
Query Evaluation:
Enumeration, Maintenance, Reliability

Antoine Amarilli
November 1, 2023

Télécom Paris

1/29

Introduction

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

Data

?
Query

Query evaluation

A B

a1 b1
a2 b2
a3 b3

Results

• Measure the efficiency of this task

• Theoretical study (asymptotic complexity, lower bounds) rather than practical

2/29

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

Data

?
Query

Query evaluation

A B

a1 b1
a2 b2
a3 b3

Results

• Measure the efficiency of this task

• Theoretical study (asymptotic complexity, lower bounds) rather than practical

2/29

Query evaluation

Central question studied in my research: how to efficiently evaluate queries on data?

Data

?
Query

Query evaluation

A B

a1 b1
a2 b2
a3 b3

Results

• Measure the efficiency of this task

• Theoretical study (asymptotic complexity, lower bounds) rather than practical
2/29

Example: Reachability query

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 5

Results

Extend to three tasks: enumeration, maintenance, and reliability

3/29

Example: Reachability query

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 5

Results

Extend to three tasks: enumeration, maintenance, and reliability

3/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query
evaluation

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:

• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation

• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation

• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation

• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation

• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4

1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5

2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4

2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results...

4/29

Enumeration: Producing results in streaming

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Preprocessing
algorithm

{1, 2} × {4, 5}
Compressed

representation

Enumeration
algorithm

x y

1 4
1 5
2 4
2 5

Results

• Usual complexity measure: time to produce the entire output

• More precise measure: enumeration algorithms:
• Preprocessing time: time to produce compressed representation
• Delay between each consecutive output

→ Test existence of a result, find some results, find all results... 4/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4
1 5
2 4
2 4

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result
• Relabeling updates vs more general updates

5/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Incremental
query evaluation

x y

1 4
1 5
2 4
2 4

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result

• Relabeling updates vs more general updates

5/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Incremental
query evaluation

x y

1 4
1 5
2 4
2 4

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result

• Relabeling updates vs more general updates

5/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Incremental
query evaluation

x y

1 4
1 5
2 4
2 4

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result

• Relabeling updates vs more general updates

5/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Incremental
query evaluation

x y

1 4
1 5
2 4
2 5

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result

• Relabeling updates vs more general updates

5/29

Maintenance over dynamic data: Adapting to changes

1

2

3 5

4

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Incremental
query evaluation

x y

1 4
1 5
2 4
2 5

Results

Change: make 2 uncolored

• Whenever the data is changed, do not recompute the whole result
• Relabeling updates vs more general updates

5/29

Reliability: Probabilistic query evaluation

1

50%

2

50%

3 5

50%

4

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Query evaluation

x y

1 4

25%

1 5

25%

2 4

25%

2 5

25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query

6/29

Reliability: Probabilistic query evaluation

1

50%

2

50%

3 5

50%

4

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Probabilistic
query evaluation

x y

1 4

25%

1 5

25%

2 4

25%

2 5

25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query

6/29

Reliability: Probabilistic query evaluation

1
50%

2
50%

3 5
50%

4
50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Probabilistic
query evaluation

x y

1 4

25%

1 5

25%

2 4

25%

2 5

25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence

• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query

6/29

Reliability: Probabilistic query evaluation

1
50%

2
50%

3 5
50%

4
50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Probabilistic
query evaluation

x y

1 4 25%
1 5 25%
2 4 25%
2 5 25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results

• Here, more interesting: probability of the Boolean query

6/29

Reliability: Probabilistic query evaluation

1
50%

2
50%

3 5
50%

4
50%

Data: Graph G

Query Q: “Is there an orange
node having a directed
path to a blue node?”

Probabilistic
query evaluation

x y

1 4 25%
1 5 25%
2 4 25%
2 5 25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query

6/29

Reliability: Probabilistic query evaluation

1
50%

2
50%

3 5
50%

4
50%

Data: Graph G

Query Q: “Is there an orange
node having a directed
path to a blue node?”

Probabilistic
query evaluation

x y

1 4 25%
1 5 25%
2 4 25%
2 5 25%

Results

56.25%

Result

• The color of each node is kept with a given probability, assuming independence
• We want to know the probability of all results
• Here, more interesting: probability of the Boolean query

6/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation

x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation

• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation,

enumeration, probability computation
• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration,

probability computation
• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4
50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation

• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4
50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation

• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4
50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation

• Update it if there are changes on the data

7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data 7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data 7/29

Provenance circuits: A unified approach to these three problems

1

2

3 5

4

50%

50%

50%

50%

Data: Graph G

Query Q(x, y): “Which orange
nodes x have a directed path

to which blue nodes y?”

Provenance
computation x :1 x :2 y :4 y :5

∪ ∪

×

50% 50% 50% 50%

Provenance circuit

Evaluation

Change: make 2 uncolored

Enumeration

Probability
computation

• The provenance circuit describes how the query result depends on the data
• Show that it belongs to restricted circuit classes from knowledge compilation
• Use it for evaluation, enumeration, probability computation
• Update it if there are changes on the data 7/29

Roadmap of the presentation

• Present data and query formalisms:
→ Monadic second-order logic (MSO) on words/trees

• Results on enumeration

• Results on incremental maintenance

• Results on probabilistic query evaluation

8/29

Roadmap of the presentation

• Present data and query formalisms:
→ Monadic second-order logic (MSO) on words/trees

• Results on enumeration

• Results on incremental maintenance

• Results on probabilistic query evaluation

8/29

Roadmap of the presentation

• Present data and query formalisms:
→ Monadic second-order logic (MSO) on words/trees

• Results on enumeration

• Results on incremental maintenance

• Results on probabilistic query evaluation

8/29

Roadmap of the presentation

• Present data and query formalisms:
→ Monadic second-order logic (MSO) on words/trees

• Results on enumeration

• Results on incremental maintenance

• Results on probabilistic query evaluation

8/29

Context

Families of data

less
expressive

more
expressive

• Words:
1 2 3 4 5 6 7 8

• Trees:
1

2 3

4 5 6 7

• Bounded-treewidth graphs:

• Many other classes of graphs and relational structures:

9/29

Families of data

less
expressive

more
expressive

• Words:
1 2 3 4 5 6 7 8

• Trees:
1

2 3

4 5 6 7

• Bounded-treewidth graphs:

• Many other classes of graphs and relational structures:

9/29

Families of data

less
expressive

more
expressive

• Words:
1 2 3 4 5 6 7 8

• Trees:
1

2 3

4 5 6 7

• Bounded-treewidth graphs:

• Many other classes of graphs and relational structures:

9/29

Families of data

less
expressive

more
expressive

• Words:
1 2 3 4 5 6 7 8

• Trees:
1

2 3

4 5 6 7

• Bounded-treewidth graphs:

• Many other classes of graphs and relational structures:

9/29

Query languages

From least to most expressive:

• Conjunctive queries (CQs): find a pattern
• Q(x, y): “Find two adjacent blue nodes x and y with y having an orange neighbor”
• Q(x, y) : ∃z y zx

• Unions of CQs (UCQs): disjunction of CQs
• Q(x, y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y”

• First-order logic (FO):
→ conjunction, disjunction, negation, existential quantification, universal quantification

• Monadic second-order logic (MSO): extend FO with quantification over sets
• Equivalent to finite automata on words, trees, tree encodings

10/29

Query languages

From least to most expressive:

• Conjunctive queries (CQs): find a pattern
• Q(x, y): “Find two adjacent blue nodes x and y with y having an orange neighbor”
• Q(x, y) : ∃z y zx

• Unions of CQs (UCQs): disjunction of CQs
• Q(x, y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y”

• First-order logic (FO):
→ conjunction, disjunction, negation, existential quantification, universal quantification

• Monadic second-order logic (MSO): extend FO with quantification over sets
• Equivalent to finite automata on words, trees, tree encodings

10/29

Query languages

From least to most expressive:

• Conjunctive queries (CQs): find a pattern
• Q(x, y): “Find two adjacent blue nodes x and y with y having an orange neighbor”
• Q(x, y) : ∃z y zx

• Unions of CQs (UCQs): disjunction of CQs
• Q(x, y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y”

• First-order logic (FO):
→ conjunction, disjunction, negation, existential quantification, universal quantification

• Monadic second-order logic (MSO): extend FO with quantification over sets
• Equivalent to finite automata on words, trees, tree encodings

10/29

Query languages

From least to most expressive:

• Conjunctive queries (CQs): find a pattern
• Q(x, y): “Find two adjacent blue nodes x and y with y having an orange neighbor”
• Q(x, y) : ∃z y zx

• Unions of CQs (UCQs): disjunction of CQs
• Q(x, y): “Find two adjacent blue nodes x and y or two adjacent orange nodes x and y”

• First-order logic (FO):
→ conjunction, disjunction, negation, existential quantification, universal quantification

• Monadic second-order logic (MSO): extend FO with quantification over sets
• Equivalent to finite automata on words, trees, tree encodings

10/29

Enumeration

Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES

11/29

Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES

11/29

Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES

11/29

Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES

11/29

Word automata with captures

On words, MSO queries are equivalent to automata

with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES
11/29

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q: “Is there an orange node before a blue node?”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES
11/29

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x, y): “Find an orange node x before a blue node y”

0start 1 2

, , , , , ,

w:
1 2 3 4 5 6 7 8

Result: YES
11/29

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x, y): “Find an orange node x before a blue node y”

0start 1 2

, ,

x :

, ,

y :

, ,

w:
1 2 3 4 5 6 7 8

Result: YES
11/29

Word automata with captures

On words, MSO queries are equivalent to automata with captures

Q(x, y): “Find an orange node x before a blue node y”

0start 1 2

, ,

x :

, ,

y :

, ,

w:
1 2 3 4 5 6 7 8

Results: (x :1, y :3), (x :1, y :7), (x :4, y :7)
11/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Provenance circuit computation: Product construction

0start 1 2

, ,

x :

, ,

y :

, ,

1

2

3

4

5

6

7

8

start

x:1

x:4

y:3

y:7

• Product of word and automaton

• Trim nodes that are not reachable/co-reachable

• Collapse transitions with no assignments

• Equivalent provenance circuit:

⊤
∨

∨
∨

∨
∨

∨
∨

∨

∧

x:1

∧

x:4
∧

y:3

∧

y:7

12/29

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/29

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/29

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/29

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/29

Enumerating the results of MSO queries

We can enumerate query results (= satisfying assignments) using the provenance circuit

• Generalizes from words to trees

• Also works for non-deterministic automata

Theorem (ICDT’19 on words, PODS’19 on trees; with Bourhis, Mengel, Niewerth)
Given an automaton with captures A with constant number of variables, given a word w,
we can enumerate the results of A on w with preprocessing O(Poly(|A|)× |w|)
and delay O(Poly(|A|)).

Known result [Bagan, 2006, Kazana and Segoufin, 2013] but polynomial dependency in A

13/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Enumeration for general circuits

We can enumerate the satisfying assignments of arbitrary circuits in d-SDNNF:

• Decomposable: no variable occurs on both inputs of an ∧-gate

• Deterministic: inputs to an ∨-gate are mutually exclusive

• Negation normal form: negation on leaves

• Structured by a v-tree

Theorem (ICALP’17; with Bourhis, Jachiet, Mengel)
Given a d-SDNNF C and a v-tree that structures C, we can enumerate the satisfying
assignments of C with linear preprocessing and output-linear delay.

14/29

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x :) A (y :) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes

15/29

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x :) A (y :) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes

15/29

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x :) A (y :) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes

15/29

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x :) A (y :) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes

15/29

Beyond regular languages

Generalize automata with captures into annotation context-free grammars

Q(x, y): “Find all endpoints x, y of factors of the form n n”

S → Σ∗ (x :) A (y :) Σ∗

A → A | ϵ

Annotation grammar must be input-output-unambiguous: no result is captured twice

Theorem (PODS’22; with Jachiet, Muñoz, Riveros)
Given an unambiguous annotation grammar G and word w, we can enumerate
the results of G on w with preprocessing O(|G| × |w|3) and output-linear delay

Better preprocessing time for restricted grammar classes
15/29

Maintenance

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?

16/29

Maintenance for MSO enumeration on trees

We use provenance circuits for automata on words and trees

Q(x, y): “Find pairs of an orange node x and a blue node y”

1

2 3

4 5 6 7

∧

∨ ∨

x:4 x:5 y:6 y:7

What happens if the tree is modified?

• Can we update the provenance circuit instead of recomputing it from scratch?

• Can we avoid re-running the preprocessing phase of the enumeration?
16/29

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/29

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/29

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/29

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/29

Maintaining MSO enumeration structures under relabelings

We can show that relabeling updates to the tree T can be handled in O(height(T))

→ The provenance circuit computation and enumeration preprocessing are bottom-up

It suffices to balance the tree at the start (uses balanced tree decompositions)

Theorem (ICDT’18; with Bourhis, Mengel)
For any fixed MSO query Q, given an input tree T, we can enumerate the results of Q
on T with linear preprocessing and output-linear delay, and we can handle relabeling
updates to T in time O(log |T|).

Same for updates that change the tree structure (PODS’19; with Bourhis, Mengel,
Niewerth) assuming we have an algorithm to keep the tree balanced

17/29

Improving the logarithmic complexity

• The update time is O(log n) and there is a lower bound of Ω(log n/ log log n)
→ Already for Boolean queries on words under relabeling updates

• Yet, we can do better for some queries, e.g.:
Q: “Is there both an orange node and a blue node?”

• Simply maintain the counts! update time O(1)

→ For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?

18/29

Improving the logarithmic complexity

• The update time is O(log n) and there is a lower bound of Ω(log n/ log log n)
→ Already for Boolean queries on words under relabeling updates

• Yet, we can do better for some queries, e.g.:
Q: “Is there both an orange node and a blue node?”

• Simply maintain the counts! update time O(1)

→ For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?

18/29

Improving the logarithmic complexity

• The update time is O(log n) and there is a lower bound of Ω(log n/ log log n)
→ Already for Boolean queries on words under relabeling updates

• Yet, we can do better for some queries, e.g.:
Q: “Is there both an orange node and a blue node?”

• Simply maintain the counts! update time O(1)

→ For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?

18/29

Improving the logarithmic complexity

• The update time is O(log n) and there is a lower bound of Ω(log n/ log log n)
→ Already for Boolean queries on words under relabeling updates

• Yet, we can do better for some queries, e.g.:
Q: “Is there both an orange node and a blue node?”

• Simply maintain the counts! update time O(1)

→ For a fixed language L, given a word w of length n, what is the best update time to
maintain membership of w to L under relabelings?

18/29

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)

All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages...

19/29

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)

All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages...

19/29

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)
All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages...

19/29

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)
All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages...

19/29

Incremental maintenance for regular word languages

We define regular language classes QLZG and QSG such that:

Theorem (ICALP’21; with Jachiet, Paperman)
Consider the problem of maintaining membership to a
regular language L on words under relabeling updates

• If L is in QLZG, then the problem is in O(1)

• If L is in QSG \ QLZG, then the problem is in O(log log n)
and conditionally not in O(1)

• If L is not in QSG, then the problem is in Θ(log n/ log log n)
All: in Θ(log n/ log log n)

QSG: in O(log log n)
not in O(1)?

QLZG: in O(1)

• QLZG: “in all submonoids of the stable semigroup, all subgroup elements are central”
→ Commutative languages, finite languages, disjoint shuffles, modulo, nearby positions...

• QSG: “the stable semigroup satisfies the equation xω+1yxω = xωyxω+1”
→ Aperiodic languages, tame combinations of aperiodic and commutative languages... 19/29

Reliability

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7
50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7
50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here:

56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7
50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation (PQE)

Tuple-independent probabilistic data (TID): facts carry independent probabilities

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7
50% 50% 50% 50%

PQE(Q): compute the total probability that Q is satisfied, here: 56.25%

• Known dichotomy for PQE on unions of conjunctive queries (on arbitrary data)
[Dalvi and Suciu, 2013]: the problem is either #P-hard or in PTIME

20/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)

21/29

Probabilistic query evaluation on trees via circuits

For MSO queries on trees, we can solve PQE using d-SDNNF provenance circuits!

Q: “There is both an orange node and a blue node”

1

2 3

4 5 6 7

50% 50% 50% 50%

∧

∨ ∨

x:4 x:5 y:6 y:7

∧
∧

∧ ∧
∧

∧

¬ ¬ ¬ ¬

50% 50% 50% 50%

25%
25%

25% 25%
25%

25%

75% 75%

56.25%

• Probability of ∧ is the product of the probabilities (uses decomposability)

• Probability of ∨ is the sum of the probabilities (uses determinism)
21/29

Intractability of probabilistic query evaluation in the general case

What about more general data?

We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),

for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability of probabilistic query evaluation in the general case

What about more general data? We show intractability beyond bounded-treewidth data:

• On any unbounded-treewidth class of probabilistic graphs (conditions apply),
for a specific query called the matching query:

• No small d-SDNNFs: we cannot efficiently solve PQE via structured circuits

• PQE is #P-hard under randomized reductions

• When allowing arbitrary instances:

• We show hardness of PQE for non-hierarchical self-join free CQs,
in the uniform case (where all probabilities are 1/2)

• We show the same for all unbounded homomorphism-closed queries on graphs

22/29

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]

23/29

Intractability on unbounded-treewidth data

We consider graphs with probabilistic edges and the matching query Q that asks if there
are no two edges that share an endpoint

Theorem (ICDT’18; with Monet and Senellart)
For some d ∈ N, any d-SDNNF provenance circuit for Q on a graph G of treewidth k
must have size 2Ω(k1/d).

Theorem (MFCS’22; with Monet)
On any graph family G in which we can efficiently find high-treewidth graphs,
the PQE problem for Q on an input graph G ∈ G under an input probability distribution
is #P-hard under randomized reductions.

Uses polynomial bounds on the grid minor theorem [Chekuri and Chuzhoy, 2016]
23/29

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g., x y z but not x y z w

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)
For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic
query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.

24/29

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g., x y z but not x y z w

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)
For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic
query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.

24/29

Intractability in the uniform setting

A conjunctive query is self-join-free if all edge colors are different

E.g., x y z but not x y z w

Known dichotomy: PQE on tuple-independent databases is intractable for the
non-hierarchical such queries [Dalvi and Suciu, 2007]

Theorem (ICDT’21, LMCS; with Kimelfeld)
For any non-hierarchical self-join-free conjunctive query Q, computing probabilistic
query evaluation problem for Q input TID databases is #P-hard even if all input
probabilities are 1/2.

24/29

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G′ then G′ satisfies Q

→ Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)
For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.

25/29

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G′ then G′ satisfies Q

→ Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)
For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.

25/29

Intractability for unbounded homomorphism-closed queries

A query Q is homomorphism-closed if whenever G satisfies Q and G has a
homomorphism to G′ then G′ satisfies Q

→ Examples: CQs, UCQs, Datalog...

Theorem (ICDT’20, LMCS; with Ceylan)
For any unbounded homomorphism-closed query Q on graphs,
the PQE problem for Q is #P-hard.

Theorem (ICDT’23)
This holds even if all probabilities are 1/2.

25/29

Conclusion

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!

26/29

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!

26/29

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!

26/29

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!

26/29

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention!

26/29

Summary and perspectives

• Circuits can be a unifying framework for enumeration, incremental maintenance
and PQE, at least for MSO queries on bounded-treewidth data

• Properties of the automata correspond to knowledge compilation circuit classes

• May also extend to other settings:
• Explored for enumeration with annotated context-free grammars on words
• Open if circuits explain the tractability of PQE for safe UCQs
• Other cases? (e.g., UCQs with tractable enumeration?)

• Finer bounds on incremental maintenance via algebraic methods
• Connections with circuits not (yet) understood
• Unclear if the results extend to enumeration and to trees

• For PQE, hardness holds outside of the bounded-treewidth setting
• Better joint criteria for width when considering the instance and query?

• Enumeration of large solutions by editing previous solutions? (STACS’23; with Monet)

Thanks for your attention! 26/29

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée, Tijn de Vos)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

27/29

www.tcs4f.org
www.nofreeviewnoreview.org

Advertisement: TCS4F and “No free view? No review!”

Are you concerned about how academic research in theoretical
computer science is contributing to the climate crisis?

If so, sign the TCS4F pledge! (Theoretical Computer Scientists 4 Future)

www.tcs4f.org

(with Thomas Schwentick, Thomas Colcombet, Hugo Férée, Tijn de Vos)

Are you tired of doing reviewing work for conferences and journals
that do not publish their research online?

If so, sign the pledge “No free view? No review!”

www.nofreeviewnoreview.org

(with Antonin Delpeuch)

27/29

www.tcs4f.org
www.nofreeviewnoreview.org

References i

Bagan, G. (2006).
MSO queries on tree decomposable structures are computable with linear delay.
In CSL.
Chekuri, C. and Chuzhoy, J. (2016).
Polynomial bounds for the grid-minor theorem.
JACM, 63(5).
Dalvi, N. and Suciu, D. (2007).
Efficient query evaluation on probabilistic databases.
VLDBJ, 16(4).

28/29

https://dl.acm.org/doi/abs/10.1145/2820609
https://homes.cs.washington.edu/~suciu/vldbj-probdb.pdf

References ii

Dalvi, N. and Suciu, D. (2013).
The dichotomy of probabilistic inference for unions of conjunctive queries.
JACM, 59(6).
Kazana, W. and Segoufin, L. (2013).
Enumeration of monadic second-order queries on trees.
TOCL, 14(4).

29/29

http://www.cs.washington.edu/homes/suciu/dichotomyUCQ-with-acm-cls.pdf
https://hal.inria.fr/hal-00916400/file/enummso.pdf

	Introduction
	Context
	Enumeration
	Maintenance
	Reliability
	Conclusion

