Preliminaries Crowd complexity Computational complexity Conclusion

00000 0000 oo

Taxonomy-Based Crowd Mining

Antoine Amarillil2 Yael Amsterdamer! Tova Milo!

1Tel Aviv University, Tel Aviv, Israel

2Ecole normale supérieure, Paris, France

Bonus

1/27

Background
©000000

Data mining

Data mining — discovering interesting patterns in large databases
Database — a (multi)set of transactions

Transaction — a set of items (aka. an itemset)
A simple kind of pattern to identify are frequent itemsets.

D :{ @ An itemset is frequent if it
occurs in at least © = 50%

{beer, diapers}, _
of transactions.

{beer,bread, butter},
{beer,bread,diapers},
{salad, tomato}

e {salad} is not frequent.
o {beer,diapers} is

frequent. Thus, {beer} is
} also frequent.

2/27

Background
0@00000

Human knowledge mining

@ Standard data mining assumption: the data is materialized in
a database.

@ Sometimes, no such database exists!

Leisure activities: Traditional medicine:

D={ D={
{chess, saturday, garden}, {hangover, coffee},
{cinema, friday, evening}, {cough, honey},

This data only exists in the minds of people!

3/27

Background
00®0000

Harvesting this data

@ We cannot collect such data in a centralized database and use
classical data mining, because:

@ It's impractical to ask all users to surrender their data.

“Let’s ask everyone to give the detail of all their activities in
the last three months.”

@ People do not remember the information.
“What were you doing on July 16th, 20137
@ However, people remember summaries that we could access.
“Do you often play tennis on weekends?"

@ To find out if an itemset is frequent or not, we can just ask
people directly.

4/27

Background
000®000

Crowdsourcing

@ Crowdsourcing — solving hard problems through elementary
queries to a crowd of users
@ Find out if an itemset is frequent with the crowd:
@ Draw a sample of users from the crowd.
(black box)

@ Ask each user: is this itemset frequent?
(“Do you often play tennis on weekends?")

© Corroborate the answers to eliminate bad answers.
(black box, see existing research)

@ Reward the users.
(usually, monetary incentive, depending on the platform)

= An oracle that takes an itemset and finds out if it is frequent
or not by asking crowd queries.

5/27

Background
0000®00

Taxonomies

Having a taxonomy over the items can save us work!

item
sickness sport
cough fever back_pain tennis running biking

o If {sickness,sport} is infrequent then all itemsets such as
{cough, biking} are infrequent too.

@ Without the taxonomy, we need to test all combinations!

@ Also avoids redundant itemsets like {sport, tennis}.

6/27

Background
00000®0

Cost

How to evaluate the performance of a strategy to identify the
frequent itemsets?

@ Crowd complexity — the number of itemsets we ask about
(monetary cost, latency...)
e Computational complexity — the complexity of computing the
next question to ask
There is a tradeoff between the two:

@ Asking random questions is computationally inexpensive but
the crowd complexity is bad.

@ Asking clever questions to obtain optimal crowd complexity is
computationally expensive.

7/27

Background
000000e

The problem

We can now describe the problem:
o We have:

o A known item domain Z (set of items).

o A known taxonomy W on Z (is-A relation, partial order).
e A crowd oracle freq to decide if an itemset is frequent or not.

o We want to find out, for all itemsets, whether they are
frequent or infrequent, i.e., learn freq exactly.

@ We want to achieve a good balance between crowd complexity
and computational complexity.

What is a good interactive algorithm to solve this problem?

8/27

Background Preliminaries Crowd complexity Computational complexity Conclusion Bonus
0000000 00000 0000 oo

Table of contents

© Preliminaries

9/27

Preliminaries
©0000

ltemset taxonomy

[temsets I(W) — the sets of pairwise incomparable items.
(e.g. {coffee,tennis} but not {coffee,drink}.)

If an itemset is frequent then its subsets are also frequent.

If an itemset is frequent then itemsets with more general
items are also frequent.

We define an order relation < on itemsets: A < B for “Ais
more general than B".

Formally, Vi € A, 3j € B s.t. i is more general than j.

freq is monotone: if A < B and B is frequent then A also is.

10/27

Preliminaries Crowd complexity Computational complexity Conclusion
0®000 0000 oo

ltemset taxonomy example

Taxonomy W ltemset taxonomy (V)
nil
iJem
item ches< >rink

/N N

drink chess Chess coffee tea

/N "X

coffee tea chess chess coffee
coffee tea tea
chess
coffee
tea

Bonus

11/27

(e]e] lele]

Maximal frequent itemsets

e Maximal frequent itemset (MFI): a
frequent itemset with no frequent
descendants.

e Minimal infrequent itemset (MII).

e The MFIs (or Mlls) concisely
represent freq.

= We can study complexity as a
function of the size of the output.

Preliminaries Crowd complexity Computational complexity Conclusion Bonus

nil
|
item

/N

chess drink

AN

g?izi coffee tea

> X

chess chess coffee

coffee tea tea
N S
chess
coffee
tea

12/27

Preliminaries
000®0

Solution taxonomy

@ Conversely, (we can show) any set of pairwise incomparable
itemsets is a possible MFI representation.

@ Hence, the set of all possible solutions has a similar structure
to the “itemsets” of the itemset taxonomy (V).

= We call this the solution taxonomy S(W¥) = I(I(V)).

Identifying the freq predicate amounts to finding the correct node
in S(V) through itemset frequency queries.

13/27

Background Preliminaries Crowd complexity Computational complexity Conclusion Bonus

0000000 O000e 0000 oo

Solution taxonomy example

Taxonomy W Itemset taxonomy I(W) Solution taxonomy S(W)

nil "T‘
| {nil}
item {item}

{chess} {drink}

/ N\ Lt
{chess} (co)fe}{tea}
>

{drink}

item i
chess drink T h N L
/ \ / ‘ \ {chess, drink} ((ccofefsese}) ‘:t:gi} (c(oteae)e}
i chess [S S el N
drink chess coffee tea {chess, drink} {chess, drink} fcoftec) (cotfee, tea)
ea
/ \ / \/‘khess t/!rink}\
{chess, coffee} {chess, tea} {c{ojfe}e} (coﬁzgfs%ea)
coffee tea chess chess coffee | | — "V ~
coffee tea tea e CUGies” (Cotree. teay
\ | / | > > |
{chess, coffee} {chess, coffee} {chess, tea}
{chess, tea} {coffee, tea} {coffee, tea}
Chess \{chess, coffee)/
coffee {oFee,
tea

{chess, coffee, tea}

14/27

Background Preliminaries Crowd complexity Computational complexity Conclusion Bonus
0000000 00000 0000 oo

Table of contents

© Crowd complexity

15/27

Crowd complexity
®000

Lower bound

@ Each query yields one bit of information.

@ Information-theoretic lower bound: we need at least
Q(log |S(W)]) queries.

@ This is bad in general, because |S(V)| can be doubly
exponential in W,

@ As a function of the original taxonomy W, we can write:

Q <2widt}'{\ll] / \/VW) .

16/27

Crowd complexity
o] Yot}

Upper bound

@ We can achieve the information-theoretic
bound if is there always an unknown itemset
that is frequent in about half of the possible
solutions.

@ A result from order theory shows that there
is a constant dp ~ 1/5 such that some

element always achieves a split of at least dp.

@ Hence, the previous bound is tight: we need
O(log|S(WV)|) queries.

nil

ab

6/7
5/7
4/7
3/7
2/7

1/7

17/27

Crowd complexity
ocoeo

Lower bound, MFI/MII

@ To describe the solution, we need the MFIs or the Mlls.

@ However, we need to query both the MFls and the Mlls to
identify the result uniquely: Q(|MFI| + |MII|) queries.

@ We can have |MFI| = Q(2|M”|) and vice-versa.
@ This bound is not tight (e.g., chain).

nil

a3

a4

ab

18/27

Crowd complexity
ocooe

Upper bound, MFI/MII

@ There is an explicit algorithm to
find a new MFI or MIl in < |Z]
queries.

@ Intuition: starting with any
frequent itemset, add items until
you cannot add any more without
becoming infrequent.

@ The number of queries is thus
O(|Z] - (|MFI| + |MII)).

nitl

|

item

/N

chess drink

I RN

chess
drink coffee tea

> X

chess chess coffee
coffee tea tea

N o

chess
coffee
tea

19/27

Background Preliminaries Crowd complexity Computational complexity Conclusion Bonus
o

0000000 00000 000 oo

Table of contents

e Computational complexity

20/27

Computational complexity
[1]

Hardness for standard (input) complexity

e We want an unknown itemset of I(W) that is frequent for
about half of the possible solutions of S(V).

@ This is related to counting the antichains of I(V), which is
FP#P_complete.

@ Hence, we argue that finding the best-split element in (V) is
FP#P_hard (as a function of (W), which can be exponential
in W — of course it is easy if S(V) is materialized).

@ Intuition: determine the number of antichains of a poset by
comparing it with a known poset, use an oracle for the best
split to decide the comparison.

@ Our proof works for restricted itemsets (see later); the
obstacle for the general case is that (V) has a constrained
structure (distributive lattice).

21/27

Computational complexity

oe

Hardness for output complexity

@ When running the incremental algorithm,
we can materialize |(W), but this may be
exponential in W. Do we need to?

@ Problem EQ from Boolean function
learning: decide whether our current MFls
and Mlls cover all possible itemsets.

@ Reduction — a polynomial algorithm to
learn freq entails a polynomial algorithm
for EQ which is not known to be in
PTIME. (Exact complexity open.)

nitl

item

/

chess

|

chess
drink

chess
coffee

AN

N\

drink

coffee

| X X |

chess
tea

chess
coffee
tea

C

S

|\

tea

offee
tea

22/27

Background Preliminaries Crowd complexity Computational complexity Conclusion Bonus
0000000 00000 0000 oo

Table of contents

© Conclusion

23/27

Conclusion

Summary and further work

We have studied the crowd and computational complexity of
crowd mining under a taxonomy.

Further work: improve the bounds and close gaps.

More specifically: a tractable way to find reasonably good-split
elements in arbitrary posets (or distributive lattices)?

Experimental comparison of various heuristics to choose a
question (chain partitioning, random, best split, etc.).

Unformalized intuition: most itemsets are infrequent.

Integrating uncertainty (black box for now).

24/27

Conclusion

Summary and further work

We have studied the crowd and computational complexity of
crowd mining under a taxonomy.

@ Further work: improve the bounds and close gaps.

@ More specifically: a tractable way to find reasonably good-split
elements in arbitrary posets (or distributive lattices)?

@ Experimental comparison of various heuristics to choose a
question (chain partitioning, random, best split, etc.).

@ Unformalized intuition: most itemsets are infrequent.

@ Integrating uncertainty (black box for now).

Thanks for your attention!

24/27

Bonus

Greedy algorithms

nil
@ Querying an element of the chain may remove al
< 1/2 possible solutions.
@ Querying the isolated element b will remove a2
exactly 1/2 solution. b
@ However, querying b classifies far less itemsets. a3
= Classifying many itemsets isn’t the same as
eliminating many solutions.
Finding the greedy-best-split item is FP#P-hard. as
ab

25/27

Bonus

Restricted itemsets

@ Asking about large itemsets is irrelevant.

“Do you often go cycling and running while drinking coffee
and having lunch with orange juice on alternate Wednesdays?”

o If the itemset size is bounded by a constant, I(W) is tractable.

= The crowd complexity O(log [S(V)|) is tractable too.

26/27

Bonus

Chain partitioning

nil
o Optimal strategy for chain taxonomies: binary search. al
@ We can determine a chain decomposition of the itemset
taxonomy and perform binary searches on the chains. a2
@ Optimal crowd complexity for a chain, performance in
general is unclear. a3
e Computational complexity is polynomial in the size of (V)
(which is still exponential in V). a4
ab

27/27

	Background
	Preliminaries
	Crowd complexity
	Computational complexity
	Conclusion

