Open-World Query Answering
Under Number Restrictions

Antoine Amarilli1,2

1 Télécom ParisTech, Paris, France

2 University of Oxford, Oxford, United Kingdom

January 17, 2014
Open-World Query Answering

- Instance I

\[\{ R(a, b), T(b) \} \]
Open-World Query Answering

- **Instance** \(I \)
 \(\{ R(a, b), T(b) \} \)

- **Constraints** \(\Theta \) of a fragment \(F \)
 \(\forall xy R(x, y) \Rightarrow S(y) \)
 (here: fragments of **first-order logic** with no constants)
Open-World Query Answering

- **Instance** I
 \{R(a, b), T(b)\}

- **Constraints** Θ of a fragment F
 $\forall xy R(x, y) \Rightarrow S(y)$
 (here: fragments of first-order logic with no constants)

- **Query** q of a class Q
 $\exists x S(x) \land T(x)$
 (here: UCQ or CQ: (union of) Boolean conjunctive queries)
Open-World Query Answering

- Instance I \(\{ R(a, b), T(b) \} \)
- Constraints Θ of a fragment F \(\forall xy R(x, y) \Rightarrow S(y) \)
 (here: fragments of first-order logic with no constants)
- Query q of a class Q \(\exists x S(x) \land T(x) \)
 (here: UCQ or CQ: (union of) Boolean conjunctive queries)

\[\Rightarrow QA_{\text{unr}}(F, Q) : \text{does } q \text{ hold in every } J \supseteq I \text{ satisfying } \Theta? \]
(written $I, \Theta \models_{\text{unr}} q$)
Open-World Query Answering

- **Instance** I
 \[\{ R(a, b), T(b) \} \]
- **Constraints** Θ of a fragment F
 \[\forall xy \ R(x, y) \Rightarrow S(y) \]
 (here: fragments of **first-order logic** with no constants)
- **Query** q of a class Q
 \[\exists x \ S(x) \land T(x) \]
 (here: **UCQ** or **CQ**: (union of) Boolean conjunctive queries)

\Rightarrow **QA$_{unr}$**(F, Q): does q hold in every $J \supseteq I$ satisfying Θ?
(written $I, \Theta \models_{unr} q$)

\Rightarrow **QA$_{fin}$**(F, Q): does q hold in every finite $J \supseteq I$ satisfying Θ?
(written $I, \Theta \models_{fin} q$)
Open-World Query Answering

- **Instance** I
 \[\{ R(a, b), T(b) \} \]

- **Constraints** Θ of a fragment F
 \[\forall xy \, R(x, y) \Rightarrow S(y) \]
 (here: fragments of first-order logic with no constants)

- **Query** q of a class Q
 \[\exists x \, S(x) \land T(x) \]
 (here: UCQ or CQ: (union of) Boolean conjunctive queries)

\Rightarrow

QA*unr*(F, Q): does q hold in every $J \supseteq I$ satisfying Θ?
(written $I, \Theta \models_{\text{unr}} q$)

\Rightarrow

QA*fin*(F, Q): does q hold in every finite $J \supseteq I$ satisfying Θ?
(written $I, \Theta \models_{\text{fin}} q$)

\Rightarrow

Equivalently: is there a (finite) model of $I \land \Theta \land \neg q$?
Dependencies DEP

\[\tau : \forall x (\phi(x) \Rightarrow \exists y A(x, y)) \]
Dependencies DEP

$$\tau : \forall x(\phi(x) \Rightarrow \exists y A(x, y))$$

- **Tuple-Generating Dependencies** TGD: \(A\) is a **regular** atom.
- **Inclusion Dependencies** ID:
 - \(\Rightarrow \phi\) is an **atom**, no repeated variables.
- **Unary Inclusion Dependencies** UID:
 - \(\Rightarrow\) **Only one exported variable** (occurring in \(\phi\) and \(A\)).
 - **Example:** \(\forall e b, \text{Boss}(e, b) \Rightarrow \exists b' \text{Boss}(b, b')\).
 - **Written** \(\text{Boss}^2 \subset \text{Boss}^1\).
Dependencies DEP

\[\tau : \forall x(\phi(x) \Rightarrow \exists y A(x, y)) \]

- **Tuple-Generating Dependencies** TGD: \(A \) is a regular atom.
 - **Inclusion Dependencies** ID:
 \[\Rightarrow \phi \text{ is an atom, no repeated variables.} \]
 - **Unary Inclusion Dependencies** UID:
 \[\Rightarrow \text{Only one exported variable (occurring in } \phi \text{ and } A). \]
 \[\Rightarrow \text{Example: } \forall e, b, \text{ Boss}(e, b) \Rightarrow \exists b' \text{ Boss}(b, b'). \]
 \[\Rightarrow \text{Written } \text{Boss}^2 \subseteq \text{Boss}^1. \]

- **Equality-Generating Dependencies** EGD: \(A \) is an equality.
 - **Functional Dependencies** FD:
 \[\Rightarrow \forall xy \ (S(x) \wedge S(y) \wedge \bigwedge_{i \in L} x_i = y_i) \Rightarrow x_r = y_r. \]
 - **Unary Functional Dependencies:** \(|L| = 1. \)
 \[\Rightarrow \text{Example: } \forall e, e', b, b', \text{ Boss}(e, b), \text{ Boss}(e', b'), e = e' \Rightarrow b = b'. \]
 \[\Rightarrow \text{Written } \text{Boss}^1 \rightarrow \text{Boss}^2. \]
 - **Key Dependencies:** \(\bigwedge_{r \in \text{Pos}(R)} R^K \rightarrow R^r \text{ for some } K \subseteq \text{Pos}(R). \)
 - **Unary Key Dependencies:** \(|K| = 1. \)
Logics

- **Guarded Fragment GF:**
 - Contains regular atoms and equality atoms.
 - Closed under Boolean connectives \land, \lor, \neg, etc.
 - Quantification: given an atom $A(x, y)$ and formula $\phi(x, y)$ with free variables exactly as indicated:
 - $\forall x (A \Rightarrow \phi)$.
 - $\exists x (A \land \phi)$.

Two-Variable Guarded Fragment GF^2:
- Only two distinct variables.
- Only unary and binary predicates of the signature (≤ 2).

Two-Variable Guarded Fragment with Counting GC^2:
- Quantifiers $\exists c. y; A(x, y)$ and $\forall c. y; A(x, y)$ with A a binary atom and $c \in \mathbb{N}$.
- Example: $\forall e \exists b; \text{Boss}(e, b)$.
Logics

- **Guarded Fragment GF:**
 - Contains regular atoms and equality atoms.
 - Closed under Boolean connectives \land, \lor, \neg, etc.
 - Quantification: given an atom $A(x, y)$ and formula $\phi(x, y)$ with free variables exactly as indicated:
 - $\forall x (A \Rightarrow \phi)$.
 - $\exists x (A \land \phi)$.

- **Two-Variable Guarded Fragment GF2:**
 - Only two distinct variables.
 - Only unary and binary predicates of the signature $(\sigma_{\leq 2})$.
Logics

- **Guarded Fragment GF:**
 - Contains regular atoms and equality atoms.
 - Closed under Boolean connectives \wedge, \vee, \neg, etc.
 - Quantification: given an atom $A(x, y)$ and formula $\phi(x, y)$ with free variables exactly as indicated:
 - $\forall x (A \Rightarrow \phi)$.
 - $\exists x (A \land \phi)$.

- **Two-Variable Guarded Fragment GF2:**
 - Only two distinct variables.
 - Only unary and binary predicates of the signature $(\sigma_{\leq 2})$.

- **Two-Variable Guarded Fragment with Counting GC2:**
 - Quantifiers $\exists^{\leq c} y$, $A(x, y)$ and $\exists^{\geq c} y$, $A(x, y)$ with A a binary atom and $c \in \mathbb{N}$.
 - Example: $\forall e \exists^{\leq 1} b$, Boss($e, b$).
General Results

- **Negative results:**
 - $QA_\bullet(FO, CQ^-)$ is undecidable [Trakhtenbrot, 1963].
 - $QA_\bullet(TGD, CQ^-)$ is undecidable [Calì et al., 2013].
 - $QA_\bullet(UKD \cup BID, CQ)$ is undecidable [Calì et al., 2003].
General Results

* Negative results:
 - $\text{QA}_\bullet(\text{FO}, \text{CQ}^-)$ is undecidable [Trakhtenbrot, 1963].
 - $\text{QA}_\bullet(\text{TGD}, \text{CQ}^-)$ is undecidable [Calì et al., 2013].
 - $\text{QA}_\bullet(\text{UKD} \cup \text{BID}, \text{CQ})$ is undecidable [Calì et al., 2003].

* Positive results:
 - $\text{QA}_\bullet(\text{GF}, \text{UCQ})$ is in 2EXPTIME [Barany et al., 2010].
 - $\text{QA}_\bullet(\text{GC}^2, \text{CQ})$ is decidable [Pratt-Hartmann, 2009].
General Results

- **Negative results:**
 - $QA_\bullet(\text{FO}, CQ^-)$ is undecidable [Trakhtenbrot, 1963].
 - $QA_\bullet(\text{TGD}, CQ^-)$ is undecidable [Calì et al., 2013].
 - $QA_\bullet(\text{UKD} \cup \text{BID}, CQ)$ is undecidable [Calì et al., 2003].

- **Positive results:**
 - $QA_\bullet(\text{GF}, \text{UCQ})$ is in 2EXPTIME [Barany et al., 2010].
 - $QA_\bullet(\text{GC}^2, CQ)$ is decidable [Pratt-Hartmann, 2009].

⇒ Can we have both high-arity constraints and expressive low-arity constraints, including equality constraints?
Table of Contents

1 Introduction

2 Extending GC² Query Answering

3 Unrestricted Query Answering

4 Finite Query Answering

5 Conclusion
Result Statement

- **Frontier-One Dependencies FR1:**
 - Subset of TGD which includes UID.
 - One exported variable.
 - No repeated variable in the head.
Result Statement

- **Frontier-One Dependencies FR1:**
 - Subset of TGD which includes UID.
 - One exported variable.
 - No repeated variable in the head.

- **Reification** \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
 - Add binary predicates R_i for every $i \in \text{Pos}(R)$ and $R \in \sigma_{> 2}$.
 - Replace facts $R(a)$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in \text{Pos}(R)$.
 - Example: $R(a, a, b)$ becomes $R_1(f, a), R_2(f, a), R_3(f, b)$.
Result Statement

- **Frontier-One Dependencies** FR1:
 - Subset of TGD which includes UID.
 - One exported variable.
 - No repeated variable in the head.

- **Reification** \mathcal{R} of a structure M from σ to (extended) $\sigma_{\leq 2}$:
 - Add binary predicates R_i for every $i \in \text{Pos}(R)$ and $R \in \sigma_{> 2}$.
 - Replace facts $R(a)$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in \text{Pos}(R)$.
 - Example: $R(a, a, b)$ becomes $R_1(f, a), R_2(f, a), R_3(f, b)$.

- **Frontier-One Acyclic Dependencies** FR1a:
 - The Gaifman graph of the reification of the body is acyclic.
Result Statement

- **Frontier-One Dependencies FR1:**
 - \Rightarrow Subset of TGD which includes UID.
 - \Rightarrow One exported variable.
 - \Rightarrow No repeated variable in the head.

- **Reification R of a structure M from σ to (extended) $\sigma_{\leq 2}:$**
 - \Rightarrow Add binary predicates R_i for every $i \in \text{Pos}(R)$ and $R \in \sigma_{> 2}.$
 - \Rightarrow Replace facts $R(a)$ of > 2-ary predicates by a fresh element f and $R_i(f, a_i)$ for all $i \in \text{Pos}(R)$.
 - \Rightarrow Example: $R(a, a, b)$ becomes $R_1(f, a), R_2(f, a), R_3(f, b).$

- **Frontier-One Acyclic Dependencies FR1a:**
 - \Rightarrow The Gaifman graph of the reification of the body is acyclic.

Theorem

$\text{QA}_\bullet((\text{UKD} \cup \text{GC}^2 \cup \text{FR1}^a, \text{CQ}) \text{ is decidable.}$
Proof Idea

- **Encode** constraints from UKD ∪ GC² ∪ FR1ᵃ to GC².
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as GC² QA):
 - ⇒ The reification of counterexample models should be counterexample models for the encoding (easy).
 - ⇒ Counterexample models should be decodable from counterexample models for the encoded constraints (harder).
Proof Idea

- **Encode** constraints from \(\text{UKD} \cup \text{GC}^2 \cup \text{FR1}^a \) to \(\text{GC}^2 \).
- Show that QA under the original constraints is equivalent to QA for the encoded constraints (and decide it as \(\text{GC}^2 \) QA):
 - The reification of counterexample models should be counterexample models for the encoding (easy).
 - Counterexample models should be decodable from counterexample models for the encoded constraints (harder).

- **Well-formedness** constraints \(\text{wf}(\sigma) \) of \(\text{GC}^2 \) for the encoding:
 - Elements are regular elements or \(R \)-facts for some \(R \in \sigma_{>2} \).
 - The \(R \)'s connect regular elements and \(R \)-fact elements.
 - Every fact element for \(R \) has exactly one of each \(R_i \).
 - The \(R \in \sigma_{\leq 2} \) connect regular elements.
Encoding

- Encoding a key $\phi \in \text{UKD}$ to $\mathcal{R}(\phi)$:
 - \Rightarrow “R^i is a key” encoded to $\forall x \exists y \leq 1, R_i(y, x)$.
 - $\Rightarrow \mathcal{R}(\Phi)$ is clearly a GC^2 constraint.
Encoding

- Encoding a key $\phi \in \text{UKD}$ to $\mathcal{R}(\phi)$:
 \Rightarrow “R^i is a key” encoded to $\forall x \exists y \leq 1 \; R_i(y, x)$.
 \Rightarrow $\mathcal{R}(\Phi)$ is clearly a GC^2 constraint.

- Encoding a high-arity constraint $\delta \in \text{FR1}^a$ to $\mathcal{R}(\delta)$:
 \Rightarrow Apply reification to the body and modify the head if $\in \sigma_{>2}$.
 \Rightarrow Example:
 $\delta : \forall xyz, S(y, x) \land R(x, x, z) \Rightarrow \exists w w', R(x, w, w')$
 \Rightarrow $\mathcal{R}(\delta) : \forall x ((\exists y, S(y, x)) \land (\exists f, R_1(f, x) \land R_2(f, x) \land (\exists z, R_3(f, z)))$
 $\Rightarrow \exists f, R_1(f, x))$.
 \Rightarrow $\mathcal{R}(\Delta)$ expressible as a GF^2 constraint.
Encoding

- Encoding a key $\phi \in \text{UKD}$ to $\mathcal{R}(\phi)$:
 \[\Rightarrow \text{“} R^i \text{ is a key” encoded to } \forall x \exists \leq 1 y, R_i(y, x). \]
 \[\Rightarrow \mathcal{R}(\Phi) \text{ is clearly a } \text{GC}^2 \text{ constraint.} \]

- Encoding a high-arity constraint $\delta \in \text{FR1}^a$ to $\mathcal{R}(\delta)$:
 \[\Rightarrow \text{Apply reification to the body and modify the head if } \in \sigma_{>2}. \]
 \[\Rightarrow \text{Example:} \]
 \[\delta : \forall xyz, S(y, x) \land R(x, x, z) \Rightarrow \exists ww', R(x, w, w') \]
 \[\Rightarrow \mathcal{R}(\delta) : \forall x ((\exists y, S(y, x)) \land (\exists f, R_1(f, x) \land R_2(f, x) \land (\exists z, R_3(f, z))) \]
 \[\Rightarrow \exists f, R_1(f, x). \]
 \[\Rightarrow \mathcal{R}(\Delta) \text{ expressible as a } \text{GF}^2 \text{ constraint.} \]

- Encode the instance I to $\mathcal{R}(I)$ straightforwardly.
- Encode the query $q \in \text{CQ}$ to $\mathcal{R}(q)$ straightforwardly.
- Leave the constraints $\Theta \subseteq \text{GC}^2$ unchanged.
Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q:

 $\Rightarrow R(J)$ is an extension of $R(I)$ satisfying $R(\Delta)$, Θ, $R(\Phi)$ and $\text{wf}(\sigma)$ and violating $R(q)$.
Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q:
 \[\Rightarrow \mathcal{R}(J) \text{ is an extension of } \mathcal{R}(I) \text{ satisfying } \mathcal{R}(\Delta), \Theta, \mathcal{R}(\Phi) \text{ and } \text{wf}(\sigma) \text{ and violating } \mathcal{R}(q). \]

- Conversely, take an extension of $\mathcal{R}(I)$ satisfying $\mathcal{R}(\Delta)$, Θ, $\mathcal{R}(\Phi)$ and $\text{wf}(\sigma)$ and violating $\mathcal{R}(q)$.
 \[\Rightarrow \text{Need to argue that, w.l.o.g., there are no duplicate facts (} f \text{ and } f' \text{ representing } R(a, b, c)). \]

- Decode an extension of I satisfying Δ, Θ, Φ and violating q.

Concluding the Proof

- Take an extension J of I satisfying Δ, Θ, Φ and violating q:
 \[R(J) \text{ is an extension of } R(I) \text{ satisfying } R(\Delta), \Theta, R(\Phi) \text{ and } \text{wf}(\sigma) \text{ and violating } R(q). \]

- Conversely, take an extension of $R(I)$ satisfying $R(\Delta)$, Θ, $R(\Phi)$ and $\text{wf}(\sigma)$ and violating $R(q)$.
 \[\Rightarrow \text{ Need to argue that, w.l.o.g., there are no duplicate facts } \ (f \text{ and } f' \text{ representing } R(a, b, c)). \]
 \[\Rightarrow \text{ Decode an extension of } I \text{ satisfying } \Delta, \Theta, \Phi \text{ and violating } q. \]
 \[\Rightarrow \text{ Decide } QA_\bullet(UKD \cup GC^2 \cup FR1^a, CQ) \text{ from } QA_\bullet(GC^2, CQ). \]
Table of Contents

1. Introduction
2. Extending GC2 Query Answering
3. Unrestricted Query Answering
4. Finite Query Answering
5. Conclusion
The Chase and Separability

- **Universal model**: extension of I satisfying Θ and violating every q unless $I, \Theta \models_{\text{unr}} q$.
- **The chase I^{Θ}**: infinite universal model for TGD and UCQ:
 - \Rightarrow Whenever a TGD is violated, create the missing head fact.
 - \Rightarrow Always use fresh existential witnesses.
The Chase and Separability

- **Universal model**: extension of I satisfying Θ and violating every q unless $I, \Theta \models_{\text{unr}} q$.
- **The chase I^Θ**: infinite universal model for TGD and UCQ:
 - \Rightarrow Whenever a TGD is violated, create the missing head fact.
 - \Rightarrow Always use fresh existential witnesses.

- $\Phi \cup \Delta \subseteq \text{EGD} \cup \text{TGD}$ is **separable** if $I \models \Phi$ implies $I^\Delta \models \Phi$.
 \Rightarrow $\text{QA}_{\text{unr}}(\text{EGD} \cup (\text{TGD} \cap \text{GF}), \text{UCQ})$ is **decidable** in this case:
 - Check if $I \models \Phi$
 - Decide $\text{QA}_{\text{unr}}(\text{TGD} \cap \text{GF}, \text{UCQ})$ problem ignoring EGDs.

 \Rightarrow $\text{QA}_{\text{unr}}(\text{FD} \cup \text{FR}1^a, \text{UCQ})$ is **decidable** (always separable).
Result and Intuition

Theorem

\[\text{QA}_{\text{unr}}(\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ}) \text{ is decidable.} \]
Theorem

$\text{QA}_{\text{unr}} (\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ})$ is decidable.

Idea: counterexample models M for $\text{GC}^2 \cup \text{FR1}^a$ satisfy w.l.o.g.:

Unicity. There are no two facts $R(a)$ and $R(b)$ with $a_i = b_i$ for $R \in \sigma_{>2}$ unless both are in the instance I.

\Rightarrow Any FD violation for $\sigma_{>2}$ must occur in I.

\Rightarrow FDs can be checked on I and ignored afterwards.
Result and Intuition

Theorem

\[\text{QA}_{unr}(\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ}) \text{ is decidable.} \]

Idea: counterexample models \(M \) for \(\text{GC}^2 \cup \text{FR1}^a \) satisfy w.l.o.g.:

Unicity. There are no two facts \(R(a) \) and \(R(b) \) with \(a_i = b_i \) for \(R \in \sigma_{>2} \) unless both are in the instance \(I \).

\(\Rightarrow \) Any FD violation for \(\sigma_{>2} \) must occur in \(I \).
\(\Rightarrow \) FDs can be checked on \(I \) and ignored afterwards.

Acyclicity. The Gaifman graph of \(\mathcal{R}(M) \) is acyclic except for \(I \):

\(\Rightarrow \) \(\text{FR1} \setminus \text{FR1}^a \) dependencies can only match on \(I \).
\(\Rightarrow \) Convert \(\text{FR1} \) to \(\text{FR1}^a \) (enumerate matches).

\(\Rightarrow \) Reduce \(\text{QA}_{unr}(\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ}) \) to \(\text{QA}_{unr}(\text{GC}^2 \cup \text{FR1}^a, \text{CQ}) \).
Unraveling the Counterexample Model

Unravelling M to a suitable M' (with mapping π'):

- Add dummy binary facts covering and connecting all elements.
- Decompose the facts in bags:
 - one bag per fact of $\sigma_{>2}$,
 - one bag per guarded pair $\{a, b\}$ with all unary and binary facts.
Unraveling the Counterexample Model

Unravelling \(M \) to a suitable \(M' \) (with mapping \(\pi' \)):

- Add dummy binary facts **covering** and **connecting** all elements.
- Decompose the facts in **bags**:
 - one bag per fact of \(\sigma_{>2} \),
 - one bag per guarded pair \(\{a, b\} \) with all unary and binary facts.
- Build \(M' \) as a tree of bags by the following **inductive process**:
 - The root bag of \(M' \) is \(I \).
 - The children of \(t \in M' \) are, for every \(a \in \text{dom}(t) \):
 - For every \(\sigma_{\leq 2} \)-bag \(t' \) of \(M \) containing \(\pi'(a) \):
 An **isomorphic copy** of \(t' \) in \(M' \), with \(a \) and a fresh element.
 - For every \(R^i \in \text{Pos}(\sigma_{>2}) \) such that \(\pi'(a) \) occurs at \(R^i \) in \(M \), if \(a \) does not occur at \(R^i \) in \(M' \):
 A \(\sigma_{>2} \)-bag \(\{R(b)\} \) with \(b \) fresh except \(b_i = a \).
 - Do not consider in a bag the **previous element** used to reach it.
Example

\[
\begin{align*}
I &= \{ N(a, b) \} \\
M &= I \cup \{ R(b, c), \\
& \quad R(c, d), R(d, b), \\
& \quad S(b, b, d) \}
\end{align*}
\]
Example

\[l = \{ N(a, b) \} \]
\[M = l \cup \{ R(b, c), R(c, d), R(d, b), S(b, b, d) \} \]
Example

\[I = \{ N(a, b) \} \]
\[M = I \cup \{ R(b, c), R(c, d), R(d, b), S(b, b, d) \} \]
Example

\[I = \{ N(a, b) \} \]
\[M = I \cup \{ R(b, c), R(c, d), R(d, b), S(b, b, d) \} \]
Example

\[I = \{ N(a, b) \} \]
\[M = I \cup \{ R(b, c), R(c, d), R(d, b), S(b, b, d) \} \]
Example

\[I = \{ N(a, b) \} \]
\[M = I \cup \{ R(b, c), R(c, d), R(d, b), S(b, b, d) \} \]
Properties of the Construction

- Preserves the base instance I.
Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π'.
 - Ensures that the query is still false.
Properties of the Construction

- Preserves the base instance \(I \).
- Maps back to the original model by the homomorphism \(\pi' \).
 \[\Rightarrow\] Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for \(\sigma_{\leq 2} \) following \(\pi' \).
 \[\Rightarrow\] Ensures that GF\(^2\) constraints are preserved (guarded bisimilar).
 \[\Rightarrow\] Ensures that number restrictions are preserved.
Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π'.
 - \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π'.
 - \Rightarrow Ensures that GF\(^2\) constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 - \Rightarrow Necessary for guarded bisimulation.
Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π'.
 \[\Rightarrow\quad\text{Ensures that the query is still false.}\]
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π'.
 \[\Rightarrow\quad\text{Ensures that GF^2 constraints are preserved (guarded bisimilar).}\]
 \[\Rightarrow\quad\text{Ensures that number restrictions are preserved.}\]
- The mapping π' is surjective for guarded pairs.
 \[\Rightarrow\quad\text{Necessary for guarded bisimulation.}\]
- Elements still occur at the same positions of $\text{Pos}(\sigma_{>2})$.
 \[\Rightarrow\quad\text{Ensures that FR1^a constraints are preserved.}\]
Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π'.
 - \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π'.
 - \Rightarrow Ensures that GF^2 constraints are preserved (guarded bisimilar).
 - \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 - \Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $\text{Pos}(\sigma_{>2})$:
 - \Rightarrow Ensures that $FR1^a$ constraints are preserved.
- They do so at most once (except in the instance):
 - \Rightarrow Ensures Unicity.
Properties of the Construction

- Preserves the base instance I.
- Maps back to the original model by the homomorphism π'.
 \Rightarrow Ensures that the query is still false.
- Isomorphism between 1-neighborhoods for $\sigma_{\leq 2}$ following π'.
 \Rightarrow Ensures that GF^2 constraints are preserved (guarded bisimilar).
 \Rightarrow Ensures that number restrictions are preserved.
- The mapping π' is surjective for guarded pairs.
 \Rightarrow Necessary for guarded bisimulation.
- Elements still occur at the same positions of $\text{Pos}(\sigma_{>2})$:
 \Rightarrow Ensures that $\text{FR}1^a$ constraints are preserved.
- They do so at most once (except in the instance):
 \Rightarrow Ensures Unicity.
- The model is a tree of bags.
 \Rightarrow Ensures Acyclicity (and bounded treewidth).
Table of Contents

1. Introduction
2. Extending GC² Query Answering
3. Unrestricted Query Answering
4. Finite Query Answering
5. Conclusion
Finite Controllability

- **Finite controllability (FC):** finite and unrestricted QA coincide.
Finite Controllability

- Finite controllability (FC): finite and unrestricted QA coincide.
- Holds for GF but fails with number restrictions:
 - Consider \(\Theta : R^2 \rightarrow R^1 \), \(R^2 \subseteq R^1 \), and \(I = \{ A(a), R(a, b) \} \).
 - Universal infinite chase model \(A(a), R(a, b), R(b, c), \ldots \).
 - Finite model has to loop back, on \(a \) because of the FD:
 \(A(a), R(a, b), R(b, c), \ldots, R(y, z), R(z, a) \).
 - For \(q : R(x, y) \land A(y) \), we have \(I, \Theta \models_{\text{fin}} q \) but \(I, \Theta \not\models_{\text{unr}} q \).
Finite Controllability

- **Finite controllability** (FC): finite and unrestricted QA coincide.

- Holds for GF but fails with **number restrictions**:
 - Consider $\Theta : R^2 \rightarrow R^1, R^2 \subseteq R^1$, and $I = \{ A(a), R(a, b) \}$.
 - Universal infinite chase model $A(a), R(a, b), R(b, c), \ldots$.
 - Finite model has to loop back, on a because of the FD: $A(a), R(a, b), R(b, c), \ldots, R(y, z), R(z, a)$.
 - \Rightarrow For $q : R(x, y) \wedge A(y)$, we have $I, \Theta \models_{\text{fin}} q$ but $I, \Theta \not\models_{\text{unr}} q$.

- **Separability** not useful for finite QA (the chase is infinite):
 - Separability not closed under finite implication [Rosati, 2006].
 - \Rightarrow $QA_{\text{fin}}(KD \cup ID, CQ)$ undecidable even assuming separability.
Decidable Finite QA

- \(QA_{\text{fin}}(\mathbf{GC}^2, \mathbf{CQ}) \) not FC but \textit{decidable} [Pratt-Hartmann, 2009].

 \(\Rightarrow \) Only for \textit{arity-two}.
Decidable Finite QA

- $\text{QA}_{\text{fin}}(\text{GC}^2, \text{CQ})$ not FC but **decidable** [Pratt-Hartmann, 2009].
 \Rightarrow Only for arity-two.

- Enforce **chase termination** to get a finite universal model.
 \Rightarrow Too restrictive.
Decidable Finite QA

- $\text{QA}_{\text{fin}}(\text{GC}^2, \text{CQ})$ not FC but **decidable** [Pratt-Hartmann, 2009].
 - ⇒ Only for **arity-two**.

- Enforce **chase termination** to get a finite universal model.
 - ⇒ Too **restrictive**.

- Restrict the language to **enforce FC**:
 - ⇒ $\text{KD} \cup \text{ID}$ under a **foreign key** condition is FC [Rosati, 2011].
 - ⇒ Also **restrictive**.
Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:
Result Statement

- We focus on **unary** IDs and (general) FDs, arbitrary arity.
- The **implication problem** for UIDs and FDs is decidable: PTIME **finite closure** construction [Cosmadakis et al., 1990].
- We show that FC holds **up to finite closure**:

Theorem

For every \(\Phi \cup \Delta \subseteq \text{FD} \cup \text{UID} \) *with finite closure* \(\Phi^* \cup \Delta^* \), *for* \(q \in \text{UCQ} \) *and* \(I \) *an instance s.t.* \(I \models \Phi^* \), *we have* \(I, \Phi \cup \Delta \models_{\text{fin}} q \) *iff* \(I, \Delta^* \models_{\text{unr}} q \).
Result Statement

- We focus on unary IDs and (general) FDs, arbitrary arity.
- The implication problem for UIDs and FDs is decidable: PTIME finite closure construction [Cosmadakis et al., 1990].
- We show that FC holds up to finite closure:

Theorem

For every $\Phi \cup \Delta \subseteq FD \cup UID$ with finite closure $\Phi^ \cup \Delta^*$, for $q \in UCQ$ and I an instance s.t. $I \models \Phi^*$, we have $I, \Phi \cup \Delta \models_{\text{fin}} q$ iff $I, \Delta^* \models_{\text{unr}} q$.***

\Rightarrow QA$_{\text{unr}} (FD \cup UID, UCQ)$ is in NP [Johnson and Klug, 1984] so QA$_{\text{fin}} (FD \cup UID, UCQ)$ is in NP.
Finite Chase

- The **chase** is a universal model but it is infinite.
- The **finite chase** [Rosati, 2011]: for all \(k \), there is a finite universal model for queries of size \(\leq k \).
- **Reuse** similar elements as nulls when chasing.

\[
N(a, b) \\
R(b, c) \\
R(c, d) \\
R(d, e) \\
R(e, f) \\
R(f, g) \\
R(g, h) \\
R(h, e)
\]

\(R^2 \subseteq R^1 \)
Acyclic Queries

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size $\leq k$.
 - The graph G of q has its atoms as vertices.
 - Two atoms are connected if they share one variable.
 - We require G to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.
Acyclic Queries

- Reuses must not make new queries true relative to the chase.
- We focus on Berge-acyclic constant-free queries of size \(\leq k \).
 - The graph \(G \) of \(q \) has its atoms as vertices.
 - Two atoms are connected if they share one variable.
 - We require \(G \) to be acyclic (including self-loops).
- We will eliminate cycles later to take care of cyclic queries.

Lemma

If an extension of \(I \) satisfying \(\Delta \) has a homomorphism to the quotient of the chase by the \(k \)-neighborhood equivalence relation then it is universal for constant-free Berge-acyclic CQs of size \(\leq k \).
Finite Chase and FDs

- The **dangerous** positions of R^i are the $R^i \in \text{Pos}(R) \setminus \{R^i\}$ such that the FD $R^i \rightarrow R^i$ holds.
- At non-dangerous positions, reusing elements cannot violate **unary** FDs.
- At dangerous positions, we cannot reuse elements!

\[
\begin{align*}
N(a, b) \\
R(b, c) \\
R(c, d) \\
R(d, e) \\
R(e, f) \\
R(f, g) \\
R(g, h) \\
R(h, e)
\end{align*}
\]

\[
\begin{align*}
R^2 & \subseteq R^1 \\
R^2 & \rightarrow R^1
\end{align*}
\]
Finite Chase and FDs and Closure

- **Finite closure** [Cosmadakis et al., 1990]:
 - Whenever $R^i \subseteq S^j$ holds then $\langle R^i \rangle \leq \langle S^j \rangle$.
 - Whenever $S^i \rightarrow S^j$ holds then $\langle S^i \rangle \leq \langle S^j \rangle$.
 - Inequality chains imply the reverse inequalities in the finite.
 - Add the reverse dependencies for such invertible cycles.
Finite Chase and FDs and Closure

- **Finite closure** [Cosmadakis et al., 1990]:
 - Whenever \(R^i \subseteq S^j \) holds then \(\langle R^i \rangle \leq \langle S^j \rangle \).
 - Whenever \(S^i \rightarrow S^j \) holds then \(\langle S^j \rangle \leq \langle S^i \rangle \).
 - Inequality chains imply the reverse inequalities in the finite.
 - Add the reverse dependencies for such invertible cycles.

\[N(a, b) \]
\[R(b, c) \]
\[R(c, d) \]
\[R(z, b) \]
\[R(d, e) \]
\[R(y, z) \]
\[R(e, f) \]
\[R(x, y) \]
\[R(f, g) \]
\[R(w, x) \]
\[R(g, w) \]

\(R^2 \subseteq R^1 \)
\(R^2 \rightarrow R^1 \)
\(R^2 \subseteq R^1 \)
\(R^1 \rightarrow R^2 \)

\(\Rightarrow \) When we create a chain with no possibility to reuse, the reverse dependencies must hold.

\(\Rightarrow \) Intuitively: glue both chains together.
Locality Result

After chasing by \(k \) consecutive reversible UIDs, elements at positions connected by UIDs have the same \(k \)-neighborhood.
General Scheme

- Start with the \textit{instance} \(I \).
- \textbf{Chase} by the IDs.
- \textbf{Reuse} elements at non-dangerous positions.
- \textbf{Connect together} elements at dangerous positions.
 \(\Rightarrow \) Use the previous lemma to justify they can be \textit{paired}.
General Scheme

- Start with the **instance** I.
- **Chase** by the IDs.
- **Reuse** elements at non-dangerous positions.
- **Connect together** elements at dangerous positions.
 - ⇒ Use the previous lemma to justify they can be **paired**.

- **Connect elements within an invertible cycle:**
 - ⇒ We say that $(R^i \subseteq S^j) \leftrightarrow (S^p \subseteq T^q)$ if $S^p \rightarrow S^j$.
 - ⇒ An **invertible path** is a cycle of \leftrightarrow.
 - ⇒ Chase by the ID of SCCs of \leftrightarrow in **topological order**.
Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
 - Must make many patterns out of limited reusable elements.
 - Ex: $R(x_1, a_1, b_1), R(x_2, a_2, b_2), R(x_3, a_1, b_2), R(x_4, a_2, b_1)$.
 - If $R^2 \rightarrow R^3$ then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.
Higher-Arity FDs

- Non-dangerous positions defined w.r.t. unary FDs.
- The non-unary FDs are not considered in the finite closure.
- Reusing the same patterns may violate higher-arity FDs:
 - Must make many patterns out of limited reusable elements.
 - Ex: \(R(x_1, a_1, b_1), R(x_2, a_2, b_2), R(x_3, a_1, b_2), R(x_4, a_2, b_1) \).
 - If \(R^2 \rightarrow R^3 \) then the non-dangerous positions have a unary key so higher-arity FDs are subsumed by UFDs.
 - We need to justify that we can make many patterns out of a limited number of elements to reuse.
 - Formally: from \(N \) elements, for any \(K \), make \(NK \) patterns (unless there is a unary key preventing this).
Dense Models

The possibility to find such patterns is a consequence of:

Lemma

For any FDs Φ over R, there exists $D \leq |R|$ such that either R has a unary key, or there exists a finite model of Φ with $O(N)$ elements and $O(N^{D/(D-1)})$ facts.
Dense Models

The possibility to find such patterns is a consequence of:

Lemma

For any FDs Φ over R, there exists $D \leq |R|$ such that either R has a unary key, or there exists a finite model of Φ with $O(N)$ elements and $O(N^{D/(D-1)})$ facts.

- First, **collapse** any UFD cycles of R.
- Then, consider the UFD “roots” T of R (there are ≥ 2) such that $\forall t \in T, \exists s \in Pos(R), s \to t$, and **reduce** to the case:
 - the attributes of R are the non-empty parts of T.
 - the roots that determine $X \in Pos(R)$ are exactly those of X.
 - the non-unary FDs are as **pessimistic** as possible.
- Finally, **construct** the desired model on this relation.
Expanding Cycles

- We need to **enlarge** cycles of the model, preserving constraints.
Expanding Cycles

- We need to **enlarge** cycles of the model, preserving constraints.
- Group G generated by X is **k-acyclic** if there is no word w of length $\leq k$ of X s.t. $w_1 \cdots w_n = e$ unless $w_i = w_i^{-1}$ for some i.

\[
\text{Example: } M = \{R(a, a)g, M' = \{R((a, e), (a, g))R((a, g), (a, e))g, ...\}
\]
Expanding Cycles

- We need to *enlarge* cycles of the model, preserving constraints.
- Group G generated by X is *k-acyclic* if there is no word w of length $\leq k$ of X s.t. $w_1 \cdots w_n = e$ unless $w_i = w_{i+1}^{-1}$ for some i.
- Build the *product* of the model with a finite acyclic group:
 - Let $L(M) = \{ l^F_i \mid F \in M, 1 \leq i \leq |F| \}$.
 - Let G be a k-acyclic group generated by $L(M)$.
 - For $F = R(a) \in M, g \in G$, create $R((a_1, g^{l^F_1} R), \ldots, (a_{|R|}, g^{l^F_{|R|}} R))$.
 - Ex: $M = \{ R(a, a) \}$, $M' = \{ R((a, e), (a, g)), R((a, g), (a, e)) \}$.
Expanding Cycles

- We need to **enlarge** cycles of the model, preserving constraints.

- Group G generated by X is **k-acyclic** if there is no word w of length $\leq k$ of X s.t. $w_1 \cdots w_n = e$ unless $w_i = w_{i+1}^{-1}$ for some i.

- Build the **product** of the model with a finite acyclic group:
 - Let $L(M) = \{I_i^F \mid F \in M, 1 \leq i \leq |F|\}$.
 - Let G be a k-acyclic group generated by $L(M)$.
 - For $F = R(a) \in M, g \in G$, create $R((a_1, gI_{1}^{F}), \ldots, (a_{|R|}, gI_{|R|}^{F}))$.
 - Ex: $M = \{R(a, a)\}$, $M' = \{R((a, e), (a, g)), R((a, g), (a, e))\}$.

- Properties:
 - \Rightarrow Can be adjusted to preserve the instance as-is.
 - \Rightarrow Preserves unary overlaps so preserves UIDs.
 - \Rightarrow Homomorphism back to M so no new queries are true.
 - \Rightarrow Cycles in M' of size $\leq k$ must take one edge **back-and-forth**.
 - \Rightarrow This may violate FDs!
Expanding Cycles With FDs

- Our models have a **homomorphism** h to $\mathcal{I}^\Theta/\equiv_k$.
- **Overlaps** are between facts with the same h-image.
- Adjust the product $M \times G$ with $L(\mathcal{I}^\Theta/\equiv_k)$ not $L(M)$:
 - If $F = R(a, b, c)$ and $F' = R(a, b, d)$ then $h(F) = h(F')$ and the FD $R^1 \rightarrow R^2$ cannot be violated.
 - Any cycles in $M \times G$ are mapped by the homomorphism $(x, g) \mapsto (h(x), g)$ to cycles in the “regular” product $\mathcal{I}^\Theta/\equiv_k \times G$.
 - In other words:
 - M satisfies the right dependencies (including FDs),
 - $\mathcal{I}^\Theta/\equiv_k \times G$ satisfies the right queries,
 - $M \times G$ satisfies both.

- More work required to preserve the instance.
Table of Contents

1. Introduction
2. Extending GC\(^2\) Query Answering
3. Unrestricted Query Answering
4. Finite Query Answering
5. Conclusion
Summary

We have shown the decidability of:

- $\text{QA}_\bullet(\text{UKD} \cup \text{GC}^2 \cup \text{FR1}^a, \text{CQ})$
- $\text{QA}_{\text{unr}}(\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ})$
- $\text{QA}_{\text{fin}}(\text{FD} \cup \text{UID}, \text{UCQ})$
Summary

We have shown the decidability of:

- $QA_{\bullet}(\text{UKD} \cup GC^2 \cup \text{FR1}^a, \text{CQ})$
- $QA_{\text{unr}}(\text{FD} \cup GC^2 \cup \text{FR1}, \text{CQ})$
- $QA_{\text{fin}}(\text{FD} \cup \text{UID}, \text{UCQ})$

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
 - Find a more homogeneous fragment than $GF^2 \cup \text{FR1}$.
 - Must limit the interaction with FD and number restrictions.
- For finite QA:
 - What about $\text{FD} \cup GC^2 \cup \text{FR1}$?
 - Can we generalize the proof beyond UIDs?
Summary

We have shown the decidability of:

- $\text{QA}_\bullet(\text{UKD} \cup \text{GC}^2 \cup \text{FR1}^a, \text{CQ})$
- $\text{QA}_{\text{unr}}(\text{FD} \cup \text{GC}^2 \cup \text{FR1}, \text{CQ})$
- $\text{QA}_{\text{fin}}(\text{FD} \cup \text{UID}, \text{UCQ})$

Further work:

- Derive upper and lower complexity bounds.
- For unrestricted QA:
 - Find a more homogeneous fragment than $\text{GF}^2 \cup \text{FR1}$.
 - Must limit the interaction with FD and number restrictions.
- For finite QA:
 - What about $\text{FD} \cup \text{GC}^2 \cup \text{FR1}$?
 - Can we generalize the proof beyond UIDs?

Thanks for your attention!

