of FDs and IDs, single KDs and FKs are
always finitely controllable, which limits their expressiveness.
Indeed, we know of no tools to deal with FQA for non-finitely-
controllable constraints on relations of arbitrary arity.

A second decidable case is where all relation symbols and

4/4



Uncertainty and Incompleteness

Incomplete data (aka. open world)

The truth is a superset of our database
Harder to formalize...
→ Impose logical constraints
→ Ask whether the query is certain

→ Idea 1: combine existing approaches
(description logics, existential rules)

→ Idea 2: what about assuming finiteness?

Combining Existential Rules and Description Logics

Antoine Amarilli Michael Benedikt
Télécom ParisTech; Institut Mines–Télécom; CNRS LTCI University of Oxford

antoine.amarilli@telecom-paristech.fr michael.benedikt@cs.ox.ac.uk

Abstract

Query answering under existential rules — impli-
cations with existential quantifiers in the head —
is known to be decidable when imposing restric-
tions on the rule bodies such as frontier-guardedness
[Baget et al., 2010; 2011a]. Query answering
is also decidable for description logics [Baader,
2003], which further allow disjunction and func-
tionality constraints (assert that certain relations are
functions); however, they are focused on ER-type
schemas, where relations have arity two.
This work investigates how to get the best of both
worlds: having decidable existential rules on arbi-
trary arity relations, while allowing rich descrip-
tion logics, including functionality constraints, on
arity-two relations. We first show negative results
on combining such decidable languages. Second,
we introduce an expressive set of existential rules
(frontier-one rules with a certain restriction) which
can be combined with powerful constraints on arity-
two relations (e.g. GC2,ALCQIb) while retaining
decidable query answering. Further, we provide
conditions to add functionality constraints on the
higher-arity relations.

1 Introduction
Recent years have seen an explosion of techniques for solving
the query answering problem: given a query q, a conjunc-
tion F of atoms, and a set of logical constraints Σ, determine
whether q follows from F and Σ. In databases this is called
querying under constraints or the certain answer problem, see-
ing F as an incomplete database, and Σ as restrictions on the
possible completions. For researchers working on description
logics, F is referred to as the A-box and Σ the T-box. In both
communities q is usually a conjunctive query, an existential
quantification of conjunctions of atoms, equivalent to a basic
SQL SELECT. We will make this assumption throughout this
work, referring for simplicity to the problem as just “query
answering” (QA).

QA is undecidable when Σ ranges over arbitrary first-order
logic constraints. This motivates the search for restricted con-
straint languages with decidable QA. Within the description

logic community, powerful such languages were developed to
express constraints on vocabularies of arity two. The unary
relations are referred to as concepts while the binary ones are
the roles. The languages can build new concepts and roles
from basic ones via Boolean operations and (limited) quantifi-
cation, and many of them, such as DL-Lite [Calvanese et al.,
2005] orALCQIb [Tobies, 2001], may restrict the input roles
R(x,y) to be functional – for all x there is at most one y such
that R(x,y). Functionality constraints are crucial to faithfully
model many real-world relationships: the relationship of a
person to their birthdate, the relationship of an event to its
starting time, etc. Hence, description logics are very powerful
languages for arity-two vocabularies.

In parallel, the AI and database communities have devel-
oped rich constraint languages on arbitrary arity via existential
rules or tuple-generating dependencies (TGDs). Existential
rules are constraints of the form ∀x (φ(x) → ∃y ψ(x′,y))
where x′ ⊆ x and φ and ψ are conjunctions of atoms. They
generalize the well-known inclusion dependencies or refer-
ential constraints in databases [Abiteboul et al., 1995], and
can also express mapping relationships used in data exchange
[Fagin et al., 2005] and data integration [Lenzerini, 2002].
Although QA over general rules is undecidable, important
subclasses are decidable. First, decidability holds whenever
the chase procedure [Abiteboul et al., 1995] is guaranteed to
terminate, which is ensured by a number of conditions on the
rules, e.g., weak acyclicity [Fagin et al., 2005], joint acyclicity
[Krötzsch and Rudolph, 2011], or the very restricted class of
source-to-target TGDs. See [Grau et al., 2013] for a survey and
[Baget et al., 2014] for a recent study. A second class of tame
constraints are those that admit bounded-treewidth models.
There are several such classes, such as guarded TGDs [Calì
et al., 2012a], frontier-guarded TGDs [Baget et al., 2010], or
the more general greedy bounded-treewidth sets [Baget et al.,
2011b]. However, many features of description logics, such as
disjunction or functionality restrictions, cannot be expressed
by existential rules.

Could we then enjoy the best of both worlds, by allowing
both description logic constraints and existential rules, while
maintaining the decidability of QA? This paper studies to what
extent both paradigms can be combined, by looking for classes
of constraints with decidable QA over relational schemas of
arbitrary arity that can 1. express non-trivial existential rules
over any relation in the schema and 2. assert expressive con-

Finite Open-World Query Answering
with Number Restrictions

Antoine Amarilli
Institut Mines–Télécom; Télécom ParisTech; CNRS LTCI

Paris, France
Email: antoine.amarilli@telecom-paristech.fr

Michael Benedikt
Oxford University

Oxford, United Kingdom
Email: michael.benedikt@cs.ox.ac.uk

Abstract—Open-world query answering is the problem of
deciding, given a set of facts, conjunction of constraints, and
query, whether the facts and constraints imply the query. This
amounts to reasoning over all instances that include the facts
and satisfy the constraints. We study finite open-world query
answering (FQA), which assumes that the underlying world
is finite and thus only considers the finite completions of the
instance. The major known decidable cases of FQA derive from
the following: the guarded fragment of first-order logic, which
can express referential constraints (data in one place points to
data in another) but cannot express number restrictions such as
functional dependencies; and the guarded fragment with number
restrictions but on a signature of arity only two. In this paper,
we give the first decidability results for FQA that combine
both referential constraints and number restrictions for arbitrary
signatures: we show that, for unary inclusion dependencies and
functional dependencies, the finiteness assumption of FQA can
be lifted up to taking the finite implication closure of the
dependencies [5]. Our result relies on new techniques to construct
finite universal models of such constraints, for any bound on the
maximal query size.

I. INTRODUCTION

A longstanding goal in computational logic is to design
logical languages that are both decidable and expressive. One
approach is to distinguish integrity constraints and queries,
and have separate languages for them. We would then seek
decidability of the query answering with constraints problem:
given a query q, a conjunction of constraints Σ, and a finite
instance I, determine which answers to q are certain to hold
over any instance I′ that extends I and satisfies Σ. This problem
is often called open-world query answering. It is fundamental
for deciding query containment under constraints, querying
in the presence of ontologies, or reformulating queries with
constraints. Thus it has been the subject of intense study within
several communities for decades (e.g. [8], [3], [2], [12], [7]).

In many cases (e.g., in databases) the instances I′ of interest
are the finite ones, and hence we can define finite open-
world query answering (denoted here as FQA), which restricts
the quantification to finite extensions I′ of I. In contrast, by
unrestricted open-world query answering (UQA) we refer to
the problem where I′ can be either finite or infinite. Generally
the class of queries is taken to be the conjunctive queries
(CQs) — queries built up from relational atoms via existential
quantification and conjunction. We will restrict to CQs here,

and thus omit explicit mention of the query language, focusing
on the constraint language.

A first constraint class known to have tractable open-world
query answering problems are inclusion dependencies (IDs) —
constraints of the form, e.g., ∀xyz R(x,y,z)→∃vw S(z,v,w,y).
The fundamental results of Johnson and Klug [8] and
Rosati [15] show that both FQA and UQA are decidable
for ID and that, in fact, they coincide. When this happens,
the constraints are said to be finitely controllable. These results
have been generalized by Bárány et al. [2] to a much richer
class of constraints, the guarded fragment of first-order logic.

However, those results do not cover a second important
kind of constraints, namely number restrictions, which express,
e.g., uniqueness. We represent them by the class of functional
dependencies (FDs) — of the form ∀xy (R(x1, . . . ,xn) ∧
R(y1, . . . ,yn)∧

∧
i∈L xi = yi)→ xr = yr. The implication problem

(does one FD follow from a set of others) is decidable for FDs,
and coincides with implication restricted to finite instances [1].
Trivially, the FQA and UQA problems are also decidable for
FDs alone, and coincide.

Trying to combine IDs and FDs makes both UQA and FQA
undecidable in general [3]. However, UQA is known to be
decidable when the FDs and the IDs are non-conflicting [8],
[3]. Intuitively, this condition guarantees that the FDs can be
ignored, as long as they hold on the initial instance I, and one
can then solve the query answering problem by considering
the IDs alone. But the non-conflicting condition only applies
to UQA and not to FQA. In fact it is known that even for
very simple classes of IDs and FDs, including non-conflicting
classes, FQA and UQA do not coincide. Rosati [15] showed that
FQA is undecidable for non-conflicting IDs and FDs (indeed,
for IDs and keys, which are less rich than FDs).

Thus a general question is to what extent these classes, FDs
and IDs, can be combined while retaining decidable FQA.
The only decidable cases impose very severe requirements.
For example, the constraint class of “single KDs and FKs”
introduced in [15] has decidable FQA, but such constraints
cannot model, e.g., FDs which are not keys. Further, in contrast
with the general case of FDs and IDs, single KDs and FKs are
always finitely controllable, which limits their expressiveness.
Indeed, we know of no tools to deal with FQA for non-finitely-
controllable constraints on relations of arbitrary arity.

A second decidable case is where all relation symbols and

4/4


	Uncertainty and Incompleteness

