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Introduction



Short presentation

• Associate prof at Télécom Paris
→ Moving from Télécom Paris to Inria Lille

• Core area: database theory
→ Moving from databases to theory

• Confession: No prior stringology experience!
→ But attracted to the area via database theory problems
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Talk overview

Main message: database theory problems sometimes lead to stringology problems

Talk contents:

• Regular document spanners, a formalism motivated by information extraction

• Enumeration algorithms for regular document spanners on strings

• Incremental maintenance when the string is modified

• Directions for future research
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Document spanners



Database motivation: Declarative information extraction

• Standard setting in database research: queries are posed over relational tables

• In practice: data is sometimes hidden in large textual documents
→ Information extraction (IE): how to get from large textual data to structured data

Guiding principle: declarative information extraction:

→ Specify what you want to extract, not how to extract it
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Basic idea for declarative IE: Regular document spanners

A finite automaton with special transitions that extract substrings of the input string

0start 1 2 3

a,b a a

⊢x b ⊣x

a,b

“Extract all couples of a nonempty factor with only a’s and then a nonempty factor with
only b’s”
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Formalizing document spanners

• Document: string over an alphabet

T = J o h n ␣ 4 5 6 1 2 3
0 1 2 3 4 5 6 7 8 9 10 11

• Span: interval of positions
→ ex: [0, 4⟩, [5, 11⟩

• Mapping over a set of variables X: function from X to spans
→ ex: for X = {x, y, z}, map x and y to [0, 4⟩ and map z to [11, 11⟩

• Spanner: function that maps each string to a set of mappings
→ ex: for X = {x, y, z}, each string is mapped to a relational table with columns x, y, z
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Document spanner example

Take the spanner from before:

0start 1 2 3

a,b a a

⊢x b ⊣x

a,b

“Extract all substrings containing exactly one b”

T = b b a b
0 1 2 3 4

x

[0, 1⟩
[1, 2⟩
[1, 3⟩
[2, 4⟩
[3, 4⟩

7/23



Document spanner example

Take the spanner from before:

0start 1 2 3

a,b a a

⊢x b ⊣x

a,b

“Extract all substrings containing exactly one b”

T = b b a b
0 1 2 3 4

x

[0, 1⟩
[1, 2⟩
[1, 3⟩
[2, 4⟩
[3, 4⟩

7/23



Document spanner example

Take the spanner from before:

0start 1 2 3

a,b a a

⊢x b ⊣x

a,b

“Extract all substrings containing exactly one b”

T = b b a b
0 1 2 3 4

x

[0, 1⟩
[1, 2⟩
[1, 3⟩
[2, 4⟩
[3, 4⟩

7/23



Document spanner example

Take the spanner from before:

0start 1 2 3

a,b a a

⊢x b ⊣x

a,b

“Extract all substrings containing exactly one b”

T = b b a b
0 1 2 3 4

x

[0, 1⟩
[1, 2⟩
[1, 3⟩
[2, 4⟩
[3, 4⟩

7/23



Document spanner example 2

0start 1 2 3 4 5 6

a,b a,ba

⊢x a ⊣x ⊢y

b

b ⊣y

“Extract all nonempty contiguous substrings of a’s followed by
nonempty contiguous substrings of b’s”

T = a b a b b
0 1 2 3 4 5

x y

[0, 1⟩ [1, 2⟩
[2, 3⟩ [3, 4⟩
[2, 3⟩ [3, 5⟩
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Formalizing regular document spanners

Regular spanners: those that can be expressed as variable-set automata (VAs)

0 1 2 3 4 5 6 7 8 9␣ ⊢x

Σ [a-z]

[a-z] @

[a-z]

[a-z] .

[a-z]

[a-z] ⊣x ␣

Σ

In practice, often more convenient to write in the subclass of regex-formulas:

Σ∗ ⊢x [a-z]+ @ [a-z]+ . [a-z]+ ⊣x Σ∗

Other more general classes:

• Core spanners: featuring string equality selection

• Generalized core spanners: featuring difference
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What can you do with spanners?

• Find all occurrences of word “stringology”:

Σ∗ ⊢x stringology ⊣x Σ∗

• Find all occurrences of substrings satisfying a regular expression e

Σ∗ ⊢x e ⊣x Σ∗

• Test if the entire word satisfies a regular expression e

Is there a result for ⊢x e ⊣x?

• Find all matches of pattern with variables xax, using string equality selection

Σ∗ ⊢x Σ∗ ⊣x a ⊢x′ Σ
∗ ⊣x′ Σ

∗ with string equality x = x′
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Which questions on spanners are investigated in database theory?

• Expressive power: can we express a given spanner in a given formalism? which
formalisms are more expressive?

• Closure under operators and state complexity: which operations can we apply on
spanners? how does the size change?

• Schema-based vs schemaless: what happens if the spanner does not always assign
all variables in all results?

• Extensions:
• SLP-compressed strings
• More expressive spanner formalisms, e.g., based on context-free languages
• Adding weights to spanners

→ Efficient evaluation: can we efficiently compute the result of a spanner on a string?
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Enumeration



Database motivation: Enumeration algorithms

Idea: When evaluating queries returning many results, we do not want to compute all
results; we just need to be able to enumerate results quickly

→ Research area (in databases and outside): enumeration algorithms
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A simpler problem: Enumerating results of regular spanners

• Problem description:

• Input:
• A string T

Antoine Amarilli Description Name Antoine Amarilli. Handle: a3nm. Identity Born 1990-02-07. French national. Appearance as of 2017.
Auth OpenPGP. OpenId. Bitcoin. Contact Email and XMPP a3nm@a3nm.net Affiliation Associate professor of computer science (office C201-4)
in the DIG team of Télécom Paris, 46 rue Barrault, F-75634 Paris Cedex 13, France. Studies PhD in computer science awarded by Télécom
ParisTech on March 14, 2016. Former student of the École normale supérieure. test@example.com More Résumé Location Other sites Blogging:
a3nm.net/blog Git: a3nm.net/git ...

• A regular spanner P
Σ∗ ⊢x [a-z]+ @ [a-z]+ . [a-z]+ ⊣x Σ∗

• Output: the list of results (mappings) of P on T
{x : [186, 200⟩}, {x : [483, 500⟩}, . . .

• Goal: be very efficient in T and reasonably efficient in P

We mostly focus on a simpler case: P = Σ∗ ⊢x e ⊣x Σ∗ where e is a regular expression

→ Find all substrings of T satisfying e
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Naive algorithms

What is the complexity of finding all substrings of a word T satisfying a regular
expression e?

• Naive algorithm: Run an automaton A for e on each substring of T
→ Complexity is O(|T|2 × |T|)
→ Can be optimized to O(|T|2)

• Problem: We may need to output Ω(|T|2) matching substrings:
• Consider the string T:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

• Consider the regular expression e := a∗

• The number of matches is Ω(|T|2)

→ We need a different way to measure complexity
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Formalizing enumeration algorithms

Antoine Amarilli Description Name Antoine
Amarilli. Handle: a3nm. Identity Born
1990-02-07. French national. Appearance as
of 2017. Auth OpenPGP. OpenId. Bitcoin.
Contact Email and XMPP a3nm@a3nm.net
Affiliation Associate professor ...

String T

Σ∗ ⊢x [a-z]+

@ [a-z]+ .
[a-z]+ ⊣x Σ∗

Regular spanner P

Phase 1:
Preprocessing

Index structure

Phase 2:
Enumeration

{x : [42, 57⟩},
{x : [1337, 1351⟩}

Results
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Two ways to measure performance:

• Total time for phase 1

• Delay between two results in phase 2
... as a function of the string T and regular spanner P
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Results for enumerating regexp matches and regular spanner mappings

For the problem of enumerating regexp matches, we can show:
Theorem (follows from [Florenzano et al., 2018])
Given a string T and a deterministic automaton A, we can enumerate the subword
occurrences in T that match A with preprocessing O(|T| × |A|) and constant delay.

We can show (with more effort):
Theorem (joint work with Pierre Bourhis, Stefan Mengel, Matthias Niewerth)
For a nondeterministic automaton A, we can enumerate the subword occurrences in T
that match A with preprocessing O(|T| × Poly(|A|)) and delay O(Poly(|A|)).

• Remark: if the regexp is just a word or a set of words, the complexity is O(|T| × |A|):
not helpful compared to Knuth-Morris-Pratt / Aho-Corasick.
• We can achieve the same complexity for regular spanners (not just regexps)
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Incremental maintenance



Database motivation: Incremental validation

• Validate if an XML document satisfies a schema

• Maintain this information as the document is updated

• Relates to incremental view maintenance in relational databases

Idea: if the document is large, we want to avoid re-validating the document from
scratch

→ Forget trees: what about incremental validation on strings?
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Simpler problem: Dynamic membership for regular languages

• Fix a regular language L
→ E.g., L = (ab)∗

• Read an input string T with n := |T|
→ E.g., T = abbbab

• Maintain the membership of T to L under substitution updates
→ Initially, we have T /∈ L
→ Replace character at position 3 with a: we now have T ∈ L
→ The length n never changes

Theorem
For any regular language L recognized by an automaton A, given a string T, we can
maintain dynamic membership of T to L under substitution updates in
O(Poly(|A|)× log |T|) per update.
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Proof of the O(log n) algorithm

Fix the language L = (ab)∗: 0start 1
a

b

• Build a balanced binary tree on the input string T = abbbab

• Label each node n by the transition monoid element: all pairs q⇝ q′ such that we
can go from q to q′ by reading the substring below n

a b b b a b

• The tree root describes if T ∈ L
• We can update the tree for each substitution in O(log n)
• Can be improved to O(log n/ log log n) with a log-ary tree
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Improving on O(log n) for some languages

For our language L = (ab)∗ we can handle updates in O(1):

• Check that n is even

• Count violations: a’s at even positions and b’s at odd positions

• Maintain this counter in constant time

• We have T ∈ L iff there are no violations

Question: what is the complexity of dynamic membership, depending on the fixed
regular language L?
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Summary of our results (joint work with Louis Jachiet and Charles Paperman)

QLZG: in O(1)

QSG: in O(log log n)
not in O(1)?

All: in Θ(log n/ log log n)

• We identify a class QLZG of regular languages:
• for any language in QLZG, dynamic membership is in O(1)
• for any language not in QLZG, we can reduce from a problem

that we conjecture is not in O(1)

• We identify a class QSG of regular languages:
• for any language in QSG, the problem is in O(log log n)
• for any language not in QSG, it is in Ω(log n/ log log n) (lower

bound by Skovbjerg Frandsen et al.)

• The problem is always in O(log n/ log log n)
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Combining incremental maintenance and enumeration

• We have looked at dynamic membership for regular languages...
→ ... and showed how to maintain it in O(log |T|) time per update

• We have looked at enumeration for regular spanners...
→ ... and showed how to perform it with linear preprocessing and constant delay

Can we get the best of both worlds?

Theorem (follows from [Niewerth and Segoufin, 2018])
Given a string T and a fixed document spanner P, we can enumerate the results of P on
T with preprocessing O(|T|) and delay independent from |T|, and we can maintain the
enumeration structure in O(log |T|) time per substitution update.

Theorem (joint work with Pierre Bourhis, Stefan Mengel, Matthias Niewerth)
We can do the same with preprocessing O(|T| × Poly(|A|)), delay O(Poly(|A|)), and
updates O(Poly(|A|)× log |T|), where A is a nondeterministic automaton for P.

Also generalizes to trees for a suitable notion of tree automata with captures
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Conclusion



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...

• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.

• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection

• Enumerating large answers via diffs Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs

Thanks for your attention!

23/23



Summary, ongoing research, and open problems

• The message: some database theory questions are better answered by stringology
• Regular spanners as a formalism for expressive pattern matching tasks on strings
• Enumeration problems on strings to produce large sets of results efficiently
• Incremental maintenance problems to maintain results under changes to the string
• Other domains, e.g., Regular path queries on graph databases

Directions for further research (talk to me to know more!):

• Better update complexity than O(log n) for some enumeration tasks
→ Ongoing work with Sven Dziadek and Luc Segoufin

• Better update complexity than O(log n) for tree languages
→ Ongoing with Corentin Barloy, Pawel Gawrychowski, Louis Jachiet, Charles Paperman

• More general updates: insertions/deletions, tree modifications, search/replace...
• Ranked enumeration, direct access, membership testing queries, etc.
• Enumeration for document spanners with string equality selection
• Enumerating large answers via diffs Thanks for your attention! 23/23



References i

Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019a).
Constant-Delay Enumeration for Nondeterministic Document Spanners.
In ICDT.
Amarilli, A., Bourhis, P., Mengel, S., and Niewerth, M. (2019b).
Enumeration on Trees with Tractable Combined Complexity and Efficient Updates.
In PODS.
Amarilli, A., Jachiet, L., and Paperman, C. (2021).
Dynamic Membership for Regular Languages.
In ICALP.
Florenzano, F., Riveros, C., Ugarte, M., Vansummeren, S., and Vrgoc, D. (2018).
Constant Delay Algorithms for Regular Document Spanners.
In PODS.

https://arxiv.org/abs/1807.09320
http://edbticdt2019.inesc-id.pt/
https://arxiv.org/abs/1812.09519
https://sigmod2019.org/
https://arxiv.org/abs/2102.07728
https://easyconferences.eu/icalp2021/
https://arxiv.org/abs/1803.05277


References ii

Niewerth, M. and Segoufin, L. (2018).
Enumeration of MSO queries on strings with constant delay and logarithmic updates.
In PODS.


	Introduction
	Document spanners
	Enumeration
	Incremental maintenance
	Conclusion
	Appendix

